

Is Now Part of

ON Semiconductor®

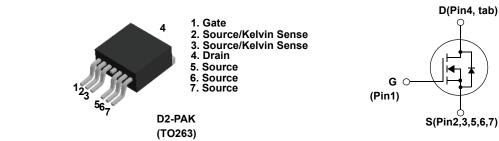
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FDB0165N807L N-Channel PowerTrench[®] MOSFET 80 V, 310 A, 1.6 m Ω

Features


- Max r_{DS(on)} = 1.6 mΩ at V_{GS} = 10 V, I_D = 36 A
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low ^rDS(on)
- High Power and Current Handling Capability
- RoHS Compliant

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench[®] process that has been especially tailored to minimize the on-state resistance while maintaining superior ruggedness and switching performance for industrial applications.

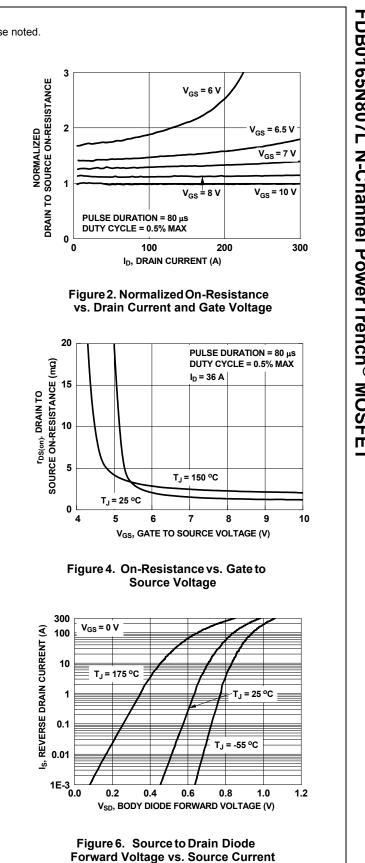
Applications

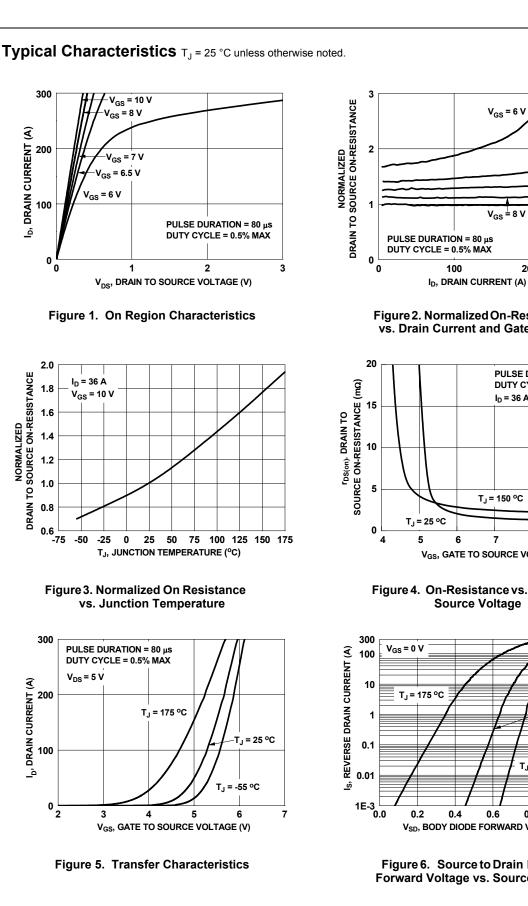
- Industrial Motor Drive
- Industrial Power Supply
- Industrial Automation
- Battery Operated Tools
- Battery Protection
- Solar Inverters
- UPS and Energy Inverters
- Energy Storage
- Load Switch

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

Symbol	Param	eter		Ratings	Units
V _{DS}	Drain to Source Voltage			80	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous	T _C = 25°C	(Note 5)	310	
I _D	-Continuous	T _C = 100°C	(Note 5)	220	Α
	-Pulsed		(Note 4)	1780	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	1083	mJ
D	Power Dissipation	T _C = 25°C		300	14/
PD	Power Dissipation	T _A = 25°C	(Note 1a)	3.8	W
T _J , T _{STG}	Operating and Storage Junction Tempera	ature Range		-55 to +175	°C

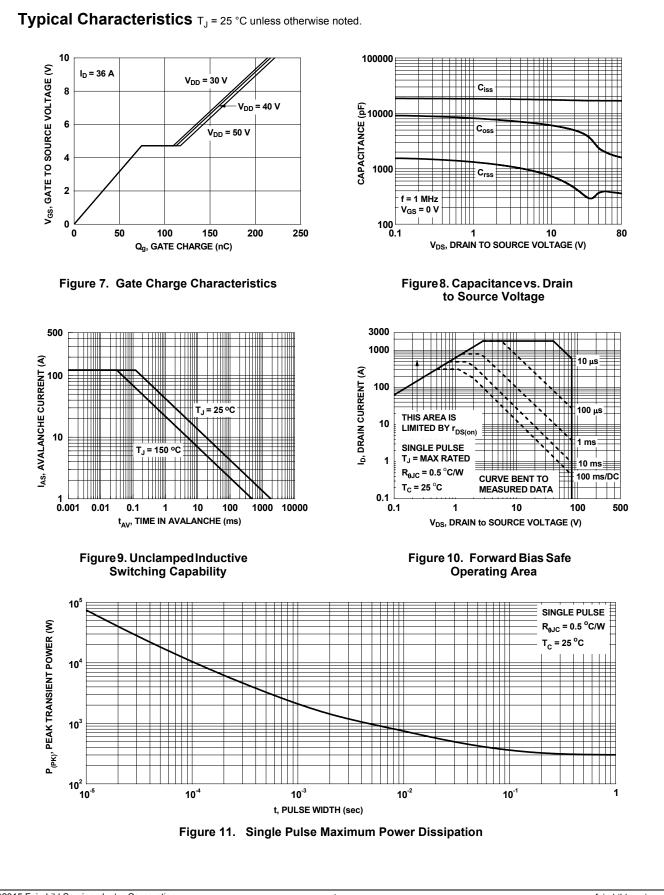
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/VV

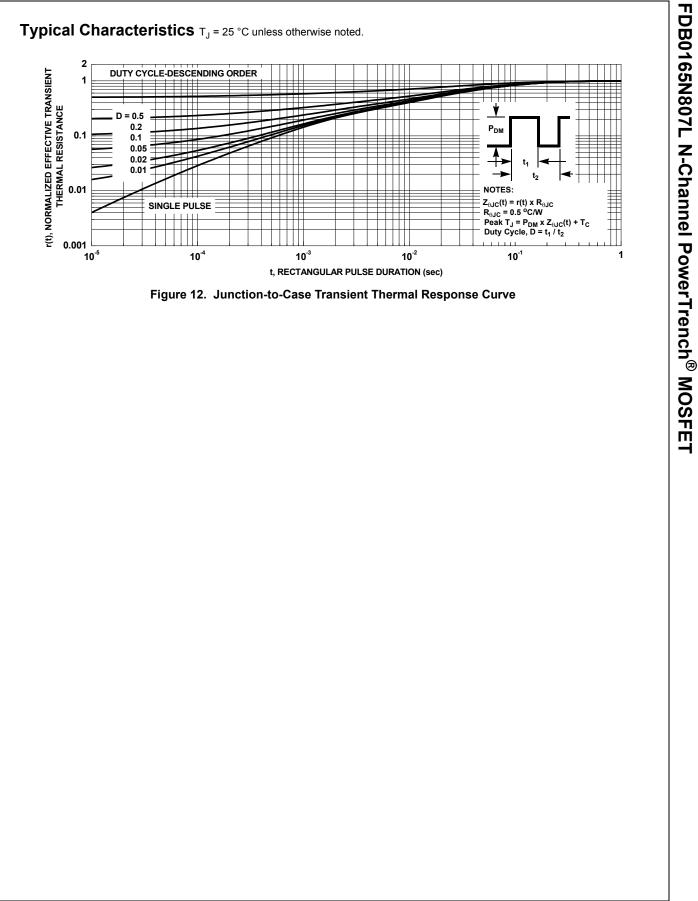

Package Marking and Ordering Information

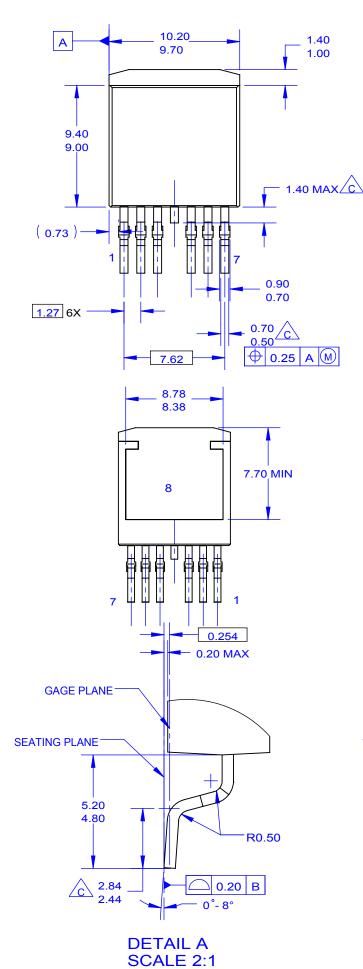

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB0165N807L	FDB0165N807L	D2-PAK-7L	330mm	24mm	800 units

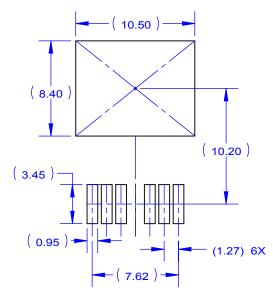
BV _{DSS} ΔBV _{DSS} ΔΤ _J	Drain to Source Breakdown Voltage Breakdown Voltage Temperature					
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ $\frac{I_{DSS}}{I_{GSS}}$	-					
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature	I _D = 250 μA, V _{GS} = 0 V	80			V
	Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		38		mV/°C
I _{GSS}	Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V			1	μA
	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V			±100	nA
On Chara	ICTERISTICS (Note 2)					
	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	2	2.9	4	V
$\frac{V_{GS(th)}}{\Delta V_{GS(th)}}$	Gate to Source Threshold Voltage		-	-	т 	-
$\frac{\Delta V GS(th)}{\Delta T_J}$	Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-13		mV/°C
r _{no()}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 36 A		1.2	1.6	mΩ
r _{DS(on)}		V_{GS} = 10 V, I _D = 36 A, T _J = 150°C		2.0	2.7	1115.2
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 36 A		136		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			16900	23660	pF
C _{oss}	Output Capacitance	$-V_{\rm DS} = 40$ V, $V_{\rm GS} = 0$ V,		2350	3290	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		335	1050	pF
133	Gate Resistance					
Ra	Gale Resistance			3.3	1000	Ω
*				3.3	1000	
Switching	g Characteristics			I		Ω
Switching	g Characteristics Turn-On Delay Time			68	109	Ω
Switching t _{d(on)} t _r	g Characteristics Turn-On Delay Time Rise Time	$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 36 \text{ A},$		68 104	109 166	Ω ns ns
Switching t _{d(on)} t _r t _{d(off)}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	V _{DD} = 40 V, I _D = 36 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		68 104 123	109 166 197	Ω ns ns ns
Switching t _{d(on)} t _r t _{d(off)} t _f	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time			68 104 123 64	109 166 197 102	Ω ns ns ns
Switching t _{d(on)} t _r t _{d(off)} t _f Q _g	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge			68 104 123 64 217	109 166 197	ns ns ns ns nC
t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge	V _{GS} = 10 V, R _{GEN} = 6 Ω		68 104 123 64 217 75	109 166 197 102	ns ns ns nC nC
Switching t _{d(on)} t _r t _{d(off)} t _f Q _g	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = 40 \text{ V}, \text{ I}_{D} = 36 \text{ A},$		68 104 123 64 217	109 166 197 102	ns ns ns ns nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{DD} = 40 \text{ V}, \text{ I}_{D} = 36 \text{ A},$		68 104 123 64 217 75	109 166 197 102	ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	g CharacteristicsTurn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeTotal Gate ChargeGate to Source Gate ChargeGate to Drain "Miller" Charge	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ - V _{DD} = 40 V, I _D = 36 A, - V _{GS} = 10 V		68 104 123 64 217 75	109 166 197 102	ns ns ns nC nC
Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-Sou	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{GS} = 10 \text{ V}, \text{R}_{GEN} = 6 \Omega$ $V_{DD} = 40 \text{ V}, \text{I}_{D} = 36 \text{ A},$ $V_{GS} = 10 \text{ V}$ de Forward Current		68 104 123 64 217 75	109 166 197 102 304	Ω ns ns ns nC nC
Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-Sou	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain to Source Diode	$V_{GS} = 10 \text{ V}, \text{R}_{GEN} = 6 \Omega$ $V_{DD} = 40 \text{ V}, \text{I}_{D} = 36 \text{ A},$ $V_{GS} = 10 \text{ V}$ de Forward Current		68 104 123 64 217 75	109 166 197 102 304 310	Ω ns ns ns nC nC nC
Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-Sou I _S I _{SM}	g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics Maximum Continuous Drain to Source Diode Maximum Pulsed Drain to Source Diode Fe	$V_{GS} = 10 \text{ V}, \text{R}_{GEN} = 6 \Omega$ $V_{DD} = 40 \text{ V}, \text{I}_{D} = 36 \text{ A},$ $V_{GS} = 10 \text{ V}$ de Forward Current prward Current		68 104 123 64 217 75 38	109 166 197 102 304 310 1780	Ω ns ns ns nC nC nC A A

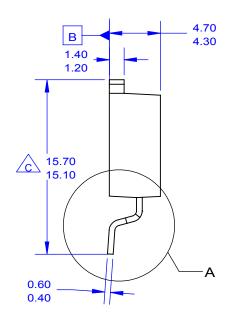
4. Pulsed Id please refer to Figure 10 "Forward Bias Safe Operating Area" for more details.


5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.




©2015 Fairchild Semiconductor Corporation FDB0165N807L Rev.C


NORMALIZED


FDB0165N807L N-Channel PowerTrench[®] MOSFET

LAND PATTERN RECOMMENDATION

NOTES:

- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED.
 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE. D. DIMENSION AND TOLERANCE AS PER ASME
 - Y14.5-1994. E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
 - F. LAND PATTERN RECOMMENDATION PER IPC. TO127P1524X465-8N.
 - G. DRAWING FILE NAME: TO263A07REV5.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FDB0165N807L