
Altera SDK for OpenCL
Programming Guide

Subscribe

Send Feedback

OCL002-15.0.0
2015.05.04

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.altera.com/servlets/subscriptions/alert?id=OCL002-15.0.0
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

Altera SDK for OpenCL Programming Guide... 1-1
AOCL Programming Guide Prerequisites... 1-1
AOCL FPGA Programming Flow... 1-2
AOC Kernel Compilation Flows..1-4

One-Step Compilation for Simple Kernels...1-4
Multistep AOCL Design Flow..1-5

Obtaining General Information on Software, Compiler, and Custom Platform................................1-7
Displaying the Software Version (version)...1-8
Displaying the Compiler Version (--version).. 1-8
Listing the AOCL Utility Command Options (help)..1-8
Listing the AOC Command Options (-h or --help)..1-8
Listing the Available FPGA Boards in Your Custom Platform (--list-boards)....................... 1-9

Managing an FPGA Board..1-9
Installing an FPGA Board (install).. 1-9
Uninstalling the FPGA Board (uninstall)...1-11
Querying the Device Name of Your FPGA Board (diagnose)...1-11
Running a Board Diagnostic Test (diagnose <device_name>)... 1-12
Programming the FPGA Offline or without a Host (program <device_name>)................. 1-12
Programming the Flash Memory (flash <device_name>)... 1-12

Structuring Your OpenCL Kernel... 1-13
Guidelines for Naming the Kernel.. 1-13
Programming Strategies for Optimizing Data Processing Efficiency.................................... 1-14
Programming Strategies for Optimizing Memory Access Efficiency.....................................1-16
Implementing AOCL Channels Extension.. 1-18
Implementing OpenCL Pipes...1-35
Using Predefined Preprocessor Macros in Conditional Compilation................................... 1-50
Declaring __constant Address Space Qualifiers..1-50
Including Structure Data Types as Arguments in OpenCL Kernels...................................... 1-52
Inferring a Register.. 1-55
Enabling Double Precision Floating-Point Operations..1-56

Designing Your Host Application...1-56
Host Programming Requirements.. 1-57
Allocating OpenCL Buffer for Manual Partitioning of Global Memory............................... 1-58
Creating a Pipe Object in Your Host Application...1-60
Collecting Profile Data During Kernel Execution...1-60
Accessing Custom Platform-Specific Functions... 1-62
Modifying Host Program for Structure Parameter Conversion... 1-62
Allocating Shared Memory for OpenCL Kernels Targeting SoCs.. 1-63
Managing Host Application... 1-65

Compiling Your OpenCL Kernel.. 1-75
Compiling a Kernel for a Big-Endian System (--big-endian)..1-75
Compiling Your Kernel to Create Hardware Configuration File... 1-76

TOC-2

Altera Corporation

Compiling Your Kernel without Building Hardware (-c)..1-76
Specifying the Location of Header Files (-I <directory>).. 1-76
Specifying the Name of an AOC Output File (-o <filename>)..1-77
Compiling a Kernel for a Specific FPGA Board (--board <board_name>)...........................1-77
Resolving Hardware Generation Fitting Errors during Kernel Compilation (--high-

effort)..1-79
Defining Preprocessor Macros to Specify Kernel Parameters (-D <macro_name>)........... 1-79
Generating Compilation Progress Report (-v).. 1-81
Displaying the Estimated Resource Usage Summary On-Screen (--report)......................... 1-81
Suppressing AOC Warning Messages (-W)...1-82
Converting AOC Warning Messages into Error Messages (-Werror)...................................1-82
Adding Source References to Optimization Reports (-g).. 1-82
Disabling Burst-Interleaving of Global Memory (--no-interleaving

<global_memory_type>)...1-82
Configuring Constant Memory Cache Size (--const-cache-bytes <N>)................................1-83
Relaxing the Order of Floating-Point Operations (--fp-relaxed)..1-83
Reducing Floating-Point Rounding Operations (--fpc)...1-84

Emulating and Debugging Your OpenCL Kernel...1-84
Modifying Channels Kernel Code for Emulation... 1-84
Compiling a Kernel for Emulation (-march=emulator).. 1-86
Emulating Your OpenCL Kernel... 1-86
Debugging Your OpenCL Kernel on Linux... 1-87
Limitations of the AOCL Emulator...1-88

Profiling Your OpenCL Kernel..1-89
Instrumenting the Kernel Pipeline with Performance Counters (--profile)......................... 1-89
Launching the AOCL Profiler GUI (report).. 1-90

Conclusion.. 1-90
Document Revision History...1-91

Support Statuses of OpenCL Features .. A-1
OpenCL Programming Language Implementation... A-1
OpenCL Programming Language Restrictions...A-5
OpenCL C Programming Language Restrictions for Pipes.. A-6
Argument Types for Built-in Geometric Functions...A-8
Numerical Compliance Implementation...A-8
Image Addressing and Filtering Implementation.. A-9
Atomic Functions..A-9
Embedded Profile Implementation..A-10
AOCL Allocation Limits.. A-10
Document Revision History..A-11

TOC-3

Altera Corporation

Altera SDK for OpenCL Programming Guide 1
2015.05.04

OCL002-15.0.0 Subscribe Send Feedback

The Altera SDK for OpenCL Programming Guide provides descriptions, recommendations and usage
information on the Altera® Software Development Kit (SDK) for OpenCL™ (AOCL) compiler and tools.
The AOCL(1) is an OpenCL(2)-based heterogeneous parallel programming environment for Altera FPGAs.

AOCL Programming Guide Prerequisites
The Altera SDK for OpenCL Programming Guide assumes that you are knowledgeable in OpenCL
concepts and application programming interfaces (APIs). It also assumes that you have experience
creating OpenCL applications and are familiar with the OpenCL Specification version 1.0.

Before using the Altera SDK for OpenCL (AOCL) or the Altera Runtime Environment (RTE) for OpenCL
to program a non-SoC, familiarize yourself with the respective getting started guides. This document
assumes that you have performed the following tasks:

• For the AOCL:

• Download and install the Quartus® II software
• Download and install the relevant device support
• Download and install the AOCL

• For the RTE:

• Download and install the RTE
• Install your FPGA board
• Program your non-SoC device with the hello_world example OpenCL application

If you have not performed the tasks described above, refer to the Altera SDK for OpenCL Getting Started
Guide or the Altera RTE for OpenCL Getting Started Guide for more information.

(1) The Altera SDK for OpenCL is based on a published Khronos Specification, and has passed the Khronos
Conformance Testing Process. Current conformance status can be found at www.khronos.org/
conformance.

(2) OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos Group™.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=OCL002-15.0.0
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(OCL002-15.0.0%202015.05.04)%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.khronos.org/conformance/
https://www.khronos.org/conformance/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Before using the AOCL or the RTE to program a Cyclone® V SoC Development Kit, familiarize yourself
with the respective getting started guides. This document assumes that you have performed the following
tasks:

• For the AOCL:

• Download and install the Quartus II software
• Download and install the Cyclone V and Stratix® V device support files
• Download and install the AOCL
• Download and install the SoC Embedded Design Suite (EDS)

• For the RTE:

• Download and install the RTE
• Download and install the SoC Embedded Design Suite (EDS)

• Install and set up your Cyclone V SoC Development Kit
• Program your SoC with the hello_world example OpenCL application

If you have not performed the tasks described above, refer to the Altera SDK for OpenCL Cyclone V SoC
Getting Started Guide or the Altera RTE for OpenCL Getting Started Guide for more information.

Related Information

• OpenCL References Pages
• OpenCL Specification version 1.0
• Altera SDK for OpenCL Getting Started Guide
• Altera RTE for OpenCL Getting Started Guide
• Altera SDK for OpenCL Cyclone V SoC Getting Started Guide

AOCL FPGA Programming Flow
The Altera SDK for OpenCL (AOCL) programs an FPGA with an OpenCL application in a two-step
process. The Altera Offline Compiler (AOC) first compiles your OpenCL kernels. The host-side C
compiler compiles your host application and then links the compiled OpenCL kernels to it.

1-2 AOCL FPGA Programming Flow
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://documentation.altera.com/#/link/mwh1391807309901/mwh1391807297091/en-us
https://documentation.altera.com/#/link/mwh1391808173911/ewa1401738888275/en-us
https://documentation.altera.com/#/link/ewa1400875619714/ewa1400875828418/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure depicts the AOCL FPGA programming flow:

Figure 1-1: The AOCL FPGA Programming Flow

Merged Kernel
Source Code #1

(.cl)

Kernel Source
Code #2

Kernel Source
Code #1

Kernel Source
Code #3

Host Binary

Standard
C Compiler

Host Code

Altera Offline Compiler (AOC) for OpenCL Kernels

Kernel Binary #1
(.aoco, .aocx)

Kernel Binary #2
(.aoco, .aocx)

Merged Kernel
Source Code #2

(.cl)

Kernel Source
Code #5

Kernel Source
Code #4

Kernel Source
Code #6

Kernel Binary #1
(.aocx)

Kernel Binary #2
(.aocx)

Load .aocx
 into memory

PCIe

PCIe

Load runtime

Load runtime

OCL002-15.0.0
2015.05.04 AOCL FPGA Programming Flow 1-3

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you compile your OpenCL kernels, you must consolidate your kernel source files into a single .cl
source file. The OpenCL kernel source file (.cl) contains your OpenCL source code. The AOC compiles
your kernel and generates the following files and folders:

• The Altera Offline Compiler Object file (.aoco) is an intermediate object file that contains information
for later stages of the compilation.

• The Altera Offline Compiler Executable file (.aocx) is the hardware configuration file and contains
information necessary at runtime.

• The <your_kernel_filename> folder or subdirectory, which contains data necessary to create the .aocx file.

The AOC creates the .aocx file from the contents of the <your_kernel_filename> folder or subdirectory. It
also incorporates information from the .aoco file into the .aocx file during hardware compilation. The .aocx
file contains data that the host application uses to create program objects for the target FPGA. The host
application loads these program objects into memory. The host runtime then calls these program objects
from memory and programs the target FPGA as required.

AOC Kernel Compilation Flows
The Altera Offline Compiler (AOC) can create your FPGA hardware configuration file in a one-step or a
multistep process. The complexity of your kernel dictates the AOC compilation option you implement.

One-Step Compilation for Simple Kernels
By default, the AOC compiles your OpenCL kernel and creates the hardware configuration file in a single
step. Choose this compilation option only if your OpenCL application requires minimal optimizations.

The following figure illustrates the OpenCL kernel design flow that has a single compilation step.

1-4 AOC Kernel Compilation Flows
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-2: One-Step OpenCL Kernel Compilation Flow

<your_kernel_filename>.cl

aoc <your_kernel_filename>.cl [--report]
Duration of compilation: hours

<your_kernel_filename>.aocx
Estimated resource usage summary
in <your_kernel_filename>.log

(and on-screen with --report)

Optimization report in
<your_kernel_filename>.log

Syntactic
Errors?

Resource usage
acceptable?

Single
work-item kernel

performance
satisfactory?

Execute on
FPGA

Legend
File abc Command Kernel Execution abc For single work-item kernel

NO

YES

NO

NO

<your_kernel_filename>.aoco

A successful compilation results in the following files and reports:

• Altera Offline Compiler Object file (.aoco)
• Altera Offline Compiler Executable file (.aocx)
• In the <your_kernel_filename>/<your_kernel_filename>.log file, the estimated resource usage summary

provides a preliminary assessment of area usage. If you have a single work-item kernel, the optimiza‐
tion report identifies performance bottlenecks.

Attention: It is very time consuming to iterate on your design using the one-step compilation flow. For
each iteration, you must perform a full compilation, which takes hours. Then you must
execute the kernel on the FPGA before you can assess its performance.

Related Information
Compiling Your Kernel to Create Hardware Configuration File on page 1-76

Multistep AOCL Design Flow
Choose the multistep Altera SDK for OpenCL (AOCL) design flow if you want to iterate on your OpenCL
kernel design to implement performance-improving optimizations .

OCL002-15.0.0
2015.05.04 Multistep AOCL Design Flow 1-5

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The figure below outlines the stages in the AOCL design flow. The steps in the design flow serve as
checkpoints for identifying functional errors and performance bottlenecks. They allow you to modify
your OpenCL kernel code without performing a full compilation after each iteration.

Figure 1-3: The Multistep AOCL Design Flow

<your_kernel_filename>.aocx

<your_kernel_filename>.cl

aoc -c [-g] <your_kernel_filename>.cl --report
Duration of compilation: minutes

Estimated resource usage summary
in <your_kernel_filename>.log

Syntactic
errors?

aoc -march=emulator [-g] <your_kernel_filename>.cl
Duration of compilation: seconds

Resource usage
acceptable?

Emulation
successful?

Optimization Repot in
<your_kernel_filename>.log

aoc --profile <your_kernel_filename>.cl
Duration of compilation: hours

profile.mon

aocl report <your_kernel_filename>.aocx profile.mon

Profiler
GUI

Kernel
performance
satisfactory?

aoc <your_kernel_filename>.cl
Duration of compilation: hours

Execute kernel
on FPGA

Kernel
performance
satisfactory?

Intermediate Compilation

Emulation

Profiling

Full Deployment

Execute kernel
on FPGA

YES NONO

NO

NO

YES

Single
work-item

kernel?

YES

YES

<your_kernel_filename>.aocx

NO

YES

Legend

abc

abc

File
Command
Kernel Execution
GUI
Single work-item-step

<your_kernel_filename>.aoco

<your_kernel_filename>.aocxExecute on
emulation device

The AOCL design flow includes the following steps:

1. Intermediate compilation

The intermediate compilation step checks for syntatic errors. It then generates an Altera Offline
Compiler Object file (.aoco) without building the hardware configuration file. The estimated resource
usage summary in the <your_kernel_filename>/<your_kernel_filename>.log file can provide insight into the

1-6 Multistep AOCL Design Flow
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

type of kernel optimizations you can perform. For a single work-item kernel, include the -g option to
insert source information in the optimization report in the <your_kernel_filename>.log file.

2. Emulation

Assess the functionality of your OpenCL kernel by executing it on one or multiple emulation devices
on an x86-64 host. For Linux systems, include the -g option to enable symbolic debug support.
Symbolic debug allows you to locate the origins of functional errors in your kernel code.

3. Profiling

Instruct the AOC to instrument performance counters in the Verilog code in the Altera Offline
Compiler Executable file (.aocx). During execution, the performance counters collect performance
information which you can then review in the profiler GUI.

4. Full deployment

If you are satisfied with the performance of your OpenCL kernel throughout the design flow, perform
a full compilation. You can then execute the .aocx file on the FPGA.

Related Information

• Compiling Your OpenCL Kernel on page 1-75
• Emulating and Debugging Your OpenCL Kernel on page 1-84
• Profiling Your OpenCL Kernel on page 1-89

Obtaining General Information on Software, Compiler, and Custom
Platform

The Altera SDK for OpenCL (AOCL) includes two sets of command options: the AOCL utility commands
(aocl <command_option>) and the Altera Offline Compiler (AOC) commands (aoc
<command_option>). Each set of commands includes options you can invoke to obtain general
information on the software, the compiler, and the Custom Platform.

Displaying the Software Version (version) on page 1-8
To display the version of the Altera SDK for OpenCL (AOCL) , invoke the version utility command.

Displaying the Compiler Version (--version) on page 1-8
To display the version of the Altera Offline Compiler (AOC), invoke the version compiler command.

Listing the AOCL Utility Command Options (help) on page 1-8
To display information on the Altera SDK for OpenCL (AOCL) utility command options, invoke the
help utility command.

Listing the AOC Command Options (-h or --help) on page 1-8
To display information on the Altera Offline Compiler (AOC) command options, invoke the help or h
compiler command.

Listing the Available FPGA Boards in Your Custom Platform (--list-boards) on page 1-9
To list the FPGA boards available in your Custom Platform, include the --list-boards option in the
aoc command.

OCL002-15.0.0
2015.05.04 Obtaining General Information on Software, Compiler, and Custom Platform 1-7

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Displaying the Software Version (version)
To display the version of the Altera SDK for OpenCL (AOCL) , invoke the version utility command.

• At the command prompt, invoke the aocl version command.
Example output:

aocl <version>.<build> (Altera SDK for OpenCL, Version <version>
Build <build>, Copyright (C) 2014 Altera Corporation)

Displaying the Compiler Version (--version)
To display the version of the Altera Offline Compiler (AOC), invoke the version compiler command.

• At a command prompt, invoke the aoc --version command.
Example output:

Altera SDK for OpenCL, 64-Bit Offline Compiler
Version <version> Build <build>
Copyright (C) <year> Altera Corporation

Listing the AOCL Utility Command Options (help)
To display information on the Altera SDK for OpenCL (AOCL) utility command options, invoke the
help utility command.

• At a command prompt, invoke the aocl help command.
The AOCL categorizes the utility command options based on their functions. It also provides a
description for each option.

Displaying Information on an AOCL Utility Command Option (help <command_option>)
To display information on a specific Altera SDK for OpenCL (AOCL) utility command option, include
the subcommand as an argument of the help utility command.

• At a command prompt, invoke the aocl help <command_option> command.
For example, to obtain more information on the install utility command option, invoke the aocl
help install command.
Example output:

aocl install - Installs a board onto your host system.

Usage: aocl install

Description:
This command installs a board's drivers and other necessary software for the
host operating system to communicate with the board.
For example this might install PCIe drivers.

Listing the AOC Command Options (-h or --help)
To display information on the Altera Offline Compiler (AOC) command options, invoke the help or h
compiler command.

• At a command prompt, invoke the aoc --help or aoc -h command.
The Altera SDK for OpenCL (AOCL) categorizes the AOC command options based on their functions.
It also provides a description for each option.

1-8 Displaying the Software Version (version)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Listing the Available FPGA Boards in Your Custom Platform (--list-boards)
To list the FPGA boards available in your Custom Platform, include the --list-boards option in the
aoc command.

Before you begin

To view the list of available boards in your Custom Platform, you must first set the environment variable
AOCL_BOARD_PACKAGE_ROOT to point to the location of your Custom Platform.

• At a command prompt, invoke the aoc --list-boards command.
The Altera Offline Compiler (AOC) generates an output that resembles the following:

Board list:
 <board_name_1>
 <board_name_2>
...

where <board_name_N> is the board name you use in your aoc command to target a specific FPGA
board.

Managing an FPGA Board
The Altera SDK for OpenCL (AOCL) includes utility commands you can invoke to install, uninstall,
diagnose, and program your FPGA board.

Installing an FPGA Board (install) on page 1-9
To install your board into the host system, invoke the install utility command.

Uninstalling the FPGA Board (uninstall) on page 1-11
To uninstall an FPGA board, invoke the uninstall utility command, uninstall the Custom Platform,
and unset the relevant environment variables.

Querying the Device Name of Your FPGA Board (diagnose) on page 1-11
When you query a list of accelerator boards, the AOCL produces a list of installed devices on your
machine in the order of their device names.

Running a Board Diagnostic Test (diagnose <device_name>) on page 1-12
To perform a detailed diagnosis on a specific FPGA board, include <device_name> as an argument of the
diagnose utility command.

Programming the FPGA Offline or without a Host (program <device_name>) on page 1-12
To program an FPGA device offline or without a host, invoke the program utility command.

Programming the Flash Memory (flash <device_name>) on page 1-12
If supported, invoke the flash utility command to initialize the FPGA with a specified startup
configuration.

Installing an FPGA Board (install)
Before creating an OpenCL application for an FPGA boards, you must first download and install the
Custom Platform from your board vendor. Most Custom Platform installers require administrator
privileges. To install your board into the host system, invoke the install utility command.

OCL002-15.0.0
2015.05.04 Listing the Available FPGA Boards in Your Custom Platform (--list-boards) 1-9

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The steps below outline the board installation procedure. Some Custom Platforms require additional
installation tasks. Consult your board vendor's documentation for further information on board
installation.

Attention: If you are installing the Cyclone V SoC Development Kit for use with the Cyclone V SoC
Development Kit Reference Platform, refer to Installing the Cyclone V SoC Development Kit in
the Altera SDK for OpenCL Cyclone V SoC Getting Started Guide for more information.

1. Follow your board vendor's instructions to connect the FPGA board to your system.
2. Download the Custom Platform for your FPGA board from your board vendor's website.

For more information, refer to the OpenCL Reference Platforms page on the Altera website.
3. Install the Custom Platform in a directory that you own (that is, not a system directory).
4. Set the environment variable AOCL_BOARD_PACKAGE_ROOT to point to the location of the

Custom Platform subdirectory containing the board_env.xml file.

For example, for the Stratix V Network Reference Platform (s5_net), set
AOCL_BOARD_PACKAGE_ROOT to point to the <path_to_s5_net>/s5_net directory.

5. Add the Custom Platform library paths to the PATH (Windows) or LD_LIBRARY_PATH (Linux)
environment variable setting. You may apply permanent settings manually by adding the path to the
memory-mapped (MMD) library within the Custom Platform. Alternatively, you may apply transient
settings to the current session by running the ALTERAOCLSDKROOT/init_opencl script.

For example, if you use s5_net, the Windows PATH environment variable setting is
%AOCL_BOARD_PACKAGE_ROOT%\windows64\bin. The Linux LD_LIBRARY_PATH setting is
$AOCL_BOARD_PACKAGE_ROOT/linux64/lib.

The Altera SDK for OpenCL Getting Started Guide contains more information on the init_opencl
script. For information on init_opencl.bat, refer to the Setting the Environment Variables for Windows
section. For information on init_opencl.sh, refer to the Setting the Environment Variables for Linux
section.

6. Invoke the command aocl install at a command prompt.
Invoking aocl install also installs a board driver that allows communication between host
applications and hardware kernel programs.

7. To query a list of FPGA devices installed in your machine, invoke the aocl diagnose command.
The software generates an output that includes the <device_name>, which is an acl number that ranges
from acl0 to acl15.

For more information on querying the <device_name> of your accelerator board, refer to the Querying
the Device Name of Your FPGA Board section.

8. To verify the successful installation of the FPGA board, invoke the command aocl diagnose
<device_name> to run any board vendor-recommended diagnostic test.

Related Information

• Installing the Cyclone V SoC Development Kit
• Querying the Device Name of Your FPGA Board (diagnose) on page 1-11
• Setting the Environment Variables for Windows
• Setting the Environment Variables for Linux

1-10 Installing an FPGA Board (install)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/ewa1400875619714/ewa1393967079027/en-us
https://documentation.altera.com/#/link/mwh1391807309901/ewa1416586552764/en-us
https://documentation.altera.com/#/link/ewa1400875619714/ewa1416591141201/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Uninstalling the FPGA Board (uninstall)
To uninstall an FPGA board, invoke the uninstall utility command, uninstall the Custom Platform,
and unset the relevant environment variables. You must uninstall the existing FPGA board if you migrate
your OpenCL application to another FPGA board from a different Custom Platform.

To uninstall your FPGA board, perform the following tasks:

1. Following your board vendor's instructions to disconnect the board from your machine.
2. Invoke the aocl uninstall utility command to remove the current host computer drivers (for

example, PCI Express® (PCIe®) drivers). The AOCL uses these drivers to communicate with the FPGA
board.

3. Uninstall the Custom Platform.
4. Unset the LD_LIBRARY_PATH (for Linux) or PATH (for Windows) environment variable.
5. Unset the AOCL_BOARD_PACKAGE_ROOT environment variable.

Querying the Device Name of Your FPGA Board (diagnose)
Some AOCL utility commands require you to specify the device name (<device_name>). The
<device_name> refers to the acl number (e.g. acl0 to acl15) that corresponds to the FPGA device. When
you query a list of accelerator boards, the AOCL produces a list of installed devices on your machine in
the order of their device names.

• To query a list of installed devices on your machine, type aocl diagnose at a command prompt.
The software generates an output that resembles the example shown below:

aocl diagnose: Running diagnostic from ALTERAOCLSDKROOT/board/<board_name>/
<platform>/libexec

Verified that the kernel mode driver is installed on the host machine.

Using board package from vendor: <board_vendor_name>
Querying information for all supported devices that are installed on the host
machine ...

device_name Status Information

acl0 Passed <descriptive_board_name>
 PCIe dev_id = <device_ID>, bus:slot.func = 02:00.00,
 at Gen 2 with 8 lanes.
 FPGA temperature=43.0 degrees C.

acl1 Passed <descriptive_board_name>
 PCIe dev_id = <device_ID>, bus:slot.func = 03:00.00,
 at Gen 2 with 8 lanes.
 FPGA temperature = 35.0 degrees C.

Found 2 active device(s) installed on the host machine, to perform a full
diagnostic on a specific device, please run aocl diagnose <device_name>

DIAGNOSTIC_PASSED

Related Information
Probing the OpenCL FPGA Devices on page 1-71

OCL002-15.0.0
2015.05.04 Uninstalling the FPGA Board (uninstall) 1-11

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Running a Board Diagnostic Test (diagnose <device_name>)
To perform a detailed diagnosis on a specific FPGA board, include <device_name> as an argument of the
diagnose utility command.

• At a command prompt, invoke the aocl diagnose <device_name> command, where
<device_name> is the acl number (for example, acl0 to acl15) that corresponds to your FPGA device.
You can identify the <device_name> when you query the list of installed boards in your system.

Consult your board vendor's documentation for more board-specific information on using the
diagnose utility command to run diagnostic tests on multiple FPGA boards.

Programming the FPGA Offline or without a Host (program <device_name>)
To program an FPGA device offline or without a host, invoke the program utility command.

• At a command prompt, invoke the aocl program <device_name>
<your_kernel_filename>.aocx command
where:

<device_name> refers to the acl number (for example, acl0 to acl15) that corresponds to your FPGA
device, and

<your_kernel_filename>.aocx is the Altera Offline Compiler Executable file you use to program the
hardware.

Programming the Flash Memory (flash <device_name>)
If supported, invoke the flash utility command to initialize the FPGA with a specified startup
configuration.

Note: For instructions on programming the micro SD flash card of the Cyclone V SoC Development Kit,
refer to the Writing an SD Card Image onto the Micro SD Flash Card sections for Windows and
Linux in the Altera SDK for OpenCL Cyclone V SoC Getting Started Guide.

• At a command prompt, invoke the aocl flash <device_name>
<your_kernel_filename>.aocx command
where:

<device_name> refers to the acl number (for example, acl0 to acl15) that corresponds to your FPGA
device, and

<your_kernel_filename>.aocx is the Altera Offline Compiler Executable file you use to program the
hardware.

Related Information

• Writing an SD Card Image onto the Micro SD Flash Card on Windows
• Writing an SD Card Image onto the Micro SD Flash Card on Linux

1-12 Running a Board Diagnostic Test (diagnose <device_name>)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/ewa1400875619714/ewa1401302417882/en-us
https://documentation.altera.com/#/link/ewa1400875619714/ewa1401302802846/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Structuring Your OpenCL Kernel
Altera offers recommendations on how to structure your OpenCL kernel code. Consider implementing
these programming recommendations when you create a kernel or modify a kernel written originally to
target another architecture.

Guidelines for Naming the Kernel on page 1-13
Altera recommends that you include only alphanumeric characters in your filenames.

Programming Strategies for Optimizing Data Processing Efficiency on page 1-14
Optimize the data processing efficiency of your kernel by implementing strategies such as unrolling loops,
setting work-group sizes, and specifying compute units and work-items.

Programming Strategies for Optimizing Memory Access Efficiency on page 1-16
Optimize the memory access efficiency of your kernel by implementing strategies such as specifying local
memory pointer size and specifying global memory buffer location.

Implementing AOCL Channels Extension on page 1-18
The Altera SDK for OpenCL (AOCL) channels extension provides a mechanism for passing data to
kernels and synchronizing kernels with high efficiency and low latency.

Implementing OpenCL Pipes on page 1-35
The Altera SDK for OpenCL (AOCL) provides preliminary support for OpenCL pipe functions.

Using Predefined Preprocessor Macros in Conditional Compilation on page 1-50
You may take advantage of predefined preprocessor macros that allow you to conditionally compile
portions of your kernel code.

Declaring __constant Address Space Qualifiers on page 1-50
There are several limitations and workarounds you must consider when you include __constant address
space qualifiers in your kernel.

Including Structure Data Types as Arguments in OpenCL Kernels on page 1-52
Convert each structure parameter (struct) to a pointer that points to a structure.

Inferring a Register on page 1-55
In general, the AOC chooses registers if the access to a variable is fixed and does not require any dynamic
indexes.

Enabling Double Precision Floating-Point Operations on page 1-56
The Altera SDK for OpenCL offers preliminary support for all double precision floating-point functions.

Guidelines for Naming the Kernel
Altera recommends that you include only alphanumeric characters in your filenames.

1. Begin a filename with an alphanumeric character.
If the filename of your OpenCL application begins with a nonalphanumeric character, compilation
fails with the following error message:

Error: Quartus compilation FAILED
See quartus_sh_compile.log for the output log.

2. Do not differentiate filenames using nonalphanumeric characters.

OCL002-15.0.0
2015.05.04 Structuring Your OpenCL Kernel 1-13

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Altera Offline Compiler (AOC) translates any nonalphanumeric character into an underscore
("_"). If you differentiate two filenames by ending them with different nonalphanumeric characters
only (for example, myKernel#.cl and myKernel&.cl), the AOC translates both filenames to
<your_kernel_filename>_.cl (for example, myKernel_.cl).

3. For Windows system, ensure that the combined length of the kernel filename and its file path does not
exceed 260 characters.
64-bit Windows 7 has a 260-character limit on the length of a file path. If the combined length of the
kernel filename and its file path exceeds 260 characters, the AOC generates the following error
message:

The filename or extension is too long.
The system cannot find the path specified.

In addition to the AOC error message, the following error message appears in the
<your_kernel_filename>/quartus_sh_compile.log file:

Error: Can’t copy <file_type> files: Can’t open
<your_kernel_filename> for write: No such file or directory

4. Do not name your .cl OpenCL kernel source file "kernel". Naming the source file kernel.cl causes the
AOC to generate intermediate design files that have the same names as certain internal files, which
leads to an compilation error.

Programming Strategies for Optimizing Data Processing Efficiency
Optimize the data processing efficiency of your kernel by implementing strategies such as unrolling loops,
setting work-group sizes, and specifying compute units and work-items.

Unrolling a Loop
The Altera Offline Compiler (AOC) might unroll simple loops even if they are not annotated by a pragma.
To direct the AOC to unroll a loop, insert an unroll kernel pragma in the kernel code preceding a loop
you wish to unroll.

Attention:

• Provide an unroll factor whenever possible. To specify an unroll factor N, insert the #pragma unroll
<N> directive before a loop in your kernel code.
The AOC attempts to unroll the loop at most <N> times.
Consider the code fragment below. By assigning a value of 2 as an argument to #pragma unroll, you
direct the AOC to unroll the loop twice.

#pragma unroll 2
for(size_t k = 0; k < 4; k++)
{
 mac += data_in[(gid * 4) + k] * coeff[k];
}

• To unroll a loop fully, you may omit the unroll factor by simply inserting the #pragma unroll
directive before a loop in your kernel code.
The AOC attempts to unroll the loop fully if it understands the trip count. The AOC issues a warning
if it cannot execute the unroll request.

1-14 Programming Strategies for Optimizing Data Processing Efficiency
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Specifying Work-Group Sizes
Specify a maximum or required work-group size whenever possible. The Altera Offline Compiler (AOC)
relies on this specification to optimize hardware usage of the OpenCL kernel without involving excess
logic.

If you do not specify a max_work_group_size or a reqd_work_group_size attribute in your kernel, the
work-group size assumes a default value depending on compilation time and runtime constraints.

• If your kernel contains a barrier, the AOC sets a default maximum work-group size of 256 work-items.
• If your kernel contains a barrier or refers to the local work-item ID, or if you query the work-group

size in your host code, the runtime defaults the work-group size to one work-item.
• If your kernel does not contain a barrier or refer to the local work-item ID, or if your host code does

not query the work-group size, the runtime defaults the work-group size to the global NDRange size.

To specify the work-group size, modify your kernel code in the following manner:

• To specify the maximum number of work-items the AOC may allocate to a work-group in a kernel,
insert the max_work_group_size(X, Y, Z) attribute in your kernel source code.
For example:

__attribute__((max_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);
 answer[gid] = a[gid] + b[gid];
}

• To specify the required number of work-items the AOC allocates to a work-group in a kernel, insert
the reqd_work_group_size(X, Y, Z) attribute to your kernel source code.
For example:

__attribute__((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);
 answer[gid] = a[gid] + b[gid];
}

The AOC allocates the exact amount of hardware resources to manage the work-items in a work-
group.

Specifying Number of Compute Units
To increase the data-processing efficiency of an OpenCL kernel, you can instruct the Altera Offline
Compiler (AOC) to generate multiple kernel compute units, each capable of executing multiple work-
groups simultaneously.

OCL002-15.0.0
2015.05.04 Specifying Work-Group Sizes 1-15

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: Multiplying the number of kernel compute units increases data throughput at the expense of
global memory bandwidth contention among compute units.

• To specify the number of compute units for a kernel, insert the num_compute_units(N) attribute in
the kernel source code.
For example, the code fragment below directs the AOC to instantiate two compute units in a kernel:

__attribute__((num_compute_units(2)))
__kernel void test(__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);
 answer[gid] = a[gid] + b[gid];
}

The AOC distributes work-groups across the specified number of compute units.

Specifying Number of SIMD Work-Items
To increase the data-processing efficiency of an OpenCL kernel, specify the number of work-items within
a work-group that the Altera Offline Compiler (AOC) executes in a single instruction multiple data
(SIMD) manner.

Important: Introduce the num_simd_work_items attribute in conjunction with the
reqd_work_group_size attribute. The num_simd_work_items attribute you specify must
evenly divides the work-group size you specify for the reqd_work_group_size attribute.

• To specify the number of SIMD work-items in a work-group, insert the num_simd_work_item(N)
attribute in the kernel source code.
For example, the code fragment below assigns a fixed work-group size of 64 work-items to a kernel. It
then consolidates the work-items within each work-group into four SIMD vector lanes:

__attribute__((num_simd_work_items(4)))
__attribute__((reqd_work_group_size(64,1,1)))
__kernel void test(__global const float * restrict a,
 __global const float * restrict b,
 __global float * restrict answer)
{
 size_t gid = get_global_id(0);
 answer[gid] = a[gid] + b[gid];
}

The AOC replicates the kernel datapath according to the value you specify for num_simd_work_items
whenever possible.

Programming Strategies for Optimizing Memory Access Efficiency
Optimize the memory access efficiency of your kernel by implementing strategies such as specifying local
memory pointer size and specifying global memory buffer location.

Specifying Pointer Size in Local Memory
Optimize local memory hardware footprint (that is, size) by specifying a pointer size in bytes.

1-16 Specifying Number of SIMD Work-Items
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To specify a pointer size other than the default size of 16 kilobytes (kB), include the
local_mem_size(N) attribute in the pointer declaration within your kernel source code.
For example:

__kernel void myLocalMemoryPointer(
 __local float * A,
 __attribute__((local_mem_size(1024))) __local float * B,
 __attribute__((local_mem_size(32768))) __local float * C)
{
 //statements
}

In the myLocalMemoryPointer kernel, 16 kB of local memory (default) is allocated to pointer A, 1 kB is
allocated to pointer B, and 32 kB is allocated to pointer C.

Specifying Buffer Location in Global Memory
Specify the global memory type to which the host allocates a buffer.

1. Determine the names of the global memory types available on your FPGA board in the following
manners:

• Refer to the board vendor's documentation for more information.
• Find the names in the board_spec.xml file of your board Custom Platform. For each global memory

type, the name is the unique string assigned to the name attribute of the global_mem element.
2. To instruct the host to allocate a buffer to a specific global memory type, insert the

buffer_location("<memory_type>") attribute, where <memory_type> is the name of the global
memory type provided by your board vendor.
For example:

__kernel void foo(__global __attribute__((buffer_location("DDR"))) int *x,
 __global __attribute__((buffer_location("QDR"))) int *y)

If you do not specify the buffer_location attribute, the host allocates the buffer to the default
memory type automatically. To determine the default memory type, consult the documentation
provided by your board vendor. Alternatively, in the board_spec.xml file of your Custom Platform,
search for the memory type that is defined first or has the attribute default=1 assigned to it.

Altera recommends that you define the buffer_location attribute in a preprocessor macro for
ease of reuse, as shown below:

#define QDR\
 __global\
 __attribute__((buffer_location("QDR")))

#define DDR\
 __global\
 __attribute__((buffer_location("DDR")))

__kernel void foo (QDR uint * data, DDR uint * lup)
{
 //statements
}

Attention: If you assign a kernel argument to a non-default memory (for example, QDR
uint * data and DDR uint * lup from the code above), you cannot declare

OCL002-15.0.0
2015.05.04 Specifying Buffer Location in Global Memory 1-17

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

that argument using the const keyword. In addition, you cannot perform
atomic operations with pointers derived from that argument.

Implementing AOCL Channels Extension
The Altera SDK for OpenCL (AOCL) channels extension provides a mechanism for passing data to
kernels and synchronizing kernels with high efficiency and low latency.

Attention: If you want to leverage the capabilities of channels but have the ability to run your kernel
program using other SDKs, implement OpenCL pipes instead.

Related Information
Implementing OpenCL Pipes on page 1-35

Overview of the AOCL Channels Extension
The Altera SDK for OpenCL (AOCL) channels extension allows kernels to communicate directly with
each other via FIFO buffers.

Implementation of channels decouples kernel execution from the host processor. Unlike the typical
OpenCL execution model, the host does not need to coordinate data movement across kernels.

The following figure provides an overview of the implementation of channels.

Figure 1-4: AOCL Channels Example

FIFO
FIFO

FIFO
Kernel 0

Kernel 1

Kernel 2
FIFO Kernel N FIFO

RAM

I/O Channel

Host Processor

Initialize ()

1

n

I/O Channel

Channel Data Behavior
Data written to a channel remains in a channel as long as the kernel program remains loaded on the
FPGA device. In other words, data written to a channel persists across multiple work-groups and
NDRange invocations. However, data is not persistent across multiple or different invocations of kernel
programs.

Consider the following code example:

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel int c0;

1-18 Implementing AOCL Channels Extension
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

__kernel void producer()
{
 for(int i=0; i < 10; i++)
 {
 write_channel_altera(c0, i);
 }
}

__kernel void consumer(__global uint * restrict dst)
{
 for(int i=0; i < 5; i++)
 {
 dst[i] = read_channel_altera(c0);
 }
}

The figure below illustrates the order in which the producer kernel writes the elements to the channel:

Figure 1-5: Channel Data FIFO Ordering

9 012345678Producer Consumer

The kernel producer writes ten elements ([0, 9]). The kernel consumer reads five elements from the
channel per NDRange invocation. During the first invocation, the kernel consumer reads values 0 to 4
from the channel. Because the data persists across NDRange invocations, the second time you execute the
kernel consumer, it reads values 5 to 9.

For this example, to avoid a deadlock from occurring, you need to invoke the kernel consumer twice for
every invocation of the kernel producer. If you call consumer less than twice, producer stalls because the
channel becomes full. If you call consumer more than twice, consumer stalls because there is insufficient
data in the channel.

Multiple Work-Item Ordering for Channels
The OpenCL specification does not define a work-item ordering. The Altera SDK for OpenCL (AOCL)
enforces a work-item order to maintain the consistency in channel read and write operations.

Multiple work-item accesses to a channel can be useful in some scenarios. For example, they are useful
when data words in the channel are independent, or when the channel is implemented for control logic.
The main concern regarding multiple work-item accesses to a channel is the order in which the kernel
writes data to and reads data from the channel. If possible, the AOCL channels extension processes work-
items read and write operations to the channel in a deterministic order. As such, the read and write
operations remain consistent across kernel invocations.

OCL002-15.0.0
2015.05.04 Multiple Work-Item Ordering for Channels 1-19

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Requirements for Deterministic Multiple Work-Item Ordering

To guarantee deterministic ordering, the AOCL checks that the channel call is work-item invariant based
on the following characteristics:

1. Work-items must pass through a channel call before exiting the kernel function.
2. Work-items must pass through a channel call before entering the ensuing kernel function.
3. If either of the preceding characteristics is not satisfied, the AOCL checks that all branch conditions to

the channel call basic block is work-item invariant.

If the AOCL cannot guarantee deterministic ordering of multiple work-item accesses to a channel, it
warns you that the channels might not have well-defined ordering with nondeterministic execution.
Primarily, the AOCL fails to provide deterministic ordering if you have work-item-variant code on loop
executions with channel calls, as illustrated below:

__kernel void ordering(__global int * restrict check,
 __global int * restrict data)
{
 int condition = check[get_global_id(0)];

 if(condition)
 {
 for(int i=0; i < N, i++)
 {
 process(data);
 write_channel_altera(req, data[i]);
 }
 }
 else
 {
 process(data);
 }
}

Because the Altera Offline Compiler (AOC) performs many transformations, such as branch conversion,
during kernel invocations, it might be difficult to determine if the requirements are fulfilled for a given
channel call. The AOCL generates a graphical report on channel connectivity across multiple kernels.

Work-Item Serial Execution of Channels
Work-item serial execution refers to an ordered execution behavior where work-item sequential IDs
determine their execution order in the compute unit.

When you implement channels in a kernel, the Altera Offline Compiler (AOC) enforces that kernel
behavior is equivalent to having at most one work-group in flight. The AOC also ensures that the kernel
executes channels in work-item serial execution, where the kernel executes work-items with smaller IDs
first. A work-item has the identifier (x, y, z, group), where (x, y, z) is the local 3D identifier, and
group is the work-group identifier.

The work-item ID (x0, y0, z0, group0) is considered to be smaller than the ID (x1, y1, z1,
group1) if one of the following conditions is true:

• group0 < group1
• group0 = group1 and z0 < z1
• group0 = group1 and z0 = z1 and y0 < y1
• group0 = group1 and z0 = z1 and y0 = y1 and x0 < x1

1-20 Work-Item Serial Execution of Channels
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, the work-item with an ID (x0, y0, z0, group0) executes the write channel call first, and
then the work-item with an ID (x1, y0, z0, group0) executes the call, and so on, in a sequential order.
Defining this order ensures that the system is verifiable with external models.

Channel Execution in Loop with Multiple Work-Items

When channels exist in the body of a loop with multiple work-items, as shown below, each loop iteration
executes prior to subsequent iterations. This implies that loop iteration 0 of each work-item in a work-
group executes before iteration 1 of each work-item in a work-group, and so on.

__kernel void ordering(__global int * data)
{
 write_channel_altera(req, data[get_global_id(0)]);
}

AOCL Channels Extension: Restrictions
There are certain design restrictions to the implementation of channels in your OpenCL application.

Single Call Site

Because the channel read and write operations do not function deterministically, for a given kernel, you
can only assign one call site per channel ID. For example, the Altera Offline Compiler (AOC) cannot
compile the following code example:

in_data1 = read_channel_altera(channel1);
in_data2 = read_channel_altera(channel2);
in_data3 = read_channel_altera(channel1);

The second read_channel_altera call to channel1 causes compilation failure because it creates a second
call site to channel1.

To gather multiple data from a given channel, divide the channel into multiple channels, as shown below:

in_data1 = read_channel_altera(channel1);
in_data2 = read_channel_altera(channel2);
in_data3 = read_channel_altera(channel3);

Because you can only assign a single call site per channel ID, you cannot unroll loops containing channels.
Consider the following code:

#pragma unroll 4
for (int i=0; i < 4; i++)
{
 in_data = read_channel_altera(channel1);
}

The AOC issues the following warning message during compilation:

Compiler Warning: Unroll is required but the loop cannot be unrolled.

Feedback and Feed-Forward Channels

Channels within a kernel can be either read_only or write_only. Performance of a kernel that reads and
writes to the same channel is poor.

OCL002-15.0.0
2015.05.04 AOCL Channels Extension: Restrictions 1-21

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Static Indexing

The Altera SDK for OpenCL (AOCL) channels extension does not support dynamic indexing into arrays
of channel IDs.

Consider the following example:

#pragma OPENCL EXTENSION cl_altera_channels : enable

channel int ch[WORKGROUP_SIZE];

__kernel void consumer()
{

 int gid = get_global_id(0);
 int value = read_channel_altera(ch[gid]);

 //statements
}

Compilation of this example kernel fails with the following error message:

Compiler Error: Indexing into channel array ch could not be resolved to all constant

To avoid this compilation error, index into arrays of channel IDs statically, as shown below:

#pragma OPENCL EXTENSION cl_altera_channels : enable

channel int ch[WORKGROUP_SIZE];

__kernel void consumer()
{

 int gid = get_global_id(0);
 int value;

 switch(gid)
 {
 case0: value = read_channel_altera(ch[gid]); break;
 case1: value = read_channel_altera(ch[gid]); break;
 case2: value = read_channel_altera(ch[gid]); break;
 case3: value = read_channel_altera(ch[gid]); break;
 //statements

 case WORKGROUP_SIZE-1:read_channel_altera(channel[WORKGROUP_SIZE-1]); break;
 }

 //statements
}

Kernel Vectorization Support

You cannot vectorize kernels that use channels; that is, do not include the num_simd_work_items kernel
attribute in your kernel code. Vectorizing a kernel that uses channels creates multiple channel masters
and requires arbitration, which the AOCL channels extension does not support.

Instruction-Level Parallelism on read_channel_altera and write_channel_altera Calls

If no data dependencies exist between read_channel_altera and write_channel_altera calls, the AOC
attempts to execute these instructions in parallel. As a result, the AOC might execute these

1-22 AOCL Channels Extension: Restrictions
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

read_channel_altera and write_channel_altera calls in an order that does not follow the sequence
expressed in the OpenCL kernel code.

Consider the following code sequence:

in_data1 = read_channel_altera(channel1);
in_data2 = read_channel_altera(channel2);
in_data3 = read_channel_altera(channel3);

Because there are no data dependencies between the read_channel_altera calls, the AOC can execute
them in any order.

Enabling the AOCL Channels for OpenCL Kernel
To implement the Altera SDK for OpenCL (AOCL) channels extension, modify your OpenCL kernels to
include channels-specific pragma and application programming interface (API) calls.

Channel declarations are unique within a given OpenCL kernel program. Also, channel instances are
unique for every OpenCL kernel program device pair. If the runtime loads a single OpenCL kernel
program onto multiple devices, each device will have a single copy of the channel. However, these channel
copies are independent and do not share data across the devices.

Declaring the Channels OPENCL EXTENSION pragma
To enable the Altera SDK for OpenCL (AOCL) channels extension, declare the OPENCL EXTENSION
pragma for channels at the beginning of your kernel source code.

• To enable the AOCL channels extension, include the following line in your kernel source code to
declare the OPENCL EXTENSION pragma:
#pragma OPENCL EXTENSION cl_altera_channels : enable

Declaring the Channel Handle
Use the channel variable to define the connectivity between kernels or between kernels and I/O.

To read from and write to a channel, the kernel must pass the channel variable to each of the
corresponding application programming interface (API) call.

• Declare the channel handle as a file scope variable in the kernel source code in the following
convention: channel <type> <variable_name>
For example: channel int c;

• The AOCL channel extension supports simultaneous channel accesses by multiple variables declared
in a data structure. Declare a struct data structure for a channel in the following manner:

typedef struct type_ {
 int a;
 int b;
} type_t;

channel type_t foo;

Implementing Blocking Channel Write Extensions
The write_channel_altera application programming interface (API) call allows you to send data across
a channel.

OCL002-15.0.0
2015.05.04 Enabling the AOCL Channels for OpenCL Kernel 1-23

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The write channel calls support single-call sites only. For a given channel, only one write channel
call to it can exist in the entire kernel program.

• To implement a blocking channel write, include the following write_channel_altera function
signature:
void write_channel_altera (channel <type> channel_id, const <type> data);

Where:

channel_id identifies the buffer to which the channel connects, and it must match the channel_id of
the corresponding read channel (read_channel_altera).

data is the data that the channel write operation writes to the channel. Data <type> must match the
<type> of the channel_id.

<type> defines a channel data width, which cannot be a constant. Follow the OpenCL conversion rules
to ensure that data the kernel writes to a channel is convertible to <type>.

The following code snippet demonstrates the implementation of the write_channel_altera API
call:

//Enables the channels extension.
#pragma OPENCL EXTENSION cl_altera_channels : enable

//Defines chan, the kernel file-scope channel variable.
channel long chan;

/*Defines the kernel which reads eight bytes (size of long) from global
memory, and passes this data to the channel.*/
__kernel void kernel_write_channel(__global const long * src)
{
 for(int i=0; i < N; i++)
 {
 //Writes the eight bytes to the channel.
 write_channel_altera(chan, src[i]);
 }
}

Caution: When you send data across a write channel using the write_channel_altera
API call, keep in mind that if the channel is full (that is, if the FIFO buffer is full
of data), your kernel will stall. Use the Altera SDK for OpenCL (AOCL)
Profiler to check for channel stalls.

Related Information
Profiling Your OpenCL Kernel on page 1-89

Implementing Nonblocking Channel Write Extensions
Perform nonblocking channel writes to facilitate applications where data write operations might not
occur. A nonblocking channel write extension returns a Boolean value that indicates whether data is
written to the channel.

Consider a scenario where your application has one data producer with two identical workers. Assume
the time each worker takes to process a message varies depending on the contents of the data. In this case,

1-24 Implementing Nonblocking Channel Write Extensions
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

there might be situations where one worker is busy while the other is free. A nonblocking write can
facilitate work distribution such that both workers are busy.

• To implement a nonblocking channel write, include the following write_channel_nb_altera
function signature:
bool write_channel_nb_altera(channel <type> channel_id, const <type> data);

The following code snippet of the kernel producer facilitates work distribution using the
nonblocking channel write extension:

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel long worker0, worker1;
__kernel void producer(__global const long * src)
{
 for(int i=0; i < N; i++)
 {

 bool success = FALSE;
 do
 {
 success = write_channel_nb_altera(worker0, src[i]);
 if(!success)
 {
 success = write_channel_nb_altera(worker1, src[i]);
 }
 }
 while(!success);
 }
}

Implementing Blocking Channel Read Extensions
The read_channel_altera application programming interface (API) call allows you to receive data
across a channel.

Note: The read channel calls support single-call sites only. For a given channel, only one read channel call
to it can exist in the entire kernel program.

• To implement a blocking channel read, include the following read_channel_altera function
signature:
<type> read_channel_altera(channel <type> channel_id);

Where:

channel_id identifies the buffer to which the channel connects, and it must match the channel_id of
the corresponding write channel (write_channel_altera).

<type> defines a channel data width, which cannot be a constant. Ensure that the variable the kernel
assigns to read the channel data is convertible from <type>.

The following code snippet demonstrates the implementation of the read_channel_altera API
call:

//Enables the channel extension.
#pragma OPENCL EXTENSION cl_altera_channels : enable;

//Defines chan, the kernel file-scope channel variable.
channel long chan;

/*Defines the kernel, which reads eight bytes (size of long) from the

OCL002-15.0.0
2015.05.04 Implementing Blocking Channel Read Extensions 1-25

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

channel and writes it back to global memory.*/
__kernel void kernel_read_channel(__global long * dst);
{
 for(int i=0; i < N; i++)
 {
 //Reads the eight bytes from the channel.
 dst[i] = read_channel_altera(chan);
 }
}

Caution: If the channel is empty (that is, if the FIFO buffer is empty), you cannot receive
data across a read channel using the read_channel_altera API call. Doing so
causes your kernel to stall.

Implementing Nonblocking Channel Read Extensions
Perform nonblocking reads to facilitate applications where data is not always available. The nonblocking
reads signature is similar to blocking reads. However, it returns an integer value that indicates whether a
read operation takes place successfully.

• To implement a blocking channel write, include the following read_channel_nb_altera function
signature:
<type> read_channel_nb_altera(channel <type> channel_id, bool * valid);

The following code snippet demonstrates the use of the nonblocking channel read extension:

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel long chan;

__kernel void kernel_read_channel(__global long * dst)
{
 int i=0;
 while(i < N)
 {
 bool valid0, valid1;
 long data0 = read_channel_nb_altera(chan, &valid0);
 long data1 = read_channel_nb_altera(chan, &valid1);
 if (valid0)
 {
 process(data0);
 }
 if (valid1) process(data1);
 {
 process(data1);
 }
 }
}

Implementing I/O Channels Using the io Channels Attribute
Include an io attribute in your channel declaration to declare a special I/O channel to interface with input
or output features of an FPGA board.
These features might include network interfaces, PCI Express (PCIe), cameras, or other data capture or
processing devices or protocols.

The io("chan_id") attribute specifies the I/O feature of an accelerator board with which a channel
interfaces, where chan_id is the name of the I/O interface listed in the board_spec.xml file of your Custom
Platform.

1-26 Implementing Nonblocking Channel Read Extensions
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Because peripheral interface usage might differ for each device type, consult your board vendor's
documentation when you implement I/O channels in your kernel program. Your OpenCL kernel code
must be compatible with the type of data generated by the peripheral interfaces.

Caution: • Implicit data dependencies might exist for channels that connect to the board directly and
communicate with peripheral devices via I/O channels. These implicit data dependencies
might lead to compilation issues because the Altera Offline Compiler (AOC) cannot identify
these dependencies.

• External I/O channels communicating with the same peripherals do not obey any sequential
ordering. Ensure that the external device does not require sequential ordering because
unexpected behavior might occur.

1. Consult the board_spec.xml file in your Custom Platform to identify the input and output features
available on your FPGA board.

For example, a board_spec.xml might include the following information on I/O features:

<channels>
 <interface name="udp_0" port="udp0_out" type="streamsource" width="256"
 chan_id="eth0_in"/>
 <interface name="udp_0" port="udp0_in" type="streamsink" width="256"
 chan_id="eth0_out"/>
 <interface name="udp_0" port="udp1_out" type="streamsource" width="256"
 chan_id="eth1_in"/>
 <interface name="udp_0" port="udp1_in" type="streamsink" width="256"
 chan_id="eth1_out"/>
</channels>

The width attribute of an interface element specifies the width, in bits, of the data type used by that
channel. For the example above, both the uint and float data types are 32 bits wide. Other bigger or
vectorized data types must match the appropriate bit width specified in the board_spec.xml file.

2. Implement the io channel attribute as demonstrated in the following code example. The io channel
attribute names must match those of the I/O channels (chan_id) specified in the board_spec.xml file.

channel QUDPWord udp_in_IO __attribute__((depth(0)))
 __attribute__((io("eth0_in")));
channel QUDPWord udp_out_IO __attribute__((depth(0)))
 __attribute__((io("eth0_out")));

__kernel void io_in_kernel(__global ulong4 *mem_read,
 uchar read_from,
 int size)
{
 int index = 0;
 ulong4 data;
 int half_size = size >> 1;
 while (index < half_size)
 {
 if (read_from & 0x01)
 {
 data = read_channel_altera(udp_in_IO);
 }
 else
 {
 data = mem_read[index];
 }
 write_channel_altera(udp_in, data);
 index++;
 }
}

__kernel void io_out_kernel(__global ulong2 *mem_write,

OCL002-15.0.0
2015.05.04 Implementing I/O Channels Using the io Channels Attribute 1-27

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 uchar write_to,
 int size)
{
 int index = 0;
 ulong4 data;
 int half_size = size >> 1;
 while (index < half_size)
 {
 ulong4 data = read_channel_altera(udp_out);
 if (write_to & 0x01)
 {
 write_channel_altera(udp_out_IO, data);
 }
 else
 {
 //only write data portion
 ulong2 udp_data;
 udp_data.s0 = data.s0;
 udp_data.s1 = data.s1;
 mem_write[index] = udp_data;
 }
 index++;
 }
}

Attention: Declare a unique io("chan_id") handle for each I/O channel specified in the channels
eXtensible Markup Language (XML) element within the board_spec.xml file.

Implementing Buffered Channels Using the depth Channels Attribute
You may have buffered or unbuffered channels in your kernel program. If there are imbalances in channel
read and write operations, create buffered channels to prevent kernel stalls by including the depth
attribute in your channel declaration. Buffered channels decouple the operation of concurrent work-items
executing in different kernels.

You may use a buffered channel to control data traffic, such as limiting throughput or synchronizing
accesses to shared memory. In an unbuffered channel, a write operation cannot proceed until the read
operation reads a data value. In a buffered channel, a write operation cannot proceed until the data value

1-28 Implementing Buffered Channels Using the depth Channels Attribute
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

is copied to the buffer. If the buffer is full, the operation cannot proceed until the read operation reads a
piece of data and removes it from the channel.

• If you expect any temporary mismatch between the consumption rate and the production rate to the
channel, set the buffer size using the depth channel attribute.
The following example demonstrates the use of the depth channel attribute in kernel code that
implements the Altera SDK for OpenCL (AOCL) channels extension. The depth(N) attribute specifies
the minimum depth of a buffered channel, where N is the number of data values.

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel int c __attribute__((depth(10)));

__kernel void producer(__global int * in_data)
{
 for(int i=0; i < N; i++)
 {
 if(in_data[i])
 {
 write_channel_altera(c, in_data[i]);
 }
 }
}

__kernel void consumer(__global int * restrict check_data,
 __global int * restrict out_data)
{
 int last_val = 0;

 for(int i=0; i< N, i++)
 {
 if(check_data[i])
 {
 last_val = read_channel_altera(c);
 }
 out_data[i] = last_val;
 }
}

In this example, the write operation can write ten data values to the channel without blocking. Once
the channel is full, the write operation cannot proceed until an associated read operation to the
channel occurs.

Because the channel read and write calls are conditional statements, the channel might experience an
imbalance between read and write calls. You may add a buffer capacity to the channel to ensure that
the producer and consumer kernels are decoupled. This step is particularly important if the producer
kernel is writing data to the channel when the consumer kernel is not reading from it.

Enforcing the Order of Channel Calls
To enforce the order of channel calls, introduce memory fence or barrier functions in your kernel
program to control memory accesses. A memory fence function is necessary to create a control flow
dependence between the channel synchronization calls before and after the fence.

When the Altera Offline Compiler (AOC) generates a compute unit, it does not create instruction-level
parallelism on all instructions that are independent of each other. As a result, channel read and write
operations might not execute independently of each other even if there is no control or data dependence
between them. When channel calls interact with each other, or when channels write data to external
devices, deadlocks might occur.

OCL002-15.0.0
2015.05.04 Enforcing the Order of Channel Calls 1-29

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

For example, the code snippet below consists of a producer kernel and a consumer kernel. Channels c0
and c1 are unbuffered channels. The schedule of the channel read operations from c0 and c1 might occur
in the reversed order as the channel write operations to c0 and c1. That is, the producer kernel writes to
c0 but the consumer kernel might read from c1 first. This rescheduling of channel calls might cause a
deadlock because the consumer kernel is reading from an empty channel.

__kernel void producer(__global const uint * src,
 const uint iterations)
{
 for(int i=0; i < iterations; i++)
 {
 write_channel_altera(c0, src[2*i]);
 write_channel_altera(c1, src[2*i+1]);
 }
}

__kernel void consumer(__global uint * dst,
 const uint iterations)
{
 for(int i=0; i < iterations; i++)
 {
 /*During compilation, the AOC might reorder the way the consumer kernel
 writes to memory to optimize memory access. Therefore, c1 might be read
 before c0, which is the reverse of what appears in code.*/

 dst[2*i+1] = read_channel_altera(c0);
 dst[2*i] = read_channel_altera(c1);

1-30 Enforcing the Order of Channel Calls
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
}

• To prevent deadlocks from occurring by enforcing the order of channel calls, include memory fence
functions (mem_fence) in your kernel.
In the kernel code above, by inserting the mem_fence call with the channel flag, you force the
sequential ordering of the write and read channel calls in the producer and consumer kernels:

#pragma OPENCL EXTENSION cl_altera_channels : enable

channel uint c0 __attribute__((depth(0)));
channel uint c1 __attribute__((depth(0)));

__kernel void producer(__global const uint * src,
 const uint iterations)
{
 for(int i=0; i < iterations; i++)
 {
 write_channel_altera(c0, src[2*i]);
 mem_fence(CLK_CHANNEL_MEM_FENCE);
 write_channel_altera(c1, src[2*i+1]);
 }
}

__kernel void consumer(__global uint * dst;
 const uint iterations)
{
 for(int i=0; i < iterations; i++)
 {
 dst[2*i+1] = read_channel_altera(c0);
 mem_fence(CLK_CHANNEL_MEM_FENCE);
 dst[2*i] = read_channel_altera(c1);
 }
}

In this example, mem_fence in the producer kernel ensures that the channel write operation to c0
occurs before that to c1. Similarly, mem_fence in the consumer kernel ensures that the channel read
operation from c0 occurs before that from c1.

Defining Memory Consistency Across Kernels When Using Channels
According to the OpenCL Specification version 1.0, memory behavior is undefined unless a kernel
completes execution. A kernel must finish executing before other kernels can visualize any changes in
memory behavior. However, kernels that use channels can share data through common global memory
buffers and synchronized memory accesses. To ensure that data written to a channel is visible to the read
channel after execution passes a memory fence, define memory consistency across kernels with respect to
memory fences.

OCL002-15.0.0
2015.05.04 Defining Memory Consistency Across Kernels When Using Channels 1-31

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To create a control flow dependency between the channel synchronization calls and the memory
operations, add the CLK_GLOBAL_MEM_FENCE flag to the mem_fence call.
For example:

__kernel void producer(__global const uint * src,
 const uint iterations)
{
 for(int i=0; i < iterations; i++)
 {
 write_channel_altera(c0, src[2*i]);
 mem_fence(CLK_CHANNEL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
 write_channel_altera(c1, src[2*i+1]);
 }
}

In this kernel, the mem_fence function ensures that the write operation to c0 and memory access to
src[2*i] occur before the write operation to c1 and memory access to src[2*i+1]. This allows data
written to c0 to be visible to the read channel before data is written to c1.

Use Models of AOCL Channels Implementation
Concurrent execution can improve the effectiveness of channels implementation in your OpenCL kernels.
During concurrent execution, the host launches the kernels in parallel. The kernels share memory and can
communicate with each other through channels where applicable.

The use models provide an overview on how to exploit concurrent execution safely and efficiently.

Feed-Forward Design Model

Implement the feed-forward design model to send data from one kernel to the next without creating any
cycles between them. Consider the following code example:

__kernel void producer(__global const uint * src,
 const uint iterations)
{
 for(int i=0; i < iterations; i++)
 {
 write_channel_altera(c0, src[2*i]);
 mem_fence(CLK_CHANNEL_MEM_FENCE);
 write_channel_altera(c1, src[2*i+1]);
 }
}

__kernel void consumer(__global uint * dst,
 const uint iterations)
{
 for (int i=0;i<iterations;i++)
 {
 dst[2*i] = read_channel_altera(c0);
 mem_fence(CLK_CHANNEL_MEM_FENCE);
 dst[2*i+1] = read_channel_altera(c1);
 }
}

1-32 Use Models of AOCL Channels Implementation
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The producer kernel writes data to channels c0 and c1. The consumer kernel reads data from c0 and c1.
The figure below illustrates the feed-forward data flow between the two kernels:

Figure 1-6: Feed-Forward Data Flow

Producer Consumer

Buffer Management

In the feed-forward design model, data traverses between the producer and consumer kernels one word
at a time. To facilitate the transfer of large data messages consisting of several words, you can implement a
ping-pong buffer, which is a common design pattern found in applications for communication. The
figure below illustrates the interactions between kernels and a ping-pong buffer:

Figure 1-7: Feed-Forward Design Model with Buffer Management

Producer Consumer

Manager

Buffer

The manager kernel manages circular buffer allocation and deallocation between the producer and
consumer kernels. After the consumer kernel processes data, the manager receives memory regions that
the consumer frees up and sends them to the producer for reuse. The manager also sends to the producer
kernel the initial set of free locations, or tokens, to which the producer can write data.

OCL002-15.0.0
2015.05.04 Use Models of AOCL Channels Implementation 1-33

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following figure illustrates the sequence of events that take place during buffer management:

Figure 1-8: Kernels Interaction during Buffer Management

Producer Consumer

Manager

Buffer

Producer Consumer

Manager

Buffer

Producer Consumer

Manager

Buffer

Producer Consumer

Manager

Buffer

(1) (4)(3)(2)

1. The manager kernel sends a set of tokens to the producer kernel to indicate initially which regions in
memory are free for producer to use.

2. After manager allocates the memory region, producer writes data to that region of the ping-pong
buffer.

3. After producer completes the write operation, it sends a synchronization token to the consumer kernel
to indicate what memory region contains data for processing. The consumer kernel then reads data
from that region of the ping-pong buffer.

Note: When consumer is performing the read operation, producer can write to other free memory
locations for processing because of the concurrent execution of the producer, consumer, and
manager kernels.

4. After consumer completes the read operation, it releases the memory region and sends a token back to
the manager kernel. The manager kernel then recycles that region for producer to use.

Implementation of Buffer Management for AOCL Kernels

To ensure that the Altera SDK for OpenCL (AOCL) implements buffer management properly, the
ordering of channel read and write operations is important. The synchronization token must occur after
the producer kernel commits data to memory. In other words, the channel write operation cannot occur
until producer stores its data successfully. To preserve this ordering, include an OpenCL mem_fence
token in your kernels, as shown below:

__kernel void producer(__global const uint * restrict src,
 __global volatile uint * restrict shared_mem,
 const uint iterations)
{
 int base_offset;

 for (uint gID = 0; gID < iterations; gID++)
 {
 // Assume each block of memory is 256 words
 uint lID = 0x0ff & gID;

 if(lID == 0)
 {
 base_offset = read_channel_altera(req);
 }

1-34 Use Models of AOCL Channels Implementation
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 shared_mem[base_offset + lID] = src[gID];

 // Make sure all memory operations are committed before
 // sending token to the consumer
 mem_fence(CLK_GLOBAL_MEM_FENCE | CLK_CHANNEL_MEM_FENCE);

 if (lID == 255)
 {
 write_channel_altera(c, base_offset);
 }
 }
}

The mem_fence construct takes two flags: CLK_GLOBAL_MEM_FENCE and CLK_CHANNEL_MEM_FENCE. The
mem_fence effectively creates a control flow dependence between operations that occur before and after
the mem_fence call. The CLK_GLOBAL_MEM_FENCE flag indicates that global memory operations must obey
the control flow. The CLK_CHANNEL_MEM_FENCE indicates that channel operations must obey the control
flow. As a result, the write_channel_altera call in the example cannot start until the global memory
operation is committed to the shared memory buffer.

Implementing OpenCL Pipes
The Altera SDK for OpenCL (AOCL) provides preliminary support for OpenCL pipe functions.
OpenCL pipes are part of the OpenCL Specification version 2.0. They provide a mechanism for passing
data to kernels and synchronizing kernels with high efficiency and low latency.

Implement pipes if it is important that your OpenCL kernel is compatible with other SDKs.

Refer to the OpenCL Specification version 2.0 for OpenCL C programming language specification and
general information about pipes.

The AOCL implementation of pipes does not encompass the entire pipes specification. As such, it is not
fully conformant to the OpenCL Specification version 2.0. The goal of the AOCL pipes implementation is
to provide a solution that works seamlessly on a different OpenCL 2.0-conformant device. To enable pipes
for Altera devices, your design must satisfy certain additional requirements.

Related Information
OpenCL Specification version 2.0 (API)

Overview of the OpenCL Pipe Functions
OpenCL pipes allow kernels to communicate directly with each other via FIFO buffers.

OCL002-15.0.0
2015.05.04 Implementing OpenCL Pipes 1-35

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-9: Pipes Network Example

FIFO
FIFO

FIFO
Kernel 0

Kernel 1

Kernel 2
FIFO Kernel N FIFO

RAM

I/O Channel

Host Processor

Initialize ()

1

n

I/O Channel

Implementation of pipes decouples kernel execution from the host processor. The foundation of the
Altera SDK for OpenCL (AOCL) pipes support is the AOCL channels extension. However, the syntax for
pipe functions differs from the channels syntax.

Important: Unlike channels, pipes have a default nonblocking behavior.

For more information on blocking and nonblocking functions, refer to the corresponding documentation
on channels.

Related Information

• Implementing Blocking Channel Write Extensions on page 1-23
• Implementing Nonblocking Channel Write Extensions on page 1-24
• Implementing Nonblocking Channel Read Extensions on page 1-26
• Implementing Blocking Channel Read Extensions on page 1-25

Pipe Data Behavior
Data written to a pipe remains in a pipe as long as the kernel program remains loaded on the FPGA
device. In other words, data written to a pipe persists across multiple work-groups and NDRange
invocations. However, data is not persistent across multiple or different invocations of kernel programs.

Consider the following code example:

__kernel void
producer (write_only pipe uint __attribute__((blocking)) c0)
{
 for (uint i=0;i<10;i++)
 {
 write_pipe(c0, &i);
 }
}

__kernel void
consumer (__global uint * restrict dst,
 read_only pipe uint __attribute__((blocking))

1-36 Pipe Data Behavior
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 __attribute__((depth(10))) c0)
{
 for (int i=0;i<5;i++)
 {
 read_pipe(c0, &dst[i]);
 }
}

A read operation to a pipe reads the least recent piece of data written to the pipe first. Pipes data
maintains their FIFO ordering within the pipe. The figure below illustrates the order in which the
producer kernel writes the elements to the pipe:

Figure 1-10: Pipe Data FIFO Ordering

9 012345678Producer Consumer

The kernel producer writes ten elements ([0, 9]). The kernel consumer reads five elements from the pipe
per NDRange invocation. During the first invocation, the kernel consumer reads values 0 to 4 from the
pipe. Because the data persists across NDRange invocations, the second time you execute the kernel
consumer, it reads values 5 to 9.

For this example, to avoid a deadlock from occurring, you need to invoke the kernel consumer twice for
every invocation of the kernel producer. If you call consumer less than twice, producer stalls because the
pipe becomes full. If you call consumer more than twice, consumer stalls because there is insufficient data
in the pipe.

Multiple Work-Item Ordering for Pipes
The OpenCL specification does not define a work-item ordering. The Altera SDK for OpenCL (AOCL)
enforces a work-item order to maintain the consistency in pipe read and write operations.

Multiple work-item accesses to a pipe can be useful in some scenarios. For example, they are useful when
data words in the pipe are independent, or when the pipe is implemented for control logic. The main
concern regarding multiple work-item accesses to a pipe is the order in which the kernel writes data to
and reads data from the pipe. If possible, the OpenCL pipes process work-items read and write operations
to a pipe in a deterministic order. As such, the read and write operations remain consistent across kernel
invocations.

Requirements for Deterministic Multiple Work-Item Ordering

To guarantee deterministic ordering, the AOCL checks that the pipe call is work-item invariant based on
the following characteristics:

1. Work-items must pass through a pipe call before exiting the kernel function.
2. Work-items must pass through a pipe call before entering the ensuing kernel function.
3. If either of the preceding characteristics is not satisfied, the AOCL checks that all branch conditions to

the pipe call basic block is work-item invariant.

If the AOCL cannot guarantee deterministic ordering of multiple work-item accesses to a pipe, it warns
you that the pipes might not have well-defined ordering with nondeterministic execution. Primarily, the

OCL002-15.0.0
2015.05.04 Multiple Work-Item Ordering for Pipes 1-37

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AOCL fails to provide deterministic ordering if you have work-item-variant code on loop executions with
pipe calls, as illustrated below:

__kernel void
ordering (__global int * check, global int * data,
 write_only pipe int __attribute__((blocking)) req)
{
 int condition = check[get_global_id(0)];

 if (condition)
 {
 for (int i=0;i<N;i++)
 {
 process(data);
 write_pipe(req, &data[i]);
 }
 }
 else
 {
 process(data);
 }
}

Because the Altera Offline Compiler (AOC) performs many transformations, such as branch conversion,
during kernel invocations, it might be difficult to determine if the requirements are fulfilled for a given
pipe call. The AOCL generates a graphical report on pipe connectivity across multiple kernels.

Work-Item Serial Execution of Pipes
Work-item serial execution refers to an ordered execution behavior where work-item sequential IDs
determine their execution order in the compute unit.

When you implement pipes in a kernel, the Altera Offline Compiler (AOC) enforces that kernel behavior
is equivalent to having at most one work-group in flight. The AOC also ensures that the kernel executes
pipes in work-item serial execution, where the kernel executes work-items with smaller IDs first. A work-
item has the identifier (x, y, z, group), where (x, y, z) is the local 3D identifier, and group is the
work-group identifier.

The work-item ID (x0, y0, z0, group0) is considered to be smaller than the ID (x1, y1, z1,
group1) if one of the following conditions is true:

• group0 < group1
• group0 = group1 and z0 < z1
• group0 = group1 and z0 = z1 and y0 < y1
• group0 = group1 and z0 = z1 and y0 = y1 and x0 < x1

For example, the work-item with an ID (x0, y0, z0, group0) executes the write pipe call first, and then
the work-item with an ID (x1, y0, z0, group0) executes the call, and so on, in a sequential order.
Defining this order ensures that the system is verifiable with external models.

Pipe Execution in Loop with Multiple Work-Items

When pipes exist in the body of a loop with multiple work-items, as shown below, each loop iteration
executes prior to subsequent iterations. This implies that loop iteration 0 of each work-item in a work-
group executes before iteration 1 of each work-item in a work-group, and so on.

__kernel void
ordering (__global int * data,
 write_only pipe int __attribute__((blocking)) req)

1-38 Work-Item Serial Execution of Pipes
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

{
 write_pipe(req, &data[get_global_id(0)]);
}

Restrictions in OpenCL Pipes Implementation
There are certain design restrictions to the implementation of pipes in your OpenCL application.

Default Behavior

By default, pipes exhibit nonblocking behavior. If you want the pipes in your kernel to exhibit blocking
behavior, specify the blocking attribute (__attribute__((blocking))) when you declare the read and
write pipes.

Emulation Support

Currently, the Altera SDK for OpenCL (AOCL) Emulator does not support emulation of kernels that
contain pipes.

Pipes API Support

Currently, the AOCL implementation of pipes does not support all the built-in pipe functions in the
OpenCL Specification version 2.0. For a list of supported and unsupported pipe APIs, refer to OpenCL
Programming Language Restrictions for Pipes.

Single Call Site

Because the pipe read and write operations do not function deterministically, for a given kernel, you can
only assign one call site per pipe ID. For example, the Altera Offline Compiler (AOC) cannot compile the
following code example:

in_data1 = read_pipe(pipe1);
in_data2 = read_pipe(pipe2);
in_data3 = read_pipe(pipe1);

The second read_pipe call to pipe1 causes compilation failure because it creates a second call site to
pipe1.

To gather multiple data from a given pipe, divide the pipe into multiple pipes, as shown below:

in_data1 = read_pipe(pipe1);
in_data2 = read_pipe(pipe2);
in_data3 = read_pipe(pipe3);

Because you can only assign a single call site per pipe ID, you cannot unroll loops containing pipes.
Consider the following code:

#pragma unroll 4
for (int i=0; i < 4; i++)
{
 in_data = read_pipe(pipe1);
}

The AOC issues the following warning message during compilation:

Compiler Warning: Unroll is required but the loop cannot be unrolled.

OCL002-15.0.0
2015.05.04 Restrictions in OpenCL Pipes Implementation 1-39

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feedback and Feed-Forward Channels

Pipes within a kernel can be either read_only or write_only. Performance of a kernel that reads and
writes to the same pipe is poor.

Kernel Vectorization Support

You cannot vectorize kernels that use pipes; that is, do not include the num_simd_work_items kernel
attribute in your kernel code. Vectorizing a kernel that uses pipes creates multiple pipe masters and
requires arbitration, which OpenCL pipes specification does not support.

Instruction-Level Parallelism on read_pipe and write_pipe Calls

If no data dependencies exist between read_pipe and write_pipe calls, the AOC attempts to execute
these instructions in parallel. As a result, the AOC might execute these read_pipe and write_pipe calls
in an order that does not follow the sequence expressed in the OpenCL kernel code.

Consider the following code sequence:

in_data1 = read_pipe(pipe1);
in_data2 = read_pipe(pipe2);
in_data3 = read_pipe(pipe3);

Because there are no data dependencies between the read_pipe calls, the AOC can execute them in any
order.

Related Information
OpenCL C Programming Language Restrictions for Pipes on page 2-6

Enabling OpenCL Pipes for Kernels
To implement pipes, modify your OpenCL kernels to include pipes-specific application programming
interface (API) calls.

Pipes declarations are unique within a given OpenCL kernel program. Also, pipe instances are unique for
every OpenCL kernel program-device pair. If the runtime loads a single OpenCL kernel program onto
multiple devices, each device will have a single copy of each pipe. However, these pipe copies are
independent and do not share data across the devices.

Ensuring Compatibility with Other OpenCL SDKs
Altera's implementation of OpenCL pipes is a beta feature. As such, the implementation is currently
partially conformant to the OpenCL Specification version 2.0. If you port a kernel that implements pipes
from another OpenCL SDK to the Altera SDK for OpenCL (AOCL), you must modify the host code and
the kernel code. The modifications do not affect subsequent portability of your application to other
OpenCL SDKs.

Host Code Modification

Below is an example of a modified host application:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CL/opencl.h"
#define SIZE 1000

const char *kernel_source = "__kernel void pipe_writer(__global int *in,"

1-40 Enabling OpenCL Pipes for Kernels
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 " write_only pipe int p_in)\n"
 "{\n"
 " int gid = get_global_id(0);\n"
 " write_pipe(p_in, &in[gid]);\n"
 "}\n"
 "__kernel void pipe_reader(__global int *out,"
 " read_only pipe int p_out)\n"
 "{\n"
 " int gid = get_global_id(0);\n"
 " read_pipe(p_out, &out[gid]);\n"
 "}\n";

int main()
{
 int *input = (int *)malloc(sizeof(int) * SIZE);
 int *output = (int *)malloc(sizeof(int) * SIZE);
 memset(output, 0, sizeof(int) * SIZE);
 for (int i = 0; i != SIZE; ++i)
 {
 input[i] = rand();
 }

 cl_int status;
 cl_platform_id platform;
 cl_uint num_platforms;
 status = clGetPlatformIDs(1, &platform, &num_platforms);

 cl_device_id device;
 cl_uint num_devices;
 status = clGetDeviceIDs(platform,
 CL_DEVICE_TYPE_ALL,
 1,
 &device,
 &num_devices);

 cl_context context = clCreateContext(0, 1, &device, NULL, NULL, &status);

 cl_command_queue queue = clCreateCommandQueue(context, device, 0, &status);

 size_t len = strlen(kernel_source);
 cl_program program = clCreateProgramWithSource(context,
 1,
 (const char **)&kernel_source,
 &len,
 &status);

 status = clBuildProgram(program, num_devices, &device, "", NULL, NULL);

 cl_kernel pipe_writer = clCreateKernel(program, "pipe_writer", &status);
 cl_kernel pipe_reader = clCreateKernel(program, "pipe_reader", &status);

 cl_mem in_buffer = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(int) * SIZE,
 input,
 &status);
 cl_mem out_buffer = clCreateBuffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(int) * SIZE,
 NULL,
 &status);

 cl_mem pipe = clCreatePipe(context, 0, sizeof(cl_int), SIZE, NULL, &status);

 status = clSetKernelArg(pipe_writer, 0, sizeof(cl_mem), &in_buffer);
 status = clSetKernelArg(pipe_writer, 1, sizeof(cl_mem), &pipe);
 status = clSetKernelArg(pipe_reader, 0, sizeof(cl_mem), &out_buffer);

OCL002-15.0.0
2015.05.04 Ensuring Compatibility with Other OpenCL SDKs 1-41

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 status = clSetKernelArg(pipe_reader, 1, sizeof(cl_mem), &pipe);

 size_t size = SIZE;
 cl_event sync;
 status = clEnqueueNDRangeKernel(queue,
 pipe_writer,
 1,
 NULL,
 &size,
 &size,
 0,
 NULL,
 &sync);
 status = clEnqueueNDRangeKernel(queue,
 pipe_reader,
 1,
 NULL,
 &size,
 &size,
 1,
 &sync,
 NULL);
 status = clFinish(queue);

 status = clEnqueueReadBuffer(queue,
 out_buffer,
 CL_TRUE,
 0,
 sizeof(int) * SIZE,
 output,
 0,
 NULL,
 NULL);

 int golden = 0, result = 0;
 for (int i = 0; i != SIZE; ++i)
 {
 golden += input[i];
 result += output[i];
 }

 int ret = 0;
 if (golden != result)
 {
 printf("FAILED!");
 ret = 1;
 } else
 {
 printf("PASSED!");
 }
 printf("\n");

 return ret;
}

1-42 Ensuring Compatibility with Other OpenCL SDKs
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Kernel Code Modification

The kernel code runs on OpenCL SDKs that conforms to the OpenCL Specification version 2.0. Before
running this kernel on the AOCL, perform the following modifications:

• Rename the pipe arguments so that they are the same in both kernels. For example, rename p_in and
p_out to p.

• Specify the depth attribute for the pipe arguments. Assign a depth attribute value that equals to the
maximum number of packets that the pipe creates to hold in the host.

• Execute the kernel program in the offline compilation mode because the AOCL has an offline
compiler.

The modified kernel code appears as follows:

#define SIZE 1000

__kernel void pipe_writer(__global int *in,
 write_only pipe int __attribute__((depth(SIZE))) p)
{
 int gid = get_global_id(0);
 write_pipe(p, &in[gid]);
}

__kernel void pipe_reader(__global int *out,
 read_only pipe int __attribute__((depth(SIZE))) p)
{
 int gid = get_global_id(0);
 read_pipe(p, &out[gid]);
}

Declaring the Pipe Handle
Use the pipe variable to define the static pipe connectivity between kernels or between kernels and I/O.

To read from and write to a pipe, the kernel must pass the pipe variable to each of the corresponding
application programming interface (API) call.

• Declare the pipe handle as a file scope variable in the kernel source code in the following convention:
<access qualifier> pipe <type> <variable_name>

The <type> of the pipe may be any OpenCL built-in scalar or vector data type with a scalar size of 1024
bits or less. It may also be any user-defined type that is comprised of scalar or vector data type with a
scalar size of 1024 bits or less.

Consider the following pipe handle declarations:

__kernel void first (pipe int c)

__kernel void second (write_only pipe int c)

The first example declares a read-only pipe handle of type int in the kernel first. The second
example declares a write-only pipe in the kernel second. The kernel first may only read from pipe c,
and the kernel second may only write to pipe c.

Important: The Altera Offline Compiler (AOC) statically infers the connectivity of pipes in your
system by matching the names of the pipe arguments. In the example above, the kernel
first is connected to the kernel second by the pipe c.

OCL002-15.0.0
2015.05.04 Declaring the Pipe Handle 1-43

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In an Altera OpenCL system, only one kernel may read to a pipe. Similarly, only one kernel may
write to a pipe. If a non-IO pipe does not have at least one corresponding reading operation and
one writing operation, the AOC issues an error.

Implementing Pipe Writes
The write_pipe application programming interface (API) call allows you to send data across a pipe.

Altera only supports the convenience version of the write_pipe function. By default, write_pipe calls
are nonblocking. Pipe write operations are successful only if there is capacity in the pipe to hold the
incoming packet.

Attention: The write pipe calls support single-call sites only. For a given pipe, only one write pipe call to
it can exist in the entire kernel program.

• To implement a pipe write, include the following write_pipe function signature:
int write_pipe (write_only pipe <type> pipe_id, const <type> *data);

Where:

pipe_id identifies the buffer to which the pipe connects, and it must match the pipe_id of the
corresponding read pipe (read_pipe).

data is the data that the pipe write operation writes to the pipe. It is a pointer to the packet type of the
pipe. Note that writing to the pipe might lead to a global or local memory load, depending on the
source address space of the data pointer.

<type> defines a pipe data width. The return value indicates whether the pipe write operation is
successful. If successful, the return value is 0. If pipe write is unsuccessful, the return value is -1.

The following code snippet demonstrates the implementation of the write_pipe API call:

/*Declares the writable nonblocking pipe, p, which contains packets of type
int*/
__kernel void kernel_write_pipe (__global const long *src,
 write_only pipe int p)
{
 for (int i=0; i < N; i++)
 {
 //Performs the actual writing
 //Emulates blocking behavior via the use of a while loop
 while (write_pipe(p, &src[i]) < 0) { }
 }
}

The while loop is unnecessary if you specify a blocking attribute. To facilitate better hardware
implementations, Altera provides facility for blocking write_pipe calls by specifying the blocking
attribute (that is, __attribute__((blocking))) on the pipe arugment declaration for the kernel.
Blocking write_pipe calls always return success.

Caution: When you send data across a blocking write pipe using the write_pipe API
call, keep in mind that if the pipe is full (that is, if the FIFO buffer is full of
data), your kernel will stall. Use the Altera SDK for OpenCL (AOCL) Profiler
to check for pipe stalls.

1-44 Implementing Pipe Writes
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
Profiling Your OpenCL Kernel on page 1-89

Implementing Pipe Reads
The read_pipe application programming interface (API) call allows you to receive data across a channel.

Altera only supports the convenience version of the read_pipe function. By default, read_pipe calls are
nonblocking.

Note: The read pipe calls support single-call sites only. For a given pipe, only one read pipe call to it can
exist in the entire kernel program.

• To implement a pipe read, include the following read_pipe function signature:
int read_pipe (read_only_pipe <type> pipe_id, <type> *data);

Where:

pipe_id identifies the buffer to which the pipe connects, and it must match the pipe_id of the
corresponding pipe write operation (write_pipe).

data is the data that the pipe read operation reads from the pipe. It is a pointer to location of the data.
Note that write_pipe call might lead to a global or local memory load, depending on the source
address space of the data pointer.

<type> defines the packet size of the data.

The following code snippet demonstrates the implementation of the read_pipe API call:

/*Declares the read_only_pipe that contains packets
of type long.*/
/*Declares that read_pipe calls within the kernel will exhibit
blocking behavior*/
__kernel void kernel_read_pipe (__global long *dst,
 read_only pipe long
__attribute__((blocking)) p)
{
 for (int i=0; i < N; i++)
 {
 /*Reads from a long from the pipe and stores it
 into global memory at the specified location*/
 read_pipe(p, &dst[i]);
 }
}

To facilitate better hardware implementations, Altera provides facility for blocking write_pipe
calls by specifying the blocking attribute (that is, __attribute__((blocking))) on the pipe
arugment declaration for the kernel. Blocking write_pipe calls always return success.

Caution: If the pipe is empty (that is, if the FIFO buffer is empty), you cannot receive
data across a blocking read pipe using the read_pipe API call. Doing so causes
your kernel to stall.

Implementing Buffered Pipes Using the depth Attribute
You may have buffered or unbuffered pipes in your kernel program. If there are imbalances in pipe read
and write operations, create buffered pipes to prevent kernel stalls by including the depth attribute in
your pipe declaration. Buffered pipes decouple the operation of concurrent work-items executing in
different kernels.

OCL002-15.0.0
2015.05.04 Implementing Pipe Reads 1-45

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You may use a buffered pipe to control data traffic, such as limiting throughput or synchronizing accesses
to shared memory. In an unbuffered pipe, a write operation can only proceed when the read operation is
expecting to read data. Use unbuffered pipes in conjunction with blocking read and write behaviors in
kernels that execute concurrently. The unbuffered pipes provide self-synchronizing data transfers
efficiently.

In a buffered pipe, a write operation can only proceed if there is capacity in the pipe to hold the incoming
packet. A read operation can only proceed if there is at least one packet in the pipe. Use buffered pipes if
pipe calls are predicated differently in the writer and reader kernels, and the kernels do not execute
concurrently.

• If you expect any temporary mismatch between the consumption rate and the production rate to the
pipe, set the buffer size using the depth attribute.
The following example demonstrates the use of the depth attribute in kernel code that implements the
OpenCL pipes. The depth(N) attribute specifies the minimum depth of a buffered channel, where N is
the number of data values. If the read and write kernels specify different depths for a given buffered
pipe, the Altera Offline Compiler (AOC) will use the larger depth of the two.

__kernel void
producer (__global int *in_data,
 write_only pipe int __attribute__((blocking))
 __attribute__((depth(10))) c)
{
 for (i=0; i < N; i++)
 {
 if (in_data[i])
 {
 write_pipe(c, &in_data[i]);
 }
 }
}

__kernel void
consumer (__global int *check_data,
 __global int *out_data,
 read_only pipe int __attribute__((blocking)) c)
{
 int last_val = 0;
 for (i=0; i < N; i++)
 {
 if (check_data[i])
 {
 read_pipe(c, &last_val);
 }
 out_data[i] = last_val;
 }
}

In this example, the write operation can write ten data values to the pipe successfully. After the pipe is
full, the write kernel returns failure until a read kernel consumes some of the data in the pipe.

Because the pipe read and write calls are conditional statements, the pipe might experience an
imbalance between read and write calls. You may add a buffer capacity to the pipe to ensure that the
producer and consumer kernels are decoupled. This step is particularly important if the producer
kernel is writing data to the pipe when the consumer kernel is not reading from it.

1-46 Implementing Buffered Pipes Using the depth Attribute
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Implementing I/O Pipes Using the io Attribute
Include an io attribute in your OpenCL pipe declaration to declare a special I/O pipe to interface with
input or output features of an FPGA board.
These features might include network interfaces, PCI Express (PCIe), cameras, or other data capture or
processing devices or protocols.

In the Altera SDK for OpenCL channels extension, the io("chan_id") attribute specifies the I/O feature
of an accelerator board with which a channel interfaces, where chan_id is the name of the I/O interface
listed in the board_spec.xml file of your Custom Platform. The same I/O features can be used to identify
I/O pipes.

Because peripheral interface usage might differ for each device type, consult your board vendor's
documentation when you implement I/O pipes in your kernel program. Your OpenCL kernel code must
be compatible with the type of data generated by the peripheral interfaces. If there is a difference in the
byte ordering between the external I/O channels and the kernel, the Altera Offline Compiler (AOC)
converts the byte ordering seamlessly upon entry and exit.

Caution: • Implicit data dependencies might exist for pipes that connect to the board directly and
communicate with peripheral devices via I/O pipes. These implicit data dependencies might
lead to compilation issues because the Altera Offline Compiler (AOC) cannot identify these
dependencies.

• External I/O channels communicating with the same peripherals do not obey any sequential
ordering. Ensure that the external device does not require sequential ordering because
unexpected behavior might occur.

1. Consult the board_spec.xml file in your Custom Platform to identify the input and output features
available on your FPGA board.

For example, a board_spec.xml might include the following information on I/O features:

<channels>
 <interface name="udp_0" port="udp0_out" type="streamsource" width="256"
 chan_id="eth0_in"/>
 <interface name="udp_0" port="udp0_in" type="streamsink" width="256"
 chan_id="eth0_out"/>
 <interface name="udp_0" port="udp1_out" type="streamsource" width="256"
 chan_id="eth1_in"/>
 <interface name="udp_0" port="udp1_in" type="streamsink" width="256"
 chan_id="eth1_out"/>
</channels>

The width attribute of an interface element specifies the width, in bits, of the data type used by that
pipe. For the example above, both the uint and float data types are 32 bits wide. Other bigger or
vectorized data types must match the appropriate bit width specified in the board_spec.xml file.

2. Implement the io attribute as demonstrated in the following code example. The io attribute names
must match those of the I/O channels (chan_id) specified in the board_spec.xml file.

__kernel void test (pipe uint pkt __attribute__((io(“enet”))),;
 pipe float data __attribute__((io(“pcie”))));

Attention: Declare a unique io("chan_id") handle for each I/O pipe specified in the channels
eXtensible Markup Language (XML) element within the board_spec.xml file.

OCL002-15.0.0
2015.05.04 Implementing I/O Pipes Using the io Attribute 1-47

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Enforcing the Order of Pipe Calls
To enforce the order of pipe calls, introduce memory fence or barrier functions in your kernel program to
control memory accesses. A memory fence function is necessary to create a control flow dependence
between the pipe synchronization calls before and after the fence.

When the Altera Offline Compiler (AOC) generates a compute unit, it does not create instruction-level
parallelism on all instructions that are independent of each other. As a result, pipe read and write
operations might not execute independently of each other even if there is no control or data dependence
between them. When pipe calls interact with each other, or when channels write data to external devices,
deadlocks might occur.

For example, the code snippet below consists of a producer kernel and a consumer kernel. Pipes c0 and
c1 are unbuffered pipes. The schedule of the pipe read operations from c0 and c1 might occur in the
reversed order as the pipe write operations to c0 and c1. That is, the producer kernel writes to c0 but the
consumer kernel might read from c1 first. This rescheduling of pipe calls might cause a deadlock because
the consumer kernel is reading from an empty pipe.

__kernel void
producer (__global const uint * restrict src,
 const uint iterations,
 write_only pipe uint __attribute__((blocking)) c0,
 write_only pipe uint __attribute__((blocking)) c1)
{
 for (int i=0; i < iterations; i++)
 {
 write_pipe(c0, &src[2*i]);
 write_pipe(c1, &src[2*i+1]);
 }
}

__kernel void
consumer (__global uint * restrict dst,
 const uint iterations,
 read_only pipe uint __attribute__((blocking)) c0,
 read_only pipe uint __attribute__((blocking)) c1)
{
 for (int i=0; i < iterations; i++)
 {
 read_pipe(c0, &dst[2*i+1]);
 read_pipe(c1, &dst[2*i]);

1-48 Enforcing the Order of Pipe Calls
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
}

• To prevent deadlocks from occurring by enforcing the order of pipe calls, include memory fence
functions (mem_fence) in your kernel.
In the kernel code above, by inserting the mem_fence call with the pipe flag, you force the sequential
ordering of the write and read pipe calls in the producer and consumer kernels:

__kernel void
producer (__global const uint * src,
 const uint iterations,
 write_only_pipe uint __attribute__((blocking)) c0,
 write_only_pipe uint __attribute__((blocking)) c1)
{
 for(int i=0; i < iterations; i++)
 {
 write_pipe(c0, &src[2*i]);
 mem_fence(CLK_CHANNEL_MEM_FENCE);
 write_pipe(c1, &src[2*i+1]);
 }
}

__kernel void
consumer (__global uint * dst;
 const uint iterations,
 read_only_pipe uint __attribute__((blocking)) c0,
 read_only_pipe uint __attribute__((blocking)) c1)
{
 for(int i=0; i < iterations; i++)
 {
 read_pipe(c0, &dst[2*i]);
 mem_fence(CLK_CHANNEL_MEM_FENCE);
 read_pipe(c1, &dst[2*i+1]);
 }
}

In this example, mem_fence in the producer kernel ensures that the pipe write operation to c0 occurs
before that to c1. Similarly, mem_fence in the consumer kernel ensures that the pipe read operation
from c0 occurs before that from c1.

Defining Memory Consistency Across Kernels When Using Pipes
According to the OpenCL Specification version 2.0, memory behavior is undefined unless a kernel
completes execution. A kernel must finish executing before other kernels can visualize any changes in
memory behavior. However, kernels that use pipes can share data through common global memory
buffers and synchronized memory accesses. To ensure that data written to a pipe is visible to the read pipe
after execution passes a memory fence, define memory consistency across kernels with respect to memory
fences.

OCL002-15.0.0
2015.05.04 Defining Memory Consistency Across Kernels When Using Pipes 1-49

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To create a control flow dependency between the pipe synchronization calls and the memory
operations, add the CLK_GLOBAL_MEM_FENCE flag to the mem_fence call.
For example:

__kernel void
producer (__global const uint * restrict src,
 const uint iterations,
 write_only pipe uint __attribute__((blocking)) c0,
 write_only pipe uint __attribute__((blocking)) c1)
{
 for (int i=0;i<iterations;i++)
 {
 write_pipe(c0, &src[2*i]);
 mem_fence(CLK_CHANNEL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
 write_pipe(c1, &src[2*i+1]);
 }
}

In this kernel, the mem_fence function ensures that the write operation to c0 and memory access to
src[2*i] occur before the write operation to c1 and memory access to src[2*i+1]. This allows data
written to c0 to be visible to the read pipe before data is written to c1.

Using Predefined Preprocessor Macros in Conditional Compilation
You may take advantage of predefined preprocessor macros that allow you to conditionally compile
portions of your kernel code.

• To include device-specific (for example, FPGA_board_1) code in your kernel program, structure your
kernel program in the following manner:

#if defined(AOCL_BOARD_FPGA_board_1)
 //FPGA_board_1-specific statements
#else
 //FPGA_board_2-specific statements
#endif

When you target your kernel compilation to a specific board, it sets the predefined preprocessor macro
AOCL_BOARD_<board_name> to 1. If <board_name> is FPGA_board_1, the Altera Offline Compiler
(AOC) will compile the FPGA_board_1-specific parameters and features.

• To introduce AOC-specific compiler features and optimizations, structure your kernel program in the
following manner:

#if defined(ALTERA_CL)
 //statements
#else
 //statements
#endif

Where ALTERA_CL is the Altera predefined preprocessor macro for the AOC.

Related Information
Defining Preprocessor Macros to Specify Kernel Parameters (-D <macro_name>) on page 1-79

Declaring __constant Address Space Qualifiers
There are several limitations and workarounds you must consider when you include __constant address
space qualifiers in your kernel.

1-50 Using Predefined Preprocessor Macros in Conditional Compilation
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Function Scope __constant Variables

The Altera Offline Compiler (AOC) does not support function scope __constant variables. Replace
function scope __constant variables with file scope constant variables. You can also replace function
scope __constant variables with __constant buffers that the host passes to the kernel.

File Scope __constant Variables

If the host always passes the same constant data to your kernel, consider declaring that data as a constant
preinitialized file scope array within the kernel file. Declaration of a constant preinitialized file scope array
creates a ROM directly in the hardware to store the data. This ROM is available to all work-items in the
NDRange.

The AOC supports only scalar file scope constant data. For example, you may set the __constant address
space qualifier as follows:

__constant int my_array[8] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7};

__kernel void my_kernel (__global int * my_buffer)
{
 size_t gid = get_global_id(0);
 my_buffer[gid] += my_array[gid % 8];
}

In this case, the AOC sets the values for my_array in a ROM because the file scope constant data does not
change between kernel invocations.

Warning: Do not set your file scope __constant variables in the following manner because the AOC
does not support vector type __constant arrays declared at the file scope:

__constant int2 my_array[4] = {(0x0, 0x1), (0x2, 0x3); (0x4, 0x5), (0x6,

0x7)};

Pointers to __constant Parameters from the Host

You can replace file scope constant data with a pointer to a __constant parameter in your kernel code.
You must then modify your host application in the following manner:

1. Create cl_mem memory objects associated with the pointers in global memory.
2. Load constant data into cl_mem objects with clEnqueueWriteBuffer prior to kernel execution.
3. Pass the cl_mem objects to the kernel as arguments with the clSetKernelArg function.

For simplicity, if a constant variable is of a complex type, use a typedef argument, as shown in the table
below:

Table 1-1: Replacing File Scope __constant Variable with Pointer to __constant Parameter

If your source code is structured as follows: Rewrite your code to resemble the following syntax:

__constant int Payoff[2][2] = {{ 1, 3},
{5, 3}};
__kernel void original(__global int * A)
{
 *A = Payoff[1][2];
 // and so on
}

__kernel void modified(__global int * A,
__constant Payoff_type * PayoffPtr)
{
 *A = (PayoffPtr)[1][2];
 // and so on
}

Attention: Use the same type definition in both your host application and your kernel.

OCL002-15.0.0
2015.05.04 Declaring __constant Address Space Qualifiers 1-51

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Including Structure Data Types as Arguments in OpenCL Kernels
Convert each structure parameter (struct) to a pointer that points to a structure.

The table below describes how you can convert structure parameters:

Table 1-2: Converting Structure Parameters to Pointers that Point to Structures

If your source code is structured as follows: Rewrite your code to resemble the following syntax:

struct Context
{
 float param1;
 float param2;
 int param3;
 uint param4;
};

__kernel void algorithm(__global float
* A,
struct Context c)
{
 if (c.param3)
 {
 // statements
 }
}

struct Context
{
 float param1;
 float param2;
 int param3;
 uint param4;
};

__kernel void algorithm(__global float
* A,
__global struct Context * restrict c)
{
 if (c->param3)
 {
 // Dereference through a
 // pointer and so on
 }
}

Attention: The __global struct declaration creates a new buffer to store the structure. To prevent
pointer aliasing, include a restrict qualifier in the declaration of the pointer to the structure.

Matching Data Layouts of Host and Kernel Structure Data Types
If you use structure data types (struct) as arguments in OpenCL kernels, match the member data types
and align the data members between the host application and the kernel code.

To match member data types, use the cl_ version of the data type in your host application that
corresponds to the data type in the kernel code. The cl_ version of the data type is available in the
opencl.h header file. For example, if you have a data member of type float4 in your kernel code, the
corresponding data member you declare in the host application is cl_float4.

Align the structures and align the struct data members between the host and kernel applications.
Manage the alignments carefully because of the variability among different host compilers.

For example, if you have float 4 OpenCL data types in the struct, the alignments of these data items
must satisfy the OpenCL specification (that is, 16-byte alignment for float4).

The following rules apply when the Altera Offline Compiler (AOC) compiles your OpenCL kernels:

1. Alignment of built-in scalar and vector types follow the rules outlined in Section 6.1.5 of the OpenCL
Specification version 1.0.

The AOC usually aligns a data type based on its size. However, the AOC aligns a value of a three-
element vector the same way it aligns a four-element vector.

2. An array has the same alignment as one of its elements.
3. A struct (or a union) has the same alignment as the maximum alignment necessary for any of its data

members.

1-52 Including Structure Data Types as Arguments in OpenCL Kernels
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following example:

struct my_struct
{
 char data[3];
 float4 f4;
 int index;
};

The AOC aligns the struct elements above at 16-byte boundaries because of the float4 data type. As
a result, both data and index also have 16-byte alignment boundaries.

4. The AOC does not reorder data members of a struct.
5. Normally, the AOC inserts a minimum amount of data structure padding between data members of a

struct to satisfy the alignment requirements for each data member.

a. In your OpenCL kernel code, you may specify data packing (that is, no insertion of data structure
padding) by applying the packed attribute to the struct declaration. If you impose data packing,
ensure that the alignment of data members satisfies the OpenCL alignment requirements. The
Altera SDK for OpenCL (AOCL) does not enforce these alignment requirements. Ensure that your
host compiler respects the kernel attribute and sets the appropriate alignments.

b. In your OpenCL kernel code, you may specify the amount of data structure padding by applying
the aligned(N) attribute to a data member, where N is the amount of padding. The AOCL does
not enforce these alignment requirements. Ensure that your host compiler respects the kernel
attribute and sets the appropriate alignments.

For Windows systems, some versions of the Microsoft Visual Studio compiler pack structure data
types by default. If you do not want to apply data packing, specify an amount of data structure
padding as shown below:

struct my_struct
{
 __declspec(align(16)) char data[3];

 /*Note that cl_float4 is the only known float4 definition on the host*/
 __declspec(align(16)) cl_float4 f4;

 __declspec(align(16)) int index;
};

Tip: An alternative way of adding data structure padding is to insert dummy struct members of
type char or array of char.

Related Information
Modifying Host Program for Structure Parameter Conversion on page 1-62

Disabling Insertion of Data Structure Padding
You may instruct the Altera Offline Compiler (AOC) to disable automatic padding insertion between
members of a struct data structure.

OCL002-15.0.0
2015.05.04 Disabling Insertion of Data Structure Padding 1-53

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To disable automatic padding insertion, insert the packed attribute prior to the kernel source code for
a struct data structure.
For example:

__attribute__((packed))
struct Context
{
 float param1;
 float param2;
 int param3;
 uint param4;
};
__kernel void algorithm(__global float * restrict A, __global struct Context *
restrict c)
{
 if (c->param3)
 {
 // Dereference through a pointer and so on
 }
}

For more information, refer to the Align a Struct with or without Padding section of the Altera SDK for
OpenCL Best Practices Guide.

Related Information
Align a Struct with or without Padding

Specifying the Alignment of a Struct
You may instruct the Altera Offline Compiler (AOC) to set a specific alignment of a struct data
structure.

• To specify the struct alignment, insert the aligned(N) attribute prior to the kernel source code for a
struct data structure.
For example:

__attribute__((aligned(2)))
struct Context
{
 float param1;
 float param2;
 int param3;
 uint param4;
};
__kernel void algorithm(__global float * A, _global struct Context * restrict c)
{
 if (c->param3)
 {
 // Dereference through a pointer and so on
 }
}

For more information, refer to the Align a Struct with or without Padding section of the Altera SDK for
OpenCL Best Practices Guide.

Related Information
Align a Struct with or without Padding

1-54 Specifying the Alignment of a Struct
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/mwh1391807516407/ewa1417026580901/en-us
https://documentation.altera.com/#/link/mwh1391807516407/ewa1417026580901/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Inferring a Register
The Altera Offline Compiler (AOC) can implement data that is in the private address space in registers or
in block RAMs. In general, the AOC chooses registers if the access to a variable is fixed and does not
require any dynamic indexes. Accessing an array with a variable index usually forces the array into block
RAMs. Implementing private data as registers is beneficial for data access that occurs in a single cycle (for
example, feedback in a single work-item loop).

The AOC infers private arrays as registers either as single values or in a piecewise fashion. Piecewise
implementation results in very efficient hardware; however, the AOC must be able to determine data
accesses statically. To facilitate piecewise implementation, hardcode the access points into the array. You
can also facilitate register inference by unrolling loops that access the array.

If array accesses are not inferable statically, the AOC might infer the array as registers. However, the AOC
limits the size of these arrays to 64 bytes in length for single work-item kernels. There is effectively no size
limit for kernels with multiple work-items

Consider the following code example:

int array[SIZE];
for (int j = 0; j < N; ++j)
{
 for (int i = 0; i < SIZE - 1; ++i)
 {
 array[i] = array[i + 1];
 }
}

The indexing into array[i] is not inferable statically because the loop is not unrolled. If the size of
array[i] is less than or equal to 64 bytes for single work-item kernels, the AOC implements array[i] in
block RAMs. If the size of array[i] is greater than 64 bytes, or if the kernel has multiple work-items, the
AOC implements the entire array into registers as a single value. In this case, the AOC implements data
accesses as nonconstant shifts and masks. With complicated addressing, the AOC implements the array in
block RAMs and instantiates specialized hardware for each load or store operation.

Inferring a Shift Register
The shift register design pattern is a very important design pattern for many applications. However, the
implementation of a shift register design pattern might seem counterintuitive at first.

Consider the following code example:

channel int in, out;

#define SIZE 512
//Shift register size must be statically determinable

__kernel void foo()
{
 int shift_reg[SIZE];
 //The key is that the array size is a compile time constant

 // Initialization loop
 #pragma unroll
 for (int i=0; i < SIZE; i++)
 {
 //All elements of the array should be initialized to the same value
 shift_reg[i] = 0;
 }

OCL002-15.0.0
2015.05.04 Inferring a Register 1-55

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 while(1)
 {
 // Fully unrolling the shifting loop produces constant accesses
 #pragma unroll
 for (int j=0; j < SIZE–1; j++)
 {
 shift_reg[j] = shift_reg[j + 1];
 }
 shift_reg[SIZE – 1] = read_channel_altera(in);

 // Using fixed access points of the shift register
 int res = (shift_reg[0] + shift_reg[1]) / 2;

 // ‘out’ channel will have running average of the input channel
 write_channel_altera(out, res);
 }
}

In each clock cycle, the kernel shifts a new value into the array. By placing this shift register into a block
RAM, the Altera Offline Compiler (AOC) can efficiently handle multiple access points into the array. The
shift register design pattern is ideal for implementing filters (for example, image filters like a Sobel filter or
time-delay filters like a finite impulse response (FIR) filter).

When implementing a shift register in your kernel code, keep in mind the following key points:

1. Unroll the shifting loop so that it can access every element of the array.
2. All access points must have constant data accesses. For example, if you write a calculation in nested

loops using multiple access points, unroll these loops to establish the constant access points.
3. Initialize all elements of the array to the same value. Alternatively, you may leave the elements

uninitialized if you do not require a specific initial value.
4. If some accesses to a large array are not inferable statically, they force the AOC to create inefficient

hardware. If these accesses are necessary, use __local memory instead of __private memory.
5. Do not shift a large shift register conditionally. The shifting must occur in very loop iteration that

contains the shifting code to avoid creating inefficient hardware.

Enabling Double Precision Floating-Point Operations
The Altera SDK for OpenCL offers preliminary support for all double precision floating-point functions.

Before declaring any double precision floating-point data type in your OpenCL kernel, include the
following OPENCL EXTENSION pragma in your kernel code:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

Designing Your Host Application
Altera offers guidelines on host requirements and procedures on structuring the host application. If
applicable, implement these design strategies when you create or modify a host application for your
OpenCL kernels.

Host Programming Requirements on page 1-57
When designing your OpenCL host application for use with the Altera SDK for OpenCL (AOCL), ensure
that the application satisfies the following host programming requirements.

Allocating OpenCL Buffer for Manual Partitioning of Global Memory on page 1-58

1-56 Enabling Double Precision Floating-Point Operations
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating a Pipe Object in Your Host Application on page 1-60
To implement OpenCL pipes in your kernel, you must create Altera SDK for OpenCL (AOCL)-specific
pipe objects in your host application.

Collecting Profile Data During Kernel Execution on page 1-60
In cases where kernel execution finishes after the host application completes, you can query the FPGA
explicitly to collect profile data during kernel execution.

Accessing Custom Platform-Specific Functions on page 1-62
To reference Custom Platform-specific user-accessible functions while linking to the ACD, include the
clGetBoardExtensionFunctionAddressAltera extension in your host application.

Modifying Host Program for Structure Parameter Conversion on page 1-62
If you convert any structure parameters to pointers-to-constant structures in your OpenCL kernel, you
must modify your host application accordingly.

Allocating Shared Memory for OpenCL Kernels Targeting SoCs on page 1-63
Altera recommends that OpenCL kernels that run on Altera SoCs access shared memory instead of the
FPGA DDR memory.

Managing Host Application on page 1-65
The Altera SDK for OpenCL (AOCL) includes utility commands you can invoke to obtain information on
flags and libraries necessary for compiling and linking your host application.

Host Programming Requirements
When designing your OpenCL host application for use with the Altera SDK for OpenCL (AOCL), ensure
that the application satisfies the following host programming requirements.

Host Machine Memory Requirements
The machine that runs the host application must have enough host memory to support several
components simultaneously.

The host machine must support the following components:

• The host application and operating system.
• The working set for the host application.
• The maximum amount of OpenCL memory buffers that can be allocated at once. Every device-side

cl_mem buffer is associated with a corresponding storage area in the host process. Therefore, the
amount of host memory necessary might be as large as the amount of external memory supported by
the FPGA.

Host Binary Requirement
When compiling the host application, target one of these architectures: x86-64 (64-bit), big-endian (64-
bit), or ARM® 32-bit ARMV7-A for devices such as the Cyclone V SoC. The Altera SDK for OpenCL
(AOCL) host runtime does not support x86-32 (32-bit) binaries.

Multiple Host Threads
The Altera SDK for OpenCL (AOCL) host library is not thread-safe.

If you have a multi-threaded host application, Altera recommends that you build your own external
synchronization mechanism around all OpenCL host function calls.

OCL002-15.0.0
2015.05.04 Host Programming Requirements 1-57

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Out-of-Order Command Queues
The OpenCL host runtime command queues do not support out-of-order command execution.

Requirement for Multiple Command Queues in Channels or Pipes Implementation
Although the Altera SDK for OpenCL (AOCL) channels extension or OpenCL pipes implementation
allows multiple kernels to execute in parallel, channels or pipes facilitate this concurrent behavior only
when cl_command_queue objects are in order. To enable multiple command queues , instantiate a
separate command for each kernel you wish to run concurrently.

Allocating OpenCL Buffer for Manual Partitioning of Global Memory
Manual partitioning of global memory buffers allows you to control memory accesses across buffers to
maximize the memory bandwidth. Before you partition the memory, first you have to disable burst-
interleaving during OpenCL kernel compilation. Then, in the host application, you must specify the
memory bank to which you allocate the OpenCL buffer.

By default, the Altera Offline Compiler (AOC) configures each global memory type in a burst-interleaved
fashion. Usually, the burst-interleaving configuration leads to the best load balancing between the
memory banks. However, there might be situations where it is more efficient to partition the memory into
non-interleaved regions.

The figure below illustrates the differences between burst-interleaved and non-interleaved memory
partitions.

0x7FFF_FFFF
Address

0x7FFF_FC00
0x7FFF_FBFF

0x7FFF_F800

0x0000_0FFF

0x0000_0C00
0x0000_0BFF

0x0000_0800
0x0000_07FF

0x0000_0400
0x0000_03FF

0x0000_0000

Bank 2

Bank 1

Bank 2

Bank 1

Bank 2

Bank 1

Bank 2

Bank 1

Address
0x7FFF_FFFF

0x4000_0000
0x3FFF_FFFF

0x0000_0000

Burst-Interleaved Separate Partitions

1-58 Out-of-Order Command Queues
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To manually partition some or all of the available global memory types, perform the following tasks:

1. Compile your OpenCL kernel using the --no-interleaving <global_memory_type> flag
to configure the memory bank(s) of the specified memory type as separate addresses.
For more information on the usage of the --no-interleaving <global_memory_type>
flag, refer to the Disabling Burst-Interleaving of Global Memory (--no-interleaving
<global_memory_type>) section.

2. Create an OpenCL buffer in your host application, and allocate the buffer to one of the banks using the
CL_MEM_HETEROGENEOUS_ALTERA and CL_MEM_BANK flags.

• Specify CL_MEM_BANK_1_ALTERA to allocate the buffer to the lowest available memory region.
• Specify CL_MEM_BANK_2_ALTERA to allocation memory to the second bank (if available).

Attention: Allocate each buffer to a single memory bank only.

By default, the host allocates buffers into the main memory when you load kernels into the OpenCL
runtime via the clCreateProgramWithBinary function. During kernel invocation, the host automati‐
cally relocates heterogeneous memory buffers that are bound to kernel arguments to the main
memory . To avoid the initial allocation of heterogeneous memory buffers in the main memory,
include the CL_MEM_HETEROGENEOUS_ALTERA flag when you call the clCreateBuffer function, as
shown below:

mem = clCreateBuffer(context,
 flags|CL_MEM_HETEROGENEOUS_ALTERA,
 memSize,
 NULL,
 &errNum);

For example, the following clCreateBuffer call allocates memory into the lowest available memory
region of a nondefault memory bank:

mem = clCreateBuffer(context,
 (CL_MEM_HETEROGENEOUS_ALTERA|CL_MEM_BANK_1_ALTERA),
 memSize,
 NULL,
 &errNum);

The clCreateBuffer call allocates memory into a certain global memory type based on what you
specify in the kernel argument. If a memory (cl_mem) object residing in a memory type is set as a
kernel argument that corresponds to a different memory technology, the host moves the memory
object automatically when it queues the kernel. Do not pass a buffer as kernel arguments that associate
it with multiple memory technologies.

Attention: If the second bank is not available at runtime, the memory is allocated to the first bank. If no
global memory is available, the clCreateBuffer call fails with the error message
CL_MEM_OBJECT_ALLOCATION_FAILURE.

For more information on optimizing heterogeneous global memory accesses, refer to the Heterogeneous
Memory Buffers and the Manual Partitioning of Global Memory sections of the Altera SDK for OpenCL
Best Practices Guide.

Related Information

• Disabling Burst-Interleaving of Global Memory (--no-interleaving <global_memory_type>) on
page 1-82

OCL002-15.0.0
2015.05.04 Allocating OpenCL Buffer for Manual Partitioning of Global Memory 1-59

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Manual Partitioning of Global Memory
• Heterogeneous Memory Buffers

Creating a Pipe Object in Your Host Application
To implement OpenCL pipes in your kernel, you must create Altera SDK for OpenCL (AOCL)-specific
pipe objects in your host application.

An AOCL-specific pipe object is not a true OpenCL pipe object as described in the OpenCL Specification
version 2.0. This implementation allows you to migrate away from Altera devices with a conformant
solution. The AOCL-specific pipe object is a memory object (cl_mem); however, the host does not allocate
any memory for the pipe itself.

The following clCreatePipe host application programming interface (API) creates a pipe object:

cl_mem clCreatePipe(cl_context context,
 cl_mem_flags flags,
 cl_uint pipe_packet_size,
 cl_uint pipe_max_packets,
 const cl_pipe_properties *properties,
 cl_int *errcode_ret)

For more information on the clCreatePipe host API function, refer to section 5.4.1 of the OpenCL
Specification version 2.0.

Below is an example syntax of the clCreatePipe host API function:

cl_int status;
cl_mem c0_pipe = clCreatePipe(context,
 0,
 sizeof(int),
 1,
 NULL,
 &status);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &c0_pipe);

Caution: The AOCL does not support dynamic channel assignment at runtime. The AOCL statically
links the pipes during compilation.

Related Information
OpenCL Specification version 2.0 (API)

Collecting Profile Data During Kernel Execution
In cases where kernel execution finishes after the host application completes, you can query the FPGA
explicitly to collect profile data during kernel execution.

When you profile your OpenCL kernel during compilation, a profile.mon file is generated automatically.
The profile data is then written to profile.mon after kernel execution completes on the FPGA. However, if
kernel execution completes after the host application completes, no profiling information for that kernel

1-60 Creating a Pipe Object in Your Host Application
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807511852/en-us
https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807512179/en-us
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

invocation will be available in the profile.mon file. In this case, you can modify your host code to acquire
profiling information during kernel execution.

• To query the FPGA to collect profile data while the kernel is running, call the following host library
call:

extern CL_API_ENTRY cl_int CL_API_CALL

clGetProfileInfoAltera(cl_event);

where cl_event is the kernel event. The kernel event you pass to this host library call must be the same
one you pass to the clEnqueueNDRangeKernel call.

Important: If kernel execution completes before the invocation of clGetProfileInfoAltera, the
function returns an event error message.

Caution: Invoking the clGetProfileInfoAltera function during kernel execution disables the
profile counters momentarily so that the Profiler can collect data from the FPGA. As a
result, you will lose some profiling information during this interruption. If you call this
function at very short intervals, the profile data might not accurately reflect the actual
performance behavior of the kernel.

Consider the following example host code:

int main()
{ ...
 clEnqueueNDRangeKernel (queue, kernel, ..., NULL);
 ...
 clEnqueueNDRangeKernel (queue, kernel, .. , NULL);
 ...
}

This host application runs on the assumption that a kernel launches twice and then completes. In the
profile.mon file, there will be two sets of profile data, one for each kernel invocation. To collect profile
data while the kernel is running, modify the host code in the following manner:

int main()
{
 ...
 clEnqueueNDRangeKernel (queue, kernel, ..., &event);

 //Get the profile data before the kernel completes
 clGetProfileInfoAltera (event);

 //Wait until the kernel completes
 clFinish (queue);

 ...
 clEnqueueNDRangeKernel (queue, kernel, ..., NULL);
 ...
}

The call to clGetProfileInfoAltera adds a new entry in the profile.mon file. The Profiler GUI then
parses this entry in the report.

For more information on the Altera SDK for OpenCL (AOCL) Profiler, refer to the following sections:

OCL002-15.0.0
2015.05.04 Collecting Profile Data During Kernel Execution 1-61

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• Profile Your Kernel to Identify Performance Bottlenecks in the Altera SDK for OpenCL Best Practices
Guide

• Profiling Your OpenCL Kernel

Related Information

• Profile Your Kernel to Identify Performance Bottlenecks
• Profiling Your OpenCL Kernel on page 1-89

Accessing Custom Platform-Specific Functions
You have the option to include in your application user-accessible functions that are available in your
Custom Platform. However, when you link your host applicaiton to the Altera Client Driver (ACD), you
cannot directly reference these Custom Platform-specific functions. To reference Custom Platform-
specific user-accessible functions while linking to the ACD, include the
clGetBoardExtensionFunctionAddressAltera extension in your host application.

The clGetBoardExtensionFunctionAddressAltera extension specifies an application programming
interface (API) that retrieves a pointer to a user-accessible function from the Custom Platform.

Attention: For Linux systems, the clGetBoardExtensionFunctionAddressAltera function works with
or without ACD. For Windows systems, the function only works in conjunction with ACD.
Consult with your board vendor to determine if ACD is supported in your Custom Platform.

Definitions of the extension interfaces are available in the ALTERAOCLSDKROOT/host/include/CL/cl_ext.h file.

• To obtain a pointer to a user-accessible function in your Custom Platform, call the following function
in your host application:

void* clGetBoardExtensionFunctionAddressAltera (
 const char* function_name,
 cl_device_id device
);

Where:

function_name is the name of the user-accessible function that your Custom Platform vendor
provides,

and

device is the device ID returned by the clGetDeviceIDs function.

After locating the user-accessible function, the clGetBoardExtensionFunctionAddressAltera
function returns a pointer to the user-accessible function. If the function does not exist in the Custom
Platform, clGetBoardExtensionFunctionAddressAltera returns NULL.

Modifying Host Program for Structure Parameter Conversion
If you convert any structure parameters to pointers-to-constant structures in your OpenCL kernel, you
must modify your host application accordingly.

Perform the following changes to your host application:

1. Allocate a cl_mem buffer to store the structure contents.

1-62 Accessing Custom Platform-Specific Functions
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/mwh1391807516407/ewa1399053428262/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Attention: You need a separate cl_mem buffer for every kernel that uses a different structure value.
2. Set the structure kernel argument with a pointer to the structure buffer, not with a pointer to the

structure contents.
3. Populate the structure buffer contents before queuing the kernel. Perform one of the following steps to

ensure that the structure buffer is populated before the kernel launches:

• Queue the structure buffer on the same command queue as the kernel queue.
• Synchronize separate kernel queues and structure buffer queues with an event.

4. When your application no longer needs to call a kernel that uses the structure buffer, release the
cl_mem buffer.

Related Information

• Including Structure Data Types as Arguments in OpenCL Kernels on page 1-52
• Matching Data Layouts of Host and Kernel Structure Data Types on page 1-52

Allocating Shared Memory for OpenCL Kernels Targeting SoCs
Altera recommends that OpenCL kernels that run on Altera SoCs access shared memory instead of the
FPGA DDR memory. FPGA DDR memory is accessible to kernels with very high bandwidths. However,
read and write operations from the ARM CPU to FPGA DDR memory are very slow because they do not
use direct memory access (DMA). Reserve FPGA DDR memory only for passing temporary data between
kernels or within a single kernel for testing purposes.

Before you begin

Note: 1. Mark the shared buffers between kernels as volatile to ensure that buffer modification by one
kernel is visible to the other kernel.

2. To access shared memory, you only need to modify the host code. Modifications to the kernel
code are unnecessary.

3. You cannot use the library function malloc or the operator new to allocate physically shared
memory. Also, the CL_MEM_USE_HOST_PTR flag does not work with shared memory.

In DDR memory, shared memory must be physically contiguous. The FPGA cannot consume
virtually contiguous memory without a scatter-gather direct memory access (SG-DMA)
controller core. The malloc function and the new operator are for accessing memory that is
virtually contiguous.

4. CPU caching is disabled for the shared memory.

OCL002-15.0.0
2015.05.04 Allocating Shared Memory for OpenCL Kernels Targeting SoCs 1-63

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The ARM CPU and the FPGA can access the shared memory simultaneously. You do not need to include
the clEnqueueReadBuffer and clEnqueueWriteBuffer calls in your host code to make data visible to
either the FPGA or the CPU.

• To allocate and access shared memory, structure your host code in a similar manner as the following
example:

cl_mem src = clCreateBuffer(…, CL_MEM_ALLOC_HOST_PTR, size, …);
int *src_ptr = (int*)clEnqueueMapBuffer (…, src, size, …);
*src_ptr = input_value; //host writes to ptr directly
clSetKernelArg (…, src);
clEnqueueNDRangeKernel(…);
clFinish();
printf (“Result = %d\n”, *dst_ptr); //result is available immediately
clEnqueueUnmapMemObject(…, src, src_ptr, …);
clReleaseMemObject(src); // actually frees physical memory

You can include the CONFIG_CMA_SIZE_MBYTES kernel configuration option to control the maximum
total amount of shared memory available for allocation. In practice, the total amount of allocated
shared memory is smaller than the value of CONFIG_CMA_SIZE_MBYTES.

Important: 1. If your target board has multiple DDR memory banks, the clCreateBuffer(...,
CL_MEM_READ_WRITE, ...) function allocates memory to the nonshared DDR
memory banks. However, if the FPGA has access to a single DDR bank that is shared
memory, then clCreateBuffer(..., CL_MEM_READ_WRITE, ...) allocates to shared
memory, similar to using the CL_MEM_ALLOC_HOST_PTR flag.

2. The shared memory that you request with the clCreateBuffer(...,
CL_MEM_ALLOC_HOST_PTR, size, ...) function is allocated in the Linux OpenCL
kernel driver, and it relies on the contiguous memory allocator (CMA) feature of the
Linux kernel. For detailed information on enabling and configuring the CMA, refer to
the Recompiling the Linux Kernel and the OpenCL Linux Kernel Driver section of the
Altera Cyclone V SoC Development Kit Reference Platform Porting Guide.

• To transfer data from shared hard processor system (HPS) DDR to FPGA DDR efficiently, include a
kernel that performs the memcpy function, as shown below.

__attribute__((num_simd_work_items(8)))
mem_stream(__global uint * src, __global uint * dst)
{
 size_t gid = get_global_id(0);
 dst[gid] = src[gid];
}

Attention: Allocate the src pointer in the HPS DDR as shared memory using the
CL_MEM_ALLOC_HOST_PTR flag.

• If the host allocates constant memory to shared HPS DDR system and then modifies it after kernel
execution, the modifications might not take effect. As a result, subsequent kernel executions might use
outdated data. To prevent kernel execution from using outdated constant memory, perform one of the
following tasks:
1. Do not modify constant memory after its initialization.
2. Create multiple constant memory buffers if you require multiple __constant data sets.
3. If available, allocate constant memory to the FPGA DDR on your accelerator board.

Related Information
Recompiling the Linux Kernel and the OpenCL Linux Kernel Driver

1-64 Allocating Shared Memory for OpenCL Kernels Targeting SoCs
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/ewa1403875738903/mwh1391806417857/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Managing Host Application
The Altera SDK for OpenCL (AOCL) includes utility commands you can invoke to obtain information on
flags and libraries necessary for compiling and linking your host application.

Attention: To cross-compile your host application to an SoC board, include the --arm option in your
utility command.

Caution: For Linux systems, if you debug your host application using the GNU Project Debugger (GDB),
invoke the following command prior to running the host application:

handle SIG44 nostop

Without this command, the GDB debugging process terminates with the following error
message:

Program received signal SIG44, Real-time event 44.

Displaying Example Makefile Fragments (example-makefile or makefile)
To display example Makefile fragments for compiling and linking a host application against host runtime
libraries available with the Altera SDK for OpenCL, invoke the example-makefile or makefile
utility command.

OCL002-15.0.0
2015.05.04 Managing Host Application 1-65

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• At a command prompt, invoke the aocl example-makefile or aocl makefile utility
command.
The software displays an output similar to the following:

The following are example Makefile fragments for compiling and linking
a host program against the host runtime libraries included with the
Altera SDK for OpenCL.

Example GNU makefile on Linux, with GCC toolchain:

 AOCL_COMPILE_CONFIG=$(shell aocl compile-config)
 AOCL_LINK_CONFIG=$(shell aocl link-config)

 host_prog : host_prog.o
 g++ -o host_prog host_prog.o $(AOCL_LINK_CONFIG)

 host_prog.o : host_prog.cpp
 g++ -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

Example GNU makefile on Windows, with Microsoft Visual C++ command line compiler:

 AOCL_COMPILE_CONFIG=$(shell aocl compile-config)
 AOCL_LINK_CONFIG=$(shell aocl link-config)

 host_prog.exe : host_prog.obj
 link -nologo /OUT:host_prog.exe host_prog.obj $(AOCL_LINK_CONFIG)

 host_prog.obj : host_prog.cpp
 cl /MD /Fohost_prog.obj -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

Example GNU makefile cross-compiling to ARM SoC from Linux or Windows, with
Linaro GCC cross-compiler toolchain:

 CROSS-COMPILER=arm-linux-gnueabihf-
 AOCL_COMPILE_CONFIG=$(shell aocl compile-config --arm)
 AOCL_LINK_CONFIG=$(shell aocl link-config --arm)

 host_prog : host_prog.o
 $(CROSS-COMPILER)g++ -o host_prog host_prog.o $(AOCL_LINK_CONFIG)

 host_prog.o : host_prog.cpp
 $(CROSS-COMPILER)g++ -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

Compiling and Linking Your Host Application
The OpenCL host application uses standard OpenCL runtime application programming interfaces (APIs)
to manage device configuration, data buffers, kernel launches, and synchronization. The host application
also contains functions such as file I/O, or portions of the source code that do not run on an accelerator
device. The Altera SDK for OpenCL (AOCL) includes utility commands you can invoke to obtain
information on C header files describing the OpenCL APIs, and board-specific memory-mapped device
(MMD) and host runtime libraries with which you must link your host application.

Important: For Windows systems, you must add the /MD flag to link the host runtime libraries against
the multithreaded dynamically-linked library (DLL) version of the Microsoft C Runtime
library. You must also compile your host application with the /MD compilation flag, or use
the /NODEFAULTLIB linker option to override the selection of runtime library.

1-66 Compiling and Linking Your Host Application
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Remember: Include the path to the ALTERAOCLSDKROOT/host/<OS_platform>/bin folder in your library
search path when you run your host application.

Displaying Flags for Compiling Host Application (compile-config) on page 1-67
To display a list of flags necessary for compiling a host application, invoke the compile-config utility
command.

Displaying Paths to OpenCL Host Runtime and MMD Libraries (ldflags) on page 1-67
To display the paths necessary for linking a host application to the OpenCL host runtime and memory-
mapped device (MMD) libraries, invoke the ldflags utility command.

Listing OpenCL Host Runtime and MMD Libraries (ldlibs) on page 1-67
To display the names of the OpenCL host runtime and memory-mapped device (MMD) libraries
necessary for linking a host application, invoke the ldlibs utility command.

Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or linkflags) on
page 1-68
To display a list of flags necessary for linking a host application with OpenCL host runtime and memory-
mapped device (MMD) libraries, invoke the link-config or linkflags utility command.

Displaying Flags for Compiling Host Application (compile-config)
To display a list of flags necessary for compiling a host application, invoke the compile-config utility
command.

1. At a command prompt, invoke the aocl compile-config utility command.
The software displays the path to the folder or directory in which the OpenCL application program‐
ming interface (API) header files reside. For example:

• For Windows systems, the path is -I%ALTERAOCLSDKROOT%/host/include
• For Linux systems, the path is -I$ALTERAOCLSDKROOT/host/include

where ALTERAOCLSDKROOT points to the location of the software installation.
2. Add this path to your C preprocessor.

Attention: In your host source, include the opencl.h OpenCL header file, located in the ALTERAOCLSDK‐
ROOT/host/include/CL folder or directory.

Displaying Paths to OpenCL Host Runtime and MMD Libraries (ldflags)
To display the paths necessary for linking a host application to the OpenCL host runtime and memory-
mapped device (MMD) libraries, invoke the ldflags utility command.

• At a command prompt, invoke the aocl ldflags utility command.
The software displays the paths for linking your host application with the following libraries:

1. The OpenCL host runtime libraries that provide OpenCL platform and runtime application
programming interfaces (APIs). The OpenCL host runtime libraries are available in the
ALTERAOCLSDKROOT/host/<OS_platform>/lib directory.

2. The path to the Custom Platform-specific MMD libraries. The MMD libraries are available in the
<board_family_name>/<OS_platform>/lib directory of your Custom Platform.

Listing OpenCL Host Runtime and MMD Libraries (ldlibs)
To display the names of the OpenCL host runtime and memory-mapped device (MMD) libraries
necessary for linking a host application, invoke the ldlibs utility command.

OCL002-15.0.0
2015.05.04 Displaying Flags for Compiling Host Application (compile-config) 1-67

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• At a command prompt, invoke the aocl ldlibs utility command.
The software lists the OpenCL host runtime libraries residing in the ALTERAOCLSDKROOT/host/
<OS_platform>/lib directory. It also lists the Custom Platform-specific MMD libraries residing in the /
<board_family_name>/<OS_platform>/lib directory of your Custom Platform.

• For Windows systems, the output might resemble the following example:

alterahalmmd.lib
<board_vendor_name>_<board_family_name>_mmd.[lib|so|a|dll]
alteracl.lib
acl_emulator_kernel_rt.lib
pkg_editor.lib
libelf.lib
acl_hostxml.lib

• For Linux systems, the output might resemble the following example:

-lalteracl
-ldl
-lacl_emulator_kernel_rt
-lalterahalmmd
-l<board_vendor_name>_<board_family_name>_mmd
-lelf
-lrt
-lstdc++

Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or linkflags)
To display a list of flags necessary for linking a host application with OpenCL host runtime and memory-
mapped device (MMD) libraries, invoke the link-config or linkflags utility command.

This utility command combines the functions of the ldflags and ldlibs utility commands.

1. At a command prompt, invoke the aocl link-config or aocl linkflags command.
The software displays the link options for linking your host application with the following libraries:

1. The path to and the names of OpenCL host runtime libraries that provide OpenCL platform and
runtime application programming interfaces (APIs). The OpenCL host runtime libraries are
available in the ALTERAOCLSDKROOT/host/<OS_platform>/lib directory .

2. The path to and the names of the Custom Platform-specific MMD libraries. The MMD libraries are
available in the <board_family_name>/<OS_platform>/lib directory of your Custom Platform.

1-68 Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or
linkflags)

OCL002-15.0.0
2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• For Windows systems, the link options might resemble the following example output:

/libpath:%ALTERAOCLSDKROOT%/board/<board_name>/windows64/lib
/libpath:%ALTERAOCLSDKROOT%/host/windows64/lib
alterahalmmd.lib
<board_vendor_name>_<board_family_name>_mmd.[lib|so|a|dll]
alteracl.lib
acl_emulator_kernel_rt.lib
pkg_editor.lib
libelf.lib
acl_hostxml.lib

• For Linux systems, the link options might resemble the following example output:

-L/$ALTERAOCLSDKROOT/board/<board_name>/linux64/lib
-L/$ALTERAOCLSDKROOT/host/linux64/lib
-lalterac
-ldl
-lacl_emulator_kernel_rt
-lalterahalmmd
-l<board_vendor_name>_<board_family_name>_mmd
-lelf
-lrt
-lstdc++

Programming an FPGA via the Host
The Altera Offline Compiler (AOC) is an offline compiler that compiles kernels independently of the host
application. To load the kernels into the OpenCL runtime, include the clCreateProgramWithBinary
function in your host application.

Caution: If your host system consists of multiple processors, only one processor can access the FPGA at a
given time. Consider an example where there are two host applications, corresponding to two
processors, attempting to launch kernels onto the same FPGA at the same time. The second
host application wil receive an error message indicating that the device is busy. The second host
application cannot run until the first host application releases the OpenCL context.

1. Compile your OpenCL kernel with the AOC to create the Altera Offline Compiler Executable file
(.aocx).

2. Include the clCreateProgramWithBinary function in your host application to create the cl_program
OpenCL program objects from the .aocx file.

3. Include the clBuildProgram function in your host application to create the program executable for
the specified device.
Below is an example host code on using clCreateProgramWithBinary to program an FPGA device:

size_t lengths[1];
unsigned char* binaries[1] ={NULL};
cl_int status[1];
cl_int error;
cl_program program;
const char options[] = "";

FILE *fp = fopen("program.aocx","rb");
fseek(fp,0,SEEK_END);
lengths[0] = ftell(fp);
binaries[0] = (unsigned char*)malloc(sizeof(unsigned char)*lengths[0]);
rewind(fp);
fread(binaries[0],lengths[0],1,fp);
fclose(fp);

OCL002-15.0.0
2015.05.04 Programming an FPGA via the Host 1-69

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

program = clCreateProgramWithBinary(context,
 1,
 device_list,
 lengths,
 (const unsigned char **)binaries,
 status,
 &error);
clBuildProgram(program,1,device_list,options,NULL,NULL);

If the clBuildProgram function executes successfully, it returns CL_SUCCESS.
4. Create kernel objects from the program executable using the clCreateKernelsInProgram or

clCreateKernel function.
5. Include the kernel execution function to instruct the host runtime to execute the scheduled kernel(s)

on the FPGA.

• To enqueue a command to execute an NDRange kernel, use clEnqueueNDRangeKernel.
• To enqueue a single work-item kernel, use clEnqueueTask.

You can load multiple FPGA programs into memory, which the host then uses to reprogram the FPGA
as required.

For more information on these OpenCL host runtime application programming interface (API) calls,
refer to the OpenCL Specification version 1.0.

Related Information
OpenCL Specification version 1.0

Programming Multiple FPGA Devices
If you install multiple FPGA devices in your system, you can direct the host runtime to program a specific
FPGA device by modifying your host code.

Important: You may only program multiple FPGA devices from the same Custom Platform because the
AOCL_BOARD_PACKAGE_ROOT environment variable points to the location of a single
Custom Platform.

You can present up to 16 FPGA devices to your system in the following manner:

• Multiple FPGA accelerator boards, each consisting of a single FPGA.
• Multiple FPGAs on a single accelerator board that connects to the host system via a PCI Express

(PCIe) switch.
• Combinations of the above.

The host runtime can load kernels onto each and every one of the FPGA devices. The FPGA devices can
then operate in a parallel fashion.

1. Probing the OpenCL FPGA Devices on page 1-71
The host must identify the number of OpenCL FPGA devices installed into the system.

2. Querying Device Information on page 1-71
You can direct the host to query information on your OpenCL FPGA devices.

3. Loading Kernels for Multiple FPGA Devices on page 1-72
If your system contains multiple FPGA devices, you can create specific cl_program objects for each
FPGA and load them into the OpenCL runtime.

1-70 Programming Multiple FPGA Devices
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Probing the OpenCL FPGA Devices
The host must identify the number of OpenCL FPGA devices installed into the system.

1. To query a list of FPGA devices installed in your machine, invoke the aocl diagnose command.
2. To direct the host to identify the number of OpenCL FPGA devices, add the following lines of code to

your host application:

//Get the platform
ciErrNum = oclGetPlatformID(&cpPlatform);

//Get the devices
ciErrNum = clGetDeviceIDs(cpPlatform,
 CL_DEVICE_TYPE_ALL,
 0,
 NULL,
 &ciDeviceCount);
cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id));
ciErrNum = clGetDeviceIDs(cpPlatform,
 CL_DEVICE_TYPE_ALL,
 ciDeviceCount,
 cdDevices,
 NULL);

For example, on a system with two OpenCL FPGA devices, ciDeviceCount has a value of 2, and
cdDevices contains a list of two device IDs (cl_device_id).

Related Information
Querying the Device Name of Your FPGA Board (diagnose) on page 1-11

Querying Device Information
You can direct the host to query information on your OpenCL FPGA devices.

• To direct the host to output a list of OpenCL FPGA devices installed into your system, add the
following lines of code to your host application:

char buf[1024];
for (unsigned i = 0; i < ciDeviceCount; i++);
{
 clGetDeviceInfo(cdDevices[i], CL_DEVICE_NAME, 1023, buf, 0);
 printf("Device %d: '%s'\n", i, buf);
}

When you query the device information, the host will list your FPGA devices in the following manner:

Device <N>: <board_name>: <name_of_FPGA_board>

Where:

<N> is the device number.
<board_name> is the board designation you use to target your FPGA device when you invoke the aoc
command.
<name_of_FPGA_board> is the advertised name of the FPGA board.

For example, if you have two identical FPGA boards on your system, the host generates an output that
resembles the following:

Device 0: board_1: Stratix V FPGA Board
Device 1: board_1: Stratix V FPGA Board

OCL002-15.0.0
2015.05.04 Probing the OpenCL FPGA Devices 1-71

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Note: The clGetDeviceInfo function returns the board type (for example, board_1) that the Altera
Offline Compiler (AOC) lists on-screen when you invoke the aoc --list-boards command.
If your accelerator board contains more than one FPGA, each device is treated as a "board" and is
given a unique name.

Related Information
Listing the Available FPGA Boards in Your Custom Platform (--list-boards) on page 1-9

Loading Kernels for Multiple FPGA Devices
If your system contains multiple FPGA devices, you can create specific cl_program objects for each
FPGA and load them into the OpenCL runtime.

The following host code demonstrates the usage of the clCreateProgramWithBinary and createMulti-
DeviceProgram functions to program multiple FPGA devices:

cl_program createMultiDeviceProgram(cl_context context,
 const cl_device_id *device_list,
 cl_uint num_devices,
 const char *aocx_name);

// Utility function for loading file into Binary String
//
unsigned char* load_file(const char* filename, size_t *size_ret)
{
 FILE *fp = fopen(aocx_name,"rb");
 fseek(fp,0,SEEK_END);
 size_t len = ftell(fp);
 char *result = (unsigned char*)malloc(sizeof(unsigned char)*len);
 rewind(fp);
 fread(result,len,1,fp);
 fclose(fp);
 *size_ret = len;
 return result;
}

//Create a Program that is compiled for the devices in the "device_list"
//
cl_program createMultiDeviceProgram(cl_context context,
 const cl_device_id *device_list,
 cl_uint num_devices,
 const char *aocx_name)
{
 printf("creating multi device program %s for %d devices\n",
 aocx_name, num_devices);
 const unsigned char **binaries =
 (const unsigned char**)malloc(num_devices*sizeof(unsigned char*));
 size_t *lengths=(size_t*)malloc(num_devices*sizeof(size_t));
 cl_int err;

 for(cl_uint i=0; i<num_devices; i++)
 {
 binaries[i] = load_file(aocx_name,&lengths[i]);
 if (!binaries[i])
 {
 printf("couldn't load %s\n", aocx_name);
 exit(-1);
 }
 }

 cl_program p = clCreateProgramWithBinary(context,
 num_devices,
 device_list,
 lengths,

1-72 Loading Kernels for Multiple FPGA Devices
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 binaries,
 NULL,
 &err);
 free(lengths);
 free(binaries);

 if (err != CL_SUCCESS)
 {
 printf("Program Create Error\n");
 }
 return p;
}

// main program

main ()
{
 // Normal OpenCL setup
}
program = createMultiDeviceProgram(context,
 device_list,
 num_devices,
 "program.aocx");
clBuildProgram(program,num_devices,device_list,options,NULL,NULL);

Linking Your Host Application to the Khronos ICD Loader Library
The Altera SDK for OpenCL (AOCL) supports the OpenCL Installable Client Driver (ICD) extension
from the Khronos Group. The OpenCL ICD extension allows you to have multiple OpenCL
implementations on your system. With the OpenCL ICD Loader Library, you may choose from a list of
installed platforms and execute OpenCL application programming interface (API) calls that are specific to
your OpenCL implementation of choice.

In addition to the AOCL host runtime libraries, Altera supplies a version of the ICD Loader Library that
supports the OpenCL Specification version 1.0. To use an ICD library from another vendor, consult the
vendor's documentation on how to link to their ICD library.

Linking to the ICD Loader Library on Windows on page 1-73
To link your Windows OpenCL host application to the Installable Client Driver (ICD) Loader Library,
modify the Makefile and set up the Altera Client Driver (ACD).

Linking to the ICD Loader Library on Linux on page 1-74
To link your Linux OpenCL host application to the Installable Client Driver (ICD) Loader Library,
modify the Makefile. For Cyclone V SoC boards, you also have to create an Altera.icd file.

Linking to the ICD Loader Library on Windows
To link your Windows OpenCL host application to the Installable Client Driver (ICD) Loader Library,
modify the Makefile and set up the Altera Client Driver (ACD).

Attention: For Windows systems, you must use the ICD in conjunction with the ACD. If the custom
platform from your board vendor does not currently support ACD, you can set it up
manually.

1. Prior to linking your host application to any Altera SDK for OpenCL (AOCL) host runtime libraries,
link it to the OpenCL library by modifying the Makefile.
A modified Makefile might include the following lines:

AOCL_COMPILE_CONFIG=$(shell aocl compile-config)
AOCL_LDFLAGS=$(shell aocl ldflags)

OCL002-15.0.0
2015.05.04 Linking Your Host Application to the Khronos ICD Loader Library 1-73

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

AOCL_LDLIBS=$(shell aocl ldlibs)

host_prog.exe : host_prog.obj
 link -nologo /OUT:host_prog.exe host_prog.obj $(AOCL_ LDFLAGS) OpenCL.lib $
(AOCL_LDLIBS)

host_prog.obj : host_prog.cpp
 cl /MD /Fohost_prog.obj -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

2. If you need to manually set up ACD support for your Custom Platform, perform the following tasks:
a. Consult with your board vendor to identify the libraries that the ACD requires. Alternatively, you

may invoke the aocl ldlibs command and identify the libraries that your OpenCL application
requires.

b. Specify the libraries in the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Altera\OpenCL
\Boards. Enter one value for each library. Each value must include the path to the library as the
string value, and a DWORD setting of 0.

Attention: If your board vendor provides multiple libraries, you might need to load them in a
particular order. Consult with your board vendor to determine the correct order to load
the libraries. List the libraries in the registry in their loading order.

To enumerate board vendor-specific ICDs, the ICD Loader scans the values in the
HKEY_LOCAL_MACHINE\SOFTWARE\Altera\OpenCL\Boards registry key. For each value in the
key that has a DWORD value of 0, the ACD Loader opens the corresponding dynamic link library (DLL)
specified in the key.

Consider the following registry key value:

[HKEY_LOCAL_MACHINE\SOFTWARE\Altera\OpenCL\Boards] "c:\\board_vendor a\
\my_board_mmd.dll"=dword:00000000
The ICD Loader scans this value, and then the ACD Loader opens the library my_board_mmd.dll from the
board_vendor a folder.

Attention: If your host application fails to run while it is linking to the ICD, ensure that
the HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors
registry key contains the following value:

[HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors]
"alteracl_icd.dll"=dword:00000000

Linking to the ICD Loader Library on Linux
To link your Linux OpenCL host application to the Installable Client Driver (ICD) Loader Library,
modify the Makefile. For Cyclone V SoC boards, you also have to create an Altera.icd file.

1. Prior to linking your host application to any AOCL host runtime libraries, link it to the OpenCL
library by modifying the Makefile.
A modified Makefile might include the following lines:

AOCL_LDFLAGS=$(shell aocl ldflags)
AOCL_LDLIBS=$(shell aocl ldlibs)

1-74 Linking to the ICD Loader Library on Linux
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

host_prog : host_prog.o
g++ -o host_prog host_prog.o $(AOCL_LDFLAGS) -lOpenCL $(AOCL_LDLIBS)

2. For Cyclone V SoC boards, when you build the SD flash card image for your Custom Platform, create
an Altera.icd file containing the text libalteracl.so. Store the Altera.icd file in the /etc/OpenCL/
vendors directory of your Custom Platform.
Refer to Building an SD Flash Card Image section of the Altera Cyclone V SoC Development Kit
Reference Platform Porting Guide for more information.

Attention: If your host application fails to run while linking to the ICD, ensure that the
file /etc/OpenCL/vendors/Altera.icd matches the file found in the directory that
ALTERAOCLSDKROOT specifies. The environment variable
ALTERAOCLSDKROOT points to the location of the AOCL installation. If
the files do not match, or if it is missing from /etc/OpenCL/vendors, copy the
Altera.icd file from ALTERAOCLSDKROOT to /etc/OpenCL/vendors.

Related Information
Building an SD Flash Card Image

Compiling Your OpenCL Kernel
The Altera SDK for OpenCL (AOCL) offers a list of compiler options that allows you to customize the
kernel compilation process. For example, you can direct the Altera Offline Compiler (AOC) to target a
specific FPGA board, generate reports, or implement optimization techniques.

Before you compile an OpenCL kernel, ensure that the environment variable
AOCL_BOARD_PACKAGE_ROOT points to the location of the appropriate Custom Platform.

Attention: If you use the Altera Stratix V Network Reference Platform (s5_net), you must acquire and
install the PLDA quick user datagram protocol (QuickUDP) intellectual property (IP) core
license. Refer to the PLDA website for more information. If you use a Custom Platform that
includes the QuickUDP IP core, refer to your board vendor's documentation for more
information on the acquisition and installation of the QuickUDP IP license.

Caution: Improper installation of the QuickUDP IP license causes kernel compilation to fail with the
following error message:

Error (292014): Can't find valid feature line for core PLDA
QUICKTCP (73E1_AE12) in current license.

Note that the error has no actual dependency on the TCP Hardware Stack QuickTCP IP from
PLDA.

Compiling a Kernel for a Big-Endian System (--big-endian)
To direct the Altera Offline Compiler (AOC) to compile your OpenCL kernel and generate a hardware
configuration file for use in a big-endian system (for example, the IBM POWER system), include the --
big-endian option in the aoc command.

OCL002-15.0.0
2015.05.04 Compiling Your OpenCL Kernel 1-75

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/ewa1403875738903/ewa1404735806345/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you create an OpenCL kernel program that targets a big-endian architecture, you have to specify big-
endian ordering for the host and global memories. If not, the AOC automatically defaults to little-endian
ordering.

• At a command prompt, invoke the aoc <your_kernel_filename>.cl --big-endian
command.

Compiling Your Kernel to Create Hardware Configuration File
You can compile an OpenCL kernel and create the hardware configuration file (that is, the Altera Offline
Compiler Executable file (.aocx)) in a single step.

Altera recommends that you use this one-step compilation strategy under the following circumstances:

• After you optimize your kernel via the Altera SDK for OpenCL (AOCL) design flow, and you are now
ready to create the .aocx file for deployment onto the FPGA.

• You have a simple kernel that does not require any optimization.

• To compile the kernel and generate the .aocx file in one step, invoke the aoc
<your_kernel_filename>.cl command.

Compiling Your Kernel without Building Hardware (-c)
To direct the Altera Offline Compiler (AOC) to compile your OpenCL kernel and generate a Quartus II
hardware design project without creating a hardware configuration file, include the -c option in your
aoc command.

• At a command prompt, invoke the aoc -c <your_kernel_filename>.cl command.
When you invoke the aoc command with the -c flag, the AOC compiles the kernel and creates the
following files and directories:

• The Altera Offline Compiler Object file (.aoco). The AOC creates the .aoco file in a matter of
seconds to minutes.

• A <your_kernel_filename> folder or subdirectory. It contains intermediate files that the Altera SDK
for OpenCL (AOCL) uses to build the hardware configuration file necessary for FPGA program‐
ming.

Specifying the Location of Header Files (-I <directory>)
To add a directory to the list of directories that the Altera Offline Compiler (AOC) searches for header
files during kernel compilation, include the -I <directory> option in your aoc command.

1-76 Compiling Your Kernel to Create Hardware Configuration File
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If the header files are in the same directory as your kernel, you do not need to include the -I
<directory> option in your aoc command. The AOC automatically searches the current folder or
directory for header files.

• At a command prompt, invoke the aoc -I <directory> <your_kernel_filename>.cl
command.

Caution: For Windows systems, ensure that your include path does not contain any trailing slashes.
The AOC considers a trailing forward slash (/) or backward slash (\) as illegal.

The AOC generates an error message if you invoke the aoc command in the following
manner:

aoc -I <drive>\<folder>\ ... \<subfolder>\
<your_kernel_filename>.cl

or

aoc -I <drive>/<folder>/ ... /<subfolder>/
<your_kernel_filename>.cl

The correct way to specify the include path is as follows:

aoc -I <drive>\<folder>\ ... \<subfolder>
<your_kernel_filename>.cl

or

aoc -I <drive>/<folder>/ ... /<subfolder>
<your_kernel_filename>.cl

Specifying the Name of an AOC Output File (-o <filename>)
To specify the name of an Altera Offline Compiler Object file (.aoco) or an Altera Offline Compiler
Executable file (.aocx), include the -o <filename> option in your aoc command.

• If you implement the multistep compilation flow, specify the names of the output files in the following
manner:
1. To specify the name of the .aoco file that the Altera Offline Compiler (AOC) creates during an

intermediate compilation step, invoke the aoc -c -o <your_object_filename>.aoco
<your kernel_filename>.cl command.

2. To specify the name of the .aocx file that the AOC creates during the final compilation step, invoke
the aoc -o <your_executable_filename>.aocx
<your_object_filename>.aoco command.

• If you implement the one-step compilation flow, specify the name of the .aocx file by invoking the aoc
-o <your_executable_filename>.aocx <your_kernel_filename>.cl command.

Compiling a Kernel for a Specific FPGA Board (--board <board_name>)
To compile your OpenCL kernel for a specific FPGA board, include the --board <board_name>
option in the aoc command.

OCL002-15.0.0
2015.05.04 Specifying the Name of an AOC Output File (-o <filename>) 1-77

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you begin

To compile a kernel for a specific board in your Custom Platform, you must first set the environment
variable AOCL_BOARD_PACKAGE_ROOT to point to the location of your Custom Platform.

Attention: If you want to program multiple FPGA devices, you may select board types that are available
in the same Custom Platform because AOCL_BOARD_PACKAGE_ROOT only points to the
location of one Custom Platform.

When you compile your kernel by including the --board <board_name> option in the aoc
command, the Altera Offline Compiler (AOC) defines the preprocessor macro
AOCL_BOARD_<board_name> to be 1, which allows you to compile device-optimized code in your kernel.

1. To obtain the names of the available FPGA boards in your Custom Platform, invoke the aoc --
list-boards command.
For example, the AOC generates the following output:

Board List:
FPGA_board_1

where FPGA_board_1 is the <board_name>.
2. To compile your OpenCL kernel for FPGA_board_1, invoke the aoc --board FPGA_board_1

<your_kernel_filename>.cl command.
The AOC defines the preprocessor macro AOCL_BOARD_FPGA_board_1 to be 1 and compiles kernel
code that targets FPGA_board_1.

Tip: To readily identify compiled kernel files that target a specific FPGA board, Altera
recommends that you rename the kernel binaries by including the -o option in the
aoc command.

To target your kernel to FPGA_board_1 in the one-step compilation flow, invoke
the following command:

aoc --board FPGA_board_1 <your_kernel_filename>.cl -o
<your_executable_filename>_FPGA_board_1.aocx

To target your kernel to FPGA_board_1 in the multistep compilation flow, perform
the following tasks:

1. Invoke the following command to generate the Altera Offline Compiler Object
File (.aoco):

aoc -c --board FPGA_board_1 <your_kernel_filename>.cl
-o <my_object_filename>_FPGA_board_1.aoco

2. Invoke the following command to generate the Altera Offline Compiler
Executable file (.aocx):

aoc --board FPGA_board_1
<your_object_filename>_FPGA_board_1.aoco -o
<your_executable_filename>_FPGA_board_1.aocx

If you have an accelerator board consisting of two FPGAs, each FPGA device has an equivalent
"board" name (for example, board_fpga_1 and board_fpga_2). To target a kernel_1.cl to
board_fpga_1 and a kernel_2.cl to board_fpga_2, invoke the following commands:

aoc --board board_fpga1 kernel_1.cl

1-78 Compiling a Kernel for a Specific FPGA Board (--board <board_name>)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

aoc --board board_fpga2 kernel_2.cl

Related Information
Specifying the Name of an AOC Output File (-o <filename>) on page 1-77

Resolving Hardware Generation Fitting Errors during Kernel Compilation (--high-
effort)

Sometimes, OpenCL kernel compilation fails during the hardware generation stage because the design
fails to meet fitting constraints. In this case, recompile the kernel using the --high-effort option of
the aoc command.

When kernel compilation fails because of a fitting constraint problem, the Altera Offline Compiler (AOC)
displays the following error message:

Error: Kernel fit error, recommend using --high-effort.
Error: Cannot fit kernel(s) on device

• To overcome this problem, recompile your kernel by invoking the following command:
aoc --high-effort <your_kernel_filename>.cl

After you invoke the command, the AOC displays the following message:

High-effort hardware generation selected, compile time may increase signifi-
cantly.

The AOC will make three attempts to recompile your kernel and generate hardware. Modify your kernel
if compilation still fails after the --high-effort attempt.

Defining Preprocessor Macros to Specify Kernel Parameters (-D <macro_name>)
The Altera Offline Compiler (AOC) supports preprocessor macros that allow you to pass macro
definitions and compile code on a conditional basis.

OCL002-15.0.0
2015.05.04 Resolving Hardware Generation Fitting Errors during Kernel Compilation (--high-

effort)
1-79

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To pass a preprocessor macro definition to the AOC, invoke the aoc -D <macro_name>
<kernel_filename>.cl command.

• To override the existing value of a defined preprocessor macro, invoke the aoc -D
<marco_name>=<value> <kernel_filename>.cl command.
Consider the following code snippet for the kernel sum:

#ifndef UNROLL_FACTOR
 #define UNROLL_FACTOR 1
#endif

__kernel void sum (__global const int * restrict x,
 __global int * restrict sum)
{
 int accum = 0;

 #pragma unroll UNROLL_FACTOR
 for(size_t i = 0; i < 4; i++)
 {
 accum += x[i + get_global_id(0) * 4];
 }
 sum[get_global_id(0)] = accum;
}

To override the UNROLL_FACTOR of 1 and set it to 4, invoke the aoc -D UNROLL_FACTOR=4
sum.cl command. Invoking this command is equivalent to replacing the line #define
UNROLL_FACTOR 1 with #define UNROLL_FACTOR 4 in the sum kernel source code.

• To use preprocessor macros to control how the AOC optimizes your kernel without modifying your
kernel source code, invoke the aoc -o <hardware_filename>.aocx -D
<macro_name>=<value> <kernel_filename>.cl

Where:

-o is the AOC option you use to specify the name of the Altera Offline Compiler Executable file
(.aocx) that the AOC generates.

<hardware_filename> is the name of the .aocx file that the AOC generates using the preprocessor
macro value you specify.

Tip: To preserve the results from both compilations on your file system, compile your kernels as
separate binaries by using the -o flag of the aoc command.

For example, if you want to compile the same kernel multiple times with required work-group sizes of
64 and 128, you can define a WORK_GROUP_SIZE preprocessor macro for the kernel attribute
reqd_work_group_size, as shown below:

__attribute__((reqd_work_group_size(WORK_GROUP_SIZE,1,1)))
__kernel void myKernel(...)
for (size_t i = 0; i < 1024; i++)
{
 // statements
}

Compile the kernel multiple times by typing the following commands:

aoc –o myKernel_64.aocx –D WORK_GROUP_SIZE=64 myKernel.cl

aoc –o myKernel_128.aocx –D WORK_GROUP_SIZE=128 myKernel.cl

1-80 Defining Preprocessor Macros to Specify Kernel Parameters (-D <macro_name>)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Generating Compilation Progress Report (-v)
To direct the Altera Offline Compiler (AOC) to report on the progress of a compilation, include the -v
option in your aoc command.

• To direct the AOC to report on the progress of a full compilation, invoke the aoc -v
<your_kernel_filename>.cl command.
The AOC generates a compilation progress report similar to the following example:

aoc: Environment checks are completed successfully.
You are now compiling the full flow!!
aoc: Selected target board s5_net
aoc: Running OpenCL parser....
aoc: OpenCL parser completed successfully.
aoc: Compiling....
aoc: Linking with IP library ...
aoc: First stage compilation completed successfully.
aoc: Setting up project for CvP revision flow....
aoc: Hardware generation completed successfully.

• To direct the AOC to report on the progress of an intermediate compilation step that does not build
hardware, invoke the aoc -c -v <your_kernel_filename>.cl command.
The AOC generates a compilation progress report similar to the following example:

aoc: Environment checks are completed successfully.
aoc: Selected target board s5_net
aoc: Running OpenCL parser....
aoc: OpenCL parser completed successfully.
aoc: Compiling....
aoc: Linking with IP library ...
aoc: First stage compilation completed successfully.
aoc: To compile this project, run "aoc <your_kernel_filename>.aoco"

• To direct the AOC to report on the progress of a compilation for emulation, invoke the aoc -
march=emulator -v <your_kernel_filename>.cl command.
The AOC generates a compilation progress report similar to the following example:

aoc: Environment checks are completed successfully.
You are now compiling the full flow!!
aoc: Selected target board s5_net
aoc: Running OpenCL parser....ex
aoc: OpenCL parser completed successfully.
aoc: Compiling for Emulation
aoc: Emulator Compilation completed successfully.
Emulator flow is successful.

Related Information

• Compiling Your Kernel without Building Hardware (-c) on page 1-76
• Emulating and Debugging Your OpenCL Kernel on page 1-84

Displaying the Estimated Resource Usage Summary On-Screen (--report)
By default, the Altera Offline Compiler (AOC) estimates hardware resource usage during compilation .
The AOC factors in the usage of external interfaces such as PCI Express (PCIe), memory controller, and
direct memory access (DMA) engine in its calculations. During kernel compilation, the AOC generates an
estimated resource usage summary in the <your_kernel_filename>.log file within the <your_kernel_filename>
directory. To review the estimated resource usage summary on-screen, include the --report option in
the aoc command.

OCL002-15.0.0
2015.05.04 Generating Compilation Progress Report (-v) 1-81

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can review the estimated resource usage summary without performing a full compilation. To review
the summary on-screen prior to generating the hardware configuration file, include the -c option in your
aoc command.

• At a command prompt, invoke the aoc -c <your_kernel_filename>.cl --report
command.
The AOC generates an output similar to the following example:

aoc: Selected target board s5_ref

+--+
; Estimated Resource Usage Summary ;
+--+---------------------------+
; Resource + Usage ;
+--+---------------------------+
; Logic utilization ; 13% ;
; Dedicated logic registers ; 5% ;
; Memory blocks ; 12% ;
; DSP blocks ; 0% ;
+--+---------------------------;

Related Information
Compiling Your Kernel without Building Hardware (-c) on page 1-76

Suppressing AOC Warning Messages (-W)
To suppress all warning messages, include the -W option in your aoc command.

• At a command prompt, invoke the aoc -W <your_kernel_filename>.cl command.

Converting AOC Warning Messages into Error Messages (-Werror)
To convert all warning messages into error messages, include the -Werror option in your aoc
command.

• At a command prompt, invoke the aoc -Werror <your_kernel_filename>.cl command.

Adding Source References to Optimization Reports (-g)
Include the -g option in your aoc command to add source references to compilation reports.

When you compile a single work-item kernel, the Altera Offline Compiler (AOC) automatically generates
an optimization report in the <your_kernel_filename>.log file in the <your_kernel_filename> subfolder or
subdirectory. Adding source information such as line numbers and variable names in the optimization
report allows you to pinpoint the locations of loop-carried dependencies in your kernel source code.

• To add source information in the optimization report, invoke the aoc -g
<your_kernel_filename>.cl command.

Disabling Burst-Interleaving of Global Memory (--no-interleaving
<global_memory_type>)

The Altera Offline Compiler (AOC) cannot burst-interleave global memory across different memory
types. You can disable burst-interleaving for all global memory banks of the same type and manage them
manually by including the --no-interleaving <global_memory_type> option in your aoc
command. Manual partitioning of memory buffers overrides the default burst-interleaved configuration
of global memory.

1-82 Suppressing AOC Warning Messages (-W)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: The --no-interleaving option requires a global memory type parameter. If you do not
specify a memory type, the AOC issues an error message.

• To direct the AOC to disable burst-interleaving for the default global memory, invoke the aoc
<your_kernel_filename>.cl --no-interleaving default command.
Your accelerator board might include multiple global memory types. To identify the default global
memory type, refer to board vendor's documentation for your Custom Platform.

• For a heterogeneous memory system, to direct the AOC to disable burst-interleaving of a specific
global memory type, perform the following tasks:
1. Consult the board_spec.xml file of your Custom Platform for the names of the available global

memory types (for example, DDR and quad data rate (QDR)).
2. To disable burst-interleaving for one of the memory types (for example, DDR), invoke the aoc

<your_kernel_filename>.cl --no-interleaving DDR command.
The AOC enables manual partitioning for the DDR memory bank, and configures the other
memory bank in a burst-interleaved fashion.

3. To disable burst-interleaving for more than one type of global memory buffers, include a --no-
interleaving <global_memory_type> option for each global memory type.
For example, to disable burst-interleaving for both DDR and QDR, invoke the aoc
<your_kernel_filename>.cl --no-interleaving DDR --no-interleaving
QDR command.

Caution: Do not pass a buffer as kernel arguments that associate it with multiple memory technologies.

Configuring Constant Memory Cache Size (--const-cache-bytes <N>)
Include the --const-cache-bytes <N> flag in your aoc command to direct the Altera Offline
Compiler (AOC) to configure the constant memory cache size (rounded up to the closest power of 2).

The default constant cache size is 16 kilobytes (kB).

• To configure the constant memory cache size, invoke the aoc --const-cache-bytes <N>
<your_kernel_filename>.cl command, where <N> is the cache size in bytes.
For example, to configure a 32 kB cache during compilation of the OpenCL kernel myKernel.cl, invoke
the aoc --const-cache-bytes 32768 myKernel.cl command.

Note: This argument has no effect if none of the kernels uses the __constant address space.

Relaxing the Order of Floating-Point Operations (--fp-relaxed)
Include the --fp-relaxed option in your aoc command to direct the Altera Offline Compiler (AOC)
to relax the order of arithmetic floating-point operations using a balanced tree hardware implementation.

Implementing a balanced tree structure leads to more efficient hardware at the expense of numerical
variation in results.

Caution: To implement this optimization control, your program must be able to tolerate small variations
in the floating-point results.

• To direct the AOC to execute a balanced tree hardware implementation, invoke the aoc --fp-
relaxed <your_kernel_filename>.cl command.

OCL002-15.0.0
2015.05.04 Configuring Constant Memory Cache Size (--const-cache-bytes <N>) 1-83

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Reducing Floating-Point Rounding Operations (--fpc)
Include the --fpc option in your aoc command to direct the Altera Offline Compiler (AOC) to remove
intermediary floating-point rounding operations and conversions whenever possible, and to carry
additional bits to maintain precision.

Implementing this optimization control also changes the rounding mode. It rounds towards zero only at
the end of a chain of floating-point arithmetic operations (that is, multiplications, additions, and subtrac‐
tions).

• To direct the AOC to reduce the number of rounding operations, invoke the aoc --fpc
<your_kernel_filename>.cl command.

Emulating and Debugging Your OpenCL Kernel
Use the Altera SDK for OpenCL (AOCL) emulator to assess the functionality of your kernel.

The AOCL Emulator generates an Altera Offline Compiler Executable file (.aocx) that executes on x86-64
Windows or Linux host. This feature allows you to emulate the functionality of your kernel and iterate on
your design without executing it on the actual FPGA each time. For Linux platform, you can also use the
Emulator to perform functional debug.

Caution: Emulation does not support cross-compilation to ARM processor. To run emulation on a
design that targets an SoC, emulate on a non-SoC board (for example, ALTERAOCLSDKROOT/
board/s5_ref). When you are satisfied with the emulation results, you may target your design on
an SoC board for subsequent optimization steps.

1. Modifying Channels Kernel Code for Emulation on page 1-84
To emulate applications with a channel that reads or writes to an I/O channel, modify your kernel to
add a read or write channel that replaces the I/O channel, and make the source code that uses it is
conditional.

2. Compiling a Kernel for Emulation (-march=emulator) on page 1-86
To compile an OpenCL kernel for emulation, include the -march=emulator option in your aoc
command.

3. Emulating Your OpenCL Kernel on page 1-86
To emulate your OpenCL kernel, run the emulation Altera Offline Executable file (.aocx) on the
platform on which you build your kernel.

4. Debugging Your OpenCL Kernel on Linux on page 1-87
For Linux systems, you can direct the Altera SDK for OpenCL (AOCL) Emulator to run your OpenCL
kernel in the debugger and debug it functionally as part of the host application.

5. Limitations of the AOCL Emulator on page 1-88
The Altera SDK for OpenCL (AOCL) Emulator feature has some limitations.

Modifying Channels Kernel Code for Emulation
The Emulator emulates kernel-to-kernel channels. It does not support the emulation of I/O channels that
interface with input or output features of your FPGA board. To emulate applications with a channel that
reads or writes to an I/O channel, modify your kernel to add a read or write channel that replaces the I/O
channel, and make the source code that uses it is conditional.

1-84 Reducing Floating-Point Rounding Operations (--fpc)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Before you begin

The Altera SDK for OpenCL (AOCL) does not set the EMULATOR macro definition. You must set it
manually either from the command line or in the source code.

Consider the following kernel example:

channel unlong4 inchannel __attribute__((io("eth0_in")));

__kernel void send (int size)
{
 for (unsigned i=0; i < size; i++)
 {
 ulong4 data = read_channel_altera(inchannel);
 //statements
 }
}

To enable the Emulator to emulate a kernel with a channel that interfaces with an I/O channel, perform
the following tasks:

1. Modify the kernel code in one of the following manner:

• Add a matching write_channel_altera call such as the one shown below.

#ifdef EMULATOR

__kernel void io_in (__global char * restrict arr, int size)
{
 for (unsigned i=0; i<size; i++)
 {
 ulong4 data = arr[i]; //arr[i] being an alternate data source
 write_channel_altera(inchannel, data);
 }
}
#endif

• Replace the I/O channel access with a memory access, as shown below:

__kernel void send (int size)
{
 for (unsigned i=0; i < size; i++)
 {
 #ifndef EMULATOR

 ulong4 data = read_channel_altera(inchannel);

 #else
 ulong4 data = arr[i]; //arr[i] being an alternate data source

 #endif
 //statements
 }
}

2. Modify the host application to create and start this conditional kernel during emulation.

Related Information
Implementing I/O Channels Using the io Channels Attribute on page 1-26

OCL002-15.0.0
2015.05.04 Modifying Channels Kernel Code for Emulation 1-85

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiling a Kernel for Emulation (-march=emulator)
To compile an OpenCL kernel for emulation, include the -march=emulator option in your aoc
command.

Before you begin

• Before you perform kernel emulation, ensure that you install a Custom Platform from your board
vendor for your FPGA accelerator boards. Ensure that the environment variable
AOCL_BOARD_PACKAGE_ROOT points to the location of the Custom Platform. Alternatively, if
your kernel targets a board from an Altera SDK for OpenCL (AOCL) Reference Platform, set
AOCL_BOARD_PACKAGE_ROOT to the path of the Reference Platform (for example, ALTERAOCLSDK‐
ROOT/board/<Reference_Platform_name>).

• To emulate your kernels on Windows systems, you need the Microsoft linker and additional compila‐
tion time libraries. Verify that the PATH environment variable setting includes all the paths described
in Setting the Environment Variables for Windows in the Altera SDK for OpenCL Getting Started Guide.

The PATH environment variable setting must include the path to the LINK.EXE file in Microsoft Visual
Studio.

• Ensure that your LIB environment variable setting includes the path to the Microsoft compilation time
libraries.

The compilation time libraries are available with Microsoft Visual Studio.
• Verify that the LD_LIBRARY_PATH environment variable setting includes all the paths described in

Setting the Environment Variables for Linux in the Altera SDK for OpenCL Getting Started Guide.

• To create kernel programs executable on x86-64 host systems, invoke the aoc -march=emulator
<your_kernel_filename>.cl command.

• To compile a kernel for emulation that targets a specific board, invoke the aoc -march=emulator
--board <board_name> <your_kernel_filename>.cl command.

• For Linux systems, to direct the Altera Offline Compiler (AOC) to enable symbolic debug support for
the debugger, invoke the aoc -march=emulator -g <your_kernel_filename>.cl
command.
Enabling AOC debug support allows you to pinpoint the origins of functional errors in your kernel
source code.

Related Information

• Adding Source References to Optimization Reports (-g) on page 1-82
• Compiling a Kernel for a Specific FPGA Board (--board <board_name>) on page 1-77
• Setting the Environment Variables for Windows
• Setting the Environment Variables for Linux

Emulating Your OpenCL Kernel
To emulate your OpenCL kernel, run the emulation Altera Offline Executable file (.aocx) on the platform
on which you build your kernel.

1-86 Compiling a Kernel for Emulation (-march=emulator)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/mwh1391807309901/ewa1416586552764/en-us
https://documentation.altera.com/#/link/mwh1391807309901/ewa1416591141201/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To emulate your kernel, perform the following steps:

1. Run the utility command aocl linkflags to find out which libraries are necessary for building a
host application. The software lists the libraries for both emulation and nonemulation compilation
flows.

2. Build a host application and link it to the libraries from Step 1.
3. Ensure that the <your_kernel_filename>.aocx file is in a location where the host can find it, preferably the

current working directory.
4. To run the host application for emulation, invoke the env

CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<number_of_devices> <host_applica-
tion_filename> command.
This command specifies the number of identical emulation devices that the Emulator needs to provide.

5. If you change your host or kernel program and you want to test it, only recompile the modified host or
kernel program and then rerun emulation.

Each invocation of the emulated kernel creates a shared library copy called <process_ID>-libkernel.so in a
default temporary directory, where <process_ID> is a unique numerical value assigned to each emulation
run. You may override the default directory by setting the TMP or TEMP environment variable on
Windows, or setting TMPDIR on Linux.

Related Information
Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or linkflags) on
page 1-68

Debugging Your OpenCL Kernel on Linux
For Linux systems, you can direct the Altera SDK for OpenCL (AOCL) Emulator to run your OpenCL
kernel in the debugger and debug it functionally as part of the host application. The debugging feature
allows you to debug the host and the kernel seamlessly. You can step through your code, set breakpoints,
and examine and set variables.

Prior to debugging your kernel, you must perform the following tasks:

1. During program execution, the debugger cannot step from the host code to the kernel code. You must
set a breakpoint before the actual kernel invocation by adding these lines:

a. break <your_kernel>

This line sets a breakpoint before the kernel.
b. continue

If you have not begun debugging your host, then type start instead.
2. The kernel is loaded as a shared library immediately before the host loads the kernels. The debugger

does not recognize the kernel names until the host actually loads the kernel functions. As a result, the
debugger will generate the following warning for the breakpoint you set before the execution of the
first kernel:

Function "<your_kernel>" not defined.

Make breakpoint pending on future shared library load? (y or [n])

Answer y. After initial program execution, the debugger will recognize the function and variable
names, and line number references for the duration of the session.

OCL002-15.0.0
2015.05.04 Debugging Your OpenCL Kernel on Linux 1-87

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Caution: The Emulator uses the OpenCL runtime to report some error details. For emulation, the
runtime uses a default print out callback when you initialize a context via the clCreateContext
function.

Note: Kernel debugging is independent of host debugging. Debug your host code in existing tools such as
Microsoft Visual Studio Debugger for Windows and GNU Project Debugger (GDB) for Linux.

To compile your OpenCL kernel for debugging, perform the following steps:

1. To generate an Altera Offline Compiler Executable file (.aocx) for debugging that targets a specific
accelerator board, invoke the aoc -march=emulator -g <your_kernel_filename>.cl
--board <board_name> command.

Attention: Specify the name of your FPGA board when you run your host application. To verify the
name of the target board for which you compile your kernel, invoke the aoc -
march=emulator -g -v <your_kernel_filename>.cl command. The AOC
will display the name of the target FPGA board.

2. Run the utility command aocl linkflags to find out the additional libraries necessary to build a
host application that supports kernel debugging.

3. Build a host application and link it to the libraries from Step 2.
4. Ensure that the <your_kernel_filename>.aocx file is in a location where the host can find it, preferably the

current working directory.
5. To run the application, invoke the command env

CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<number_of_devices> gdb --args
<your_host_program_name>, where <number_of_devices> is the number of identical emulation
devices that the Emulator needs to provide.

6. If you change your host or kernel program and you want to test it, only recompile the modified host or
kernel program and then rerun the debugger.

Related Information

• Adding Source References to Optimization Reports (-g) on page 1-82
• Compiling a Kernel for a Specific FPGA Board (--board <board_name>) on page 1-77
• Generating Compilation Progress Report (-v) on page 1-81
• Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or linkflags)

on page 1-68

Limitations of the AOCL Emulator
The Altera SDK for OpenCL (AOCL) Emulator feature has some limitations.

1. Execution model

The Emulator supports the same compilation modes as the FPGA variant. As a result, you must call
the clCreateProgramBinary function to create cl_program objects for emulation.

2. Concurrent execution

Modeling of concurrent kernel executions has limitations. During execution, the Emulator does not
actually run interacting work-items in parallel. Therefore, some concurrent execution behaviors, such
as different kernels accessing global memory without a barrier for synchronization, might generate
inconsistent emulation results between executions.

1-88 Limitations of the AOCL Emulator
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Kernel performance

The Altera Offline Compiler Executable file (.aocx) that you generate for emulation does not include
any optimizations. Therefore, it might execute at a significantly slower speed than what an optimized
kernel might achieve. In addition, because the Emulator does not implement actual parallel execution,
the execution time multiplies with the number of work-items that the kernel executes.

4. The Emulator executes the host runtime and the kernels in the same address space. Certain pointer or
array usages in your host application might cause the kernel program to fail, and vice versa. Example
usages include indexing external allocated memory and writing to random pointers. You may use
memory leak detection tools such as Valgrind to analyze your program. However, the host might
encounter a fatal error caused by out-of-bounds write operations in your kernel, and vice versa.

5. Emulation of channel behavior has limitations, especially for conditional channel operations where the
kernel does not call the channel operation in every loop iteration. In these cases, the Emulator might
execute channel operations in a different order than on the hardware.

Profiling Your OpenCL Kernel
The Altera SDK for OpenCL (AOCL) Profiler measures and reports performance data collected during
OpenCL kernel execution on the FPGA. The AOCL Profiler relies on performance counters to gather
kernel performance data. You can then review performance data in the profiler GUI.

1. Instrumenting the Kernel Pipeline with Performance Counters (--profile) on page 1-89
To instrument the OpenCL kernel pipeline with performance counters, include the --profile
option of the aoc command when you compile your kernel.

2. Launching the AOCL Profiler GUI (report) on page 1-90
You can use the Altera SDK for OpenCL (AOCL) Profiler report utility command to launch the
Profiler GUI.

Instrumenting the Kernel Pipeline with Performance Counters (--profile)
To instrument the OpenCL kernel pipeline with performance counters, include the --profile option
of the aoc command when you compile your kernel.

Attention: Instrumenting the Verilog code with performance counters increases hardware resource
utilization (that is, increases FPGA area usage) and typically decreases performance.

• To instrument the Verilog code in the <your_kernel_filename>.aocx Altera Offline Compiler Executable
file with performance counters, invoke the aoc --profile <your_kernel_filename>.cl
command.

• Run your host application from a local disk to execute the <your_kernel_filename>.aocx Altera Offline
Compiler Executable file on your FPGA. During kernel execution, the performance counters
throughout the kernel pipeline collects profile information. The host saves the information in a
profile.mon monitor description file in your current working directory.

Caution: Because of slow network disk accesses, running the host application from a networked
directory might introduce delays between kernel executions. These delays might increase the
overall execution time of the host application. In addition, they might introduce delays
between kernel launches while the runtime stores profile output data to disk.

OCL002-15.0.0
2015.05.04 Profiling Your OpenCL Kernel 1-89

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Launching the AOCL Profiler GUI (report)
You can use the Altera SDK for OpenCL (AOCL) Profiler report utility command to launch the
Profiler GUI. The Profiler GUI allows you to view kernel performance data statistics that the AOCL
Profiler collects during kernel execution.

The AOCL Profiler stores performance data in a profile.mon file in your current working directory.

1. To launch the Profiler GUI, invoke the aocl report <your_kernel_filename>.aocx
profile.mon utility command.

Conclusion
You have now familiarized yourself with the Altera SDK for OpenCL design flow and the tools available
to help you achieve your design goals. For more information on the support statuses of the OpenCL
application programming interfaces (APIs) and programming language, refer to Appendix A: Support
Statuses of OpenCL Features.

For in-depth information on optimizing your OpenCL kernel to maximize performance, refer to the
Altera SDK for OpenCL Best Practices Guide.

Related Information
Altera SDK for OpenCL Best Practices Guide

1-90 Launching the AOCL Profiler GUI (report)
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History

Table 1-3: Document Revision History of the Altera SDK for OpenCL Programming Guide

Date Version Changes

May 2015 15.0.0 • In Guidelines for Naming the Kernel, added entry that advised against naming
an OpenCL kernel kernel.cl.

• In Instrumenting the Kernel Pipeline with Performance Counters (--profile),
specified that you should run the host application from a local disk to avoid
potential delays caused by slow network disk accesses.

• In Emulating and Debugging Your OpenCL Kernel, modified Caution note to
indicate that you must emulate a design targeting an SoC on a non-SoC
board.

• In Emulating Your OpenCL Kernel, updated command to run the host
application and added instruction for overriding default temporary directory
containing <process_ID>-libkernel.so.

• Introduced the --high-effort aoc command flag in Resolving
Hardware Generation Fitting Errors during Kernel Compilation.

• In Enabling Double Precision Floating-Point Operations, introduced the
OPENCL EXTENSION pragma for enabling double precision floating-point
operations.

• Introduced OpenCL pipes support. Refer to Implementing OpenCL Pipes (and
subsequent subtopics) and Creating a Pipe Object in Your Host Application
for more information.

• In AOCL Channels Extension: Restrictions, added code examples to
demonstrate how to statically index into arrays of channel IDs.

• In Multiple Host Threads, added recommendation for synchronizing OpenCL
host function calls in a multi-threaded host application.

• Introduced ICD and ACD support. Refer to Linking Your Host Application to
the Khronos ICD Loader Library for more information.

• Introduced clGetBoardExtenstionFunctionAddressAltera for referencing
user-accessible functions. Refer to Accessing Custom Platform-Specific
Functions for more information.

OCL002-15.0.0
2015.05.04 Document Revision History 1-91

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December
2014

14.1.0 • Reorganized information flow. Information is now presented based on the
tasks you might perform using the Altera SDK for OpenCL (AOCL) or the
Altera RTE for OpenCL.

• Removed information pertaining to the --util <N> and -O3 Altera
Offline Compiler (AOC) options.

• Added the following information on PLDA QuickUDP IP core licensing in
Compiling Your OpenCL Kernel:

1. A PLDA QuickUDP IP core license is required for the Stratix V Network
Reference Platform or a Custom Platform that uses the QuickUDP IP
core.

2. Improper installation of the QuickUDP IP core licence causes compilation
to fail with an error message that refers to the QuickTCP IP core.

• Added reminder that conditionally shifting a large shift register is not
recommended.

• Removed the Emulating Systems with Multiple Devices section. A new env
CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<number_of_
devices> command is now available for emulating multiple devices.

• Removed language support limitation from the Limitations of the AOCL
Emulator section.

1-92 Document Revision History
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

June 2014 14.0.0 • Removed the --estimate-throughput and --sw-dimm-
partition AOC options

• Added the -march=emulator, -g, --big-endian, and --profile
AOC options

• --no-interleaving needs <global_memory_type> argument
• -fp-relaxed=true is now --fp-relaxed
• -fpc=true is now --fpc
• For non-SoC devices, aocl diagnostic is now aocl diagnose and

aocl diagnose <device_name>
• program and flash need <device_name> arguments
• Added Identifying the Device Name of Your FPGA Board
• Added AOCL Profiler Utility
• Added AOCL Channels Extension and associated subsections
• Added Attributes for Channels
• Added Match Data Layouts of Host and Kernel Structure Data Types
• Added Register Inference and Shift Register Inference
• Added Channels and Multiple Command Queues
• Added Shared Memory Accesses for OpenCL Kernels Running on SoCs
• Added Collecting Profile Data During Kernel Execution
• Added Emulate and Debug Your OpenCL Kernel and associated subsections
• Updated AOC Kernel Compilation Flows
• Updated -v
• Updated Host Binary Requirement
• Combined Partitioning Global Memory Accesses and Partitioning Heteroge‐

neous Global Memory Accesses into the section Partitioning Global Memory
Accesses

• Updated AOC Allocation Limits in Appendix A
• Removed max_unroll_loops, max_share_resources, num_share_

resources, and task kernel attributes
• Added packed, and aligned(<N>) kernel attributes

OCL002-15.0.0
2015.05.04 Document Revision History 1-93

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

December
2013

13.1.1 • Removed the section -W and -Werror, and replaced it with two sections: -W
and -Werror.

• Updated the following contents to reflect multiple devices support:

• The figure The AOCL FPGA Programming Flow.
• --list-boards section.
• -board <board_name> section.
• AOCL Utilities for Managing an FPGA Board section.
• Added the subsection Programming Multiple FPGA Devices under FPGA

Programming.

• The following contents were added to reflect heterogeneous global memory
support:

• --no-interleaving section.
• buffer_location kernel attribute under Kernel Pragmas and Attributes.
• Partitioning Heterogeneous Global Memory Accesses section.

• Modified support status designations in Appendix: Support Statuses of
OpenCL Features.

• Removed information on OpenCL programming language restrictions from
the section OpenCL Programming Language Implementation, and presented
the information in a new section titled OpenCL Programming Language
Restrictions.

1-94 Document Revision History
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

Novembe
r 2013

13.1.0 • Reorganized information flow.
• Updated and renamed Altera SDK for OpenCL Compilation Flow to AOCL

FPGA Programming Flow.
• Added figures One-Step AOC Compilation Flow and Two-Step AOC Compila‐

tion Flow.
• Updated the section Contents of the AOCL Version 13.1.
• Removed the following sections:

• OpenCL Kernel Source File Compilation.
• Using the Altera Offline Kernel Compiler.
• Setting Up Your FPGA Board.
• Targeting a Specific FPGA Board.
• Running Your OpenCL Application.
• Consolidating Your Kernel Source Files.
• Aligned Memory Allocation.
• Programming the FPGA Hardware.
• Programming the Flash Memory of an FPGA.

• Updated and renamed Compiling the OpenCL Kernel Source File to AOC
Compilation Flows.

• Renamed Passing File Scope Structures to OpenCL Kernels to Use Structure
Arguments in OpenCL Kernels.

• Updated and renamed Augmenting Your OpenCL Kernel by Specifying Kernel
Attributes and Pragmas to Kernel Pragmas and Attributes.

• Renamed Loading Kernels onto an FPGA to FPGA Programming.
• Consolidated Compiling and Linking Your Host Program, Host Program

Compilation Settings, and Library Paths and Links into a single section.
• Inserted the section Preprocessor Macros.
• Renamed Optimizing Global Memory Accesses to Partitioning Global Memory

Accesses.

OCL002-15.0.0
2015.05.04 Document Revision History 1-95

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

June 2013 13.0 SP1.0 • Added the section Setting Up Your FPGA Board.
• Removed the subsection Specifying a Target FPGA Board under Kernel

Programming Considerations.
• Inserted the subsections Targeting a Specific FPGA Board and Generating

Compilation Reports under Compiling the OpenCL Kernel Source File.
• Renamed File Scope __constant Address Space Qualifier to __constant Address

Space Qualifiers, and inserted the following subsections:

• Function Scope __constant Variables.
• File Scope __constant Variables.
• Points to __constant Parameters from the Host.

• Inserted the subsection Passing File Scope Structures to OpenCL Kernels under
Kernel Programming Considerations.

• Renamed Modifying Your OpenCL Kernel by Specifying Kernel Attributes and
Pragmas to Augmenting Your OpenCL Kernel by Specifying Kernel Attributes
and Pragmas.

• Updated content for the unroll pragma directive in the section Augmenting
Your OpenCL Kernel by Specifying Kernel Attributes and Pragmas.

• Inserted the subsections Out-of-Order Command Queues and Modifying Host
Program for Structure Parameter Conversion under Host Programming
Considerations.

• Updated the sections Loading Kernels onto an FPGA Using clClreateProgram‐
WithBinary and Aligned Memory Allocation.

• Updated flash programming instructions.
• Renamed Optional Extensions in Appendix B to Atomic Functions, and

updated its content.
• Removed Platform Layer and Runtime Implementation from Appendix B.

May 2013 13.0.1 • Explicit memory fence functions are now supported; the entry is removed
from the table OpenCL Programming Language Implementation.

• Updated the section Programming the Flash Memory of an FPGA.
• Added the section Modifying Your OpenCL Kernel by Specifying Kernel

Attributes and Pragmas to introduce kernel attributes and pragmas that can
be implemented to optimize kernel performance.

• Added the section Optimizing Global Memory Accesses to discuss data
partitioning.

• Removed the section Programming the FPGA with the aocl program
Command from Appendix A.

1-96 Document Revision History
OCL002-15.0.0

2015.05.04

Altera Corporation Altera SDK for OpenCL Programming Guide

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Version Changes

May 2013 13.0.0 • Updated compilation flow.
• Updated kernel compiler commands.
• Included Altera SDK for OpenCL Utility commands.
• Added the section OpenCL Programming Considerations.
• Updated flash programming procedure and moved it to Appendix A.
• Included a new clCreateProgramWithBinary FPGA hardware programming

flow.
• Moved the hostless clCreateProgramWithBinary hardware programming

flow to Appendix A under the title Programming the FPGA with the aocl
program Command.

• Moved updated information on allocation limits and OpenCL language
support to Appendix B.

Novembe
r 2012

12.1.0 Initial release.

OCL002-15.0.0
2015.05.04 Document Revision History 1-97

Altera SDK for OpenCL Programming Guide Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Altera%20SDK%20for%20OpenCL%20Programming%20Guide%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Support Statuses of OpenCL Features A
2015.05.04

OCL002-15.0.0 Subscribe Send Feedback

The Altera SDK for OpenCL (AOCL) supports the OpenCL Specification version 1.0. The AOCL host
runtime conforms with the OpenCL platform layer and application programming interface (API), with
clarifications and exceptions.

The following sections outline the support statuses of the OpenCL features described in the OpenCL
Specification version 1.0.

Related Information
OpenCL Specification version 1.0

OpenCL Programming Language Implementation
OpenCL is based on C99 with some limitations. Section 6 of the OpenCL Specification version 1.0
describes the OpenCL C programming language. The Altera SDK for OpenCL (AOCL) conforms with the
OpenCL C programming language with clarifications and exceptions. The table below summarizes the
support statuses of the features in the OpenCL programming language implementation.

Attention: The support status "●" means that the feature is supported, and there might be a clarification
for the supported feature in the Notes column. The support status "○" means that the feature
is supported with exceptions identified in the Notes column. A feature that is not supported
by the AOCL is identified with an "X". OpenCL programming language implementations that
are supported with no additional clarifications are not shown.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are
trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

ISO
9001:2008
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.altera.com/servlets/subscriptions/alert?id=OCL002-15.0.0
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20(OCL002-15.0.0%202015.05.04)%20Support%20Statuses%20of%20OpenCL%20Features%20&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Section Feature Support
Status

Notes

6.1.1

Built-in Scalar Data Types
double precision float ○ Preliminary support for all double precision float

built-in scalar data type. This feature might not
conform with the OpenCL Specification version 1.0.

Currently, the following double precision floating-
point functions conform with the OpenCL Specifica‐
tion version 1.0:

add / subtract / multiply / divide / ceil / floor / rint /
trunc / fabs / fmax / fmin / sqrt / rsqrt / exp / exp2 /
exp10 / log / log2 / log10 / sin / cos / asin / acos

half precision float X Support for scalar addition, subtraction and
multiplication. Support for conversions to and from
single-precision floating point. This feature might
not conform with the OpenCL Specification version
1.0.

6.1.2 Built-in Vector Data Types ○ Preliminary support for vectors with three elements.
Three-element vector support is a supplement to the
OpenCL Specification version 1.0.

6.1.3 Built-in Data Types X
6.1.4 Reserved Data Types X
6.1.5 Alignment of Types ● All scalar and vector types are aligned as required

(vectors with three elements are aligned as if they
had four elements).

6.2.1 Implicit Conversions ● Refer to Section 6.2.6: Usual Arithmetic Conversions
in the OpenCL Specification version 1.2 for an
important clarification of implicit conversions
between scalar and vector types.

6.2.2 Explicit Casts ● The AOCL allows scalar data casts to a vector with a
different element type.

6.5 Address Space Qualifiers ○ Function scope__constant variables are not
supported.

6.6 Image Access Qualifiers X
6.7 Function Qualifiers
6.7.2 Optional Attribute Qualifiers ● Refer to the Altera SDK for OpenCL Best Practices

Guide for tips on using reqd_work_group_size to
improve kernel performance.

The AOCL parses but ignores the vec_type_hint
and work_group_size_hint attribute qualifiers.

A-2 OpenCL Programming Language Implementation
OCL002-15.0.0

2015.05.04

Altera Corporation Support Statuses of OpenCL Features

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section Feature Support
Status

Notes

6.9

Preprocessor Directives and Macros

#pragma directive: #pragma
unroll

● The Altera Offline Compiler (AOC) supports only
#pragma unroll. You may assign an integer
argument to the unroll directive to control the extent
of loop unrolling.

For example, #pragma unroll 4 unrolls four
iterations of a loop.

By default, an unroll directive with no unroll factor
causes the AOC to attempt to unroll the loop fully.

Refer to the Altera SDK for OpenCL Best Practices
Guide for tips on using #pragma unroll to improve
kernel performance.

__ENDIAN_LITTLE__ defined
to be value 1

● The target FPGA is little-endian.

__IMAGE_SUPPORT__ X __IMAGE_SUPPORT__ is undefined; the AOCL does
not support images.

6.10 Attribute Qualifiers—The AOC parses attribute qualifiers as follows:
6.10.2 Specifying Attributes of

Functions—Structure-type
kernel arguments

X Convert structure arguments to a pointer to a
structure in global memory.

6.10.3 Specifying Attributes of
Variables—endian

X

6.10.4 Specifying Attributes of Blocks
and Control-Flow-Statements

X

6.10.5 Extending Attribute
Qualifiers

● The AOC can parse attributes on various syntactic
structures. It reserves some attribute names for its
own internal use.

Refer to the Altera SDK for OpenCL Best Practices
Guide for tips on how to optimize kernel perform‐
ance using these kernel attributes.

6.11.2

Math Functions
built-in math functions ○ Preliminary support for built-in math functions for

double precision float. These functions might not
conform with the OpenCL Specification version 1.0.

built-in half_ and native_
math functions

○ Preliminary support for built-in half_ and native_
math functions for double precision float. These
functions might not conform with the OpenCL
Specification version 1.0.

OCL002-15.0.0
2015.05.04 OpenCL Programming Language Implementation A-3

Support Statuses of OpenCL Features Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section Feature Support
Status

Notes

6.11.5 Geometric Functions ○ Preliminary support for built-in geometric functions
for double precision float. These functions might not
conform with the OpenCL Specification version 1.0.

Refer to Argument Types for Built-in Geometric
Functions for a list of built-in geometric functions
supported by the AOCL.

6.11.8 Image Read and Write
Functions

X

6.11.9 Synchronization Functions—
the barrier synchronization
function

○ Clarifications and exceptions:

If a kernel specifies the reqd_work_group_size or
max_work_group_size attribute, barrier supports
the corresponding number of work-items.

If neither attribute is specified, a barrier is instanti‐
ated with a default limit of 256 work-items.

The work-item limit is the maximum supported
work-group size for the kernel; this limit is enforced
by the runtime.

6.11.11 Async Copies from Global to
Local Memory, Local to
Global Memory, and Prefetch

○ The implementation is naive:

Work-item (0,0,0) performs the copy and the wait_
group_events is implemented as a barrier.

If a kernel specifies the reqd_work_group_size or
max_work_group_size attribute, wait_group_
events supports the corresponding number of
work-items.

If neither attribute is specified, wait_group_events
is instantiated with a default limit of 256 work-items.

Additional built-in vector functions from the OpenCL Specification version 1.2 Section 6.12.12: Miscella‐
neous Vector Functions:

vec_step ●

shuffle ●

shuffle2 ●

OpenCL Specification version 1.2
Section 6.12.13: printf

○ Preliminary support. This feature might not conform
with the OpenCL Specification version 1.0. See
below for details.

A-4 OpenCL Programming Language Implementation
OCL002-15.0.0

2015.05.04

Altera Corporation Support Statuses of OpenCL Features

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section Feature Support
Status

Notes

The printf function in OpenCL has syntax and features similar to the printf function in C99, with a few
exceptions. For details, refer to the OpenCL Specification version 1.2.

To use a printf function, there are no requirements for special compilation steps, buffers, or flags. You
can compile kernels that include printf instructions with the usual aoc command.

During kernel execution, printf data is stored in a global printf buffer that the AOC allocates automati‐
cally. The size of this buffer is 64 kB; the total size of data arguments to a printf call should not exceed
this size. When kernel execution completes, the contents of the printf buffer are printed to standard
output.

Buffer overflows are handled seamlessly; printf instructions can be executed an unlimited number of
times. However, if the printf buffer overflows, kernel pipeline execution stalls until the host reads the
buffer and prints the buffer contents.

Because printf functions store their data into a global memory buffer, the performance of your kernel
will drop if it includes such functions.

There are no usage limitations on printf functions. You can use printf instructions inside if-then-else
statements, loops, etc. A kernel can contain multiple printf instructions executed by multiple work-
items.

Format string arguments and literal string arguments of printf calls are transferred to the host system
from the FPGA using a special memory region. This memory region can overflow if the total size of the
printf string arguments is large (3000 characters or less is usually safe in a typical OpenCL application).
If there is an overflow, the error message cannot parse auto-discovery string at byte offset
4096 is printed during host program execution.

Output from printf is never intermixed, even though work-items may execute printf functions
concurrently. However, the order of concurrent printf execution is not guaranteed. In other words,
printf outputs might not appear in program order if the printf instructions are in concurrent
datapaths.

Related Information

• Altera SDK for OpenCL Best Practices Guide
• OpenCL Specification version 1.2
• Argument Types for Built-in Geometric Functions on page 2-8

OpenCL Programming Language Restrictions
The Altera SDK for OpenCL (AOCL) conforms with the OpenCL Specification restrictions on specific
programming language features, as described in section 6.8 of the OpenCL Specification version 1.0.

Warning: The Altera Offline Compiler (AOC) does not enforce restrictions on certain disallowed
programming language features. Ensure that your kernel code does not contain features that
the OpenCL Specification version 1.0 does not support.

OCL002-15.0.0
2015.05.04 OpenCL Programming Language Restrictions A-5

Support Statuses of OpenCL Features Altera Corporation

Send Feedback

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Feature Support
Status

Notes

pointer assignments between
address spaces

● Arguments to __kernel functions declared in a program
that are pointers must be declared with the __global, __
constant, or __local qualifier.

The AOC enforces the OpenCL restriction against
pointer assignments between address spaces.

pointers to functions X The AOC does not enforce this restriction.
structure-type kernel arguments X Convert structure arguments to a pointer to a structure in

global memory.
images X The AOCL does not support images.
bit fields X The AOC does not enforce this restriction.
variable length arrays and
structures

X

variable macros and functions X
C99 headers X
extern, static, auto, and
register storage-class specifiers

X The AOC does not enforce this restriction.

predefined identifiers ● Use the -D option of the aoc command to provide
preprocessor symbol definitions in your kernel code.

recursion X The AOC does not enforce this restriction.
irreducible control flow X The AOC does not enforce this restriction.
writes to memory of built-in types
less than 32 bits in size

○ Store operations less than 32 bits in size might result in
lower memory performance.

declaration of arguments to __
kernel functions of type event_t

X The AOC does not enforce this restriction.

elements of a struct or a union
belonging to different address
spaces

X The AOC does not enforce this restriction.

Warning: Assigning elements of a struct or a
union to different address spaces might
cause a fatal error.

OpenCL C Programming Language Restrictions for Pipes
The Altera SDK for OpenCL (AOCL) offers preliminary support of OpenCL pipes.The following table
lists the support statuses of pipe-specific OpenCL C programming language implementations, as
described in the OpenCL Specification version 2.0

Attention: The support status "●" means that the feature is supported. There might be a clarification for
the supported feature in the Notes column. A feature that is not supported by the AOCL is
identified with an "X".

A-6 OpenCL C Programming Language Restrictions for Pipes
OCL002-15.0.0

2015.05.04

Altera Corporation Support Statuses of OpenCL Features

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table A-1: Support Statuses of Built-in Pipe Read and Write Functions

Details of the built-in pipe read and write functions are available in section 6.13.16.2 of the OpenCL Specification
version 2.0.

Function Support Status

int read_pipe (pipe gentype p, gentype *ptr) ●

int write_pipe (pipe gentype p, const gentype *ptr) ●

int read_pipe (pipe gentype p, reserve_id_t reserve_id, uint index,

gentype *ptr)

X

int write_pipe (pipe gentype p, reserve_id_t reserve_id, uint

index, const gentype *ptr)

X

reserve_id_t reserve_read_pipe (pipe gentype p, uint num_packets)

reserve_id_t reserve_write_pipe (pipe gentype p, uint num_packets)

X

void commit_read_pipe (pipe gentype p, reserve_id_t reserve_id)

void commit_write_pipe (pipe gentype p, reserve_id_t reserve_id)

X

bool is_valid_reserve_id (reserve_id_t reserve_id) X

Table A-2: Support Statuses of Built-in Work-Group Pipe Read and Write Functions

Details of the built-in pipe read and write functions are available in section 6.13.16.3 of the OpenCL Specification
version 2.0.

Function Support Status

reserve_id_t work_group_reserve_read_pipe (pipe gentype p, uint

num_packets)

reserve_id_t work_group_reserve_write_pipe (pipe gentype p, uint

num_packets)

X

void work_group_commit_read_pipe (pipe gentype p, reserve_id_t

reserve_id)

void work_group_commit_write_pipe (pipe gentype p, reserve_id_t

reserve_id)

X

Table A-3: Support Statuses of Built-in Pipe Query Functions

Details of the built-in pipe query functions are available in section 6.13.16.4 of the OpenCL Specification version
2.0.

Function Support Status

uint get_pipe_num_packets (pipe gentype p) X
uint get_pipe_max_packets (pipe gentype p) X

OCL002-15.0.0
2015.05.04 OpenCL C Programming Language Restrictions for Pipes A-7

Support Statuses of OpenCL Features Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Related Information
OpenCL Specification version 2.0 (C Language)

Argument Types for Built-in Geometric Functions
The Altera SDK for OpenCL (AOCL) supports scalar and vector argument built-in geometric functions
with certain limitations.

Function
Argument Type

float double

cross

●

●

dot ●

distance ●

length ●

normalize ●

fast_distance —
fast_length —
fast_normalize —

Numerical Compliance Implementation
Section 7 of the OpenCL Specification version 1.0 describes features of the C99 and IEEE 754 standards
that OpenCL-compliant devices must support. The Altera SDK for OpenCL (AOCL) operates on 32-bit
and 64-bit floating-point values in IEEE Standard 754-2008 format, but not all floating-point operators
have been implemented.

The table below summarizes the implementation statuses of the floating-point operators:

Section Feature Support
Status

Notes

7.1 Rounding Modes ○ Conversion between integer and single and half
precision floating-point types support all rounding
modes.

Conversions between integer and double precision
floating-point types support all rounding modes on a
preliminary basis. This feature might not conform
with the OpenCL Specification version 1.0.

A-8 Argument Types for Built-in Geometric Functions
OCL002-15.0.0

2015.05.04

Altera Corporation Support Statuses of OpenCL Features

Send Feedback

https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Section Feature Support
Status

Notes

7.2 INF, NaN and Denormalized
Numbers

○ Infinity (INF) and Not a Number (NaN) results for
single precision operations are generated in a
manner that conforms with the OpenCL Specifica‐
tion version 1.0. Most operations that handle
denormalized numbers are flushed prior to and after
a floating-point operation.

Preliminary support for double precision floating-
point operation. This feature might not conform
with the OpenCL Specification version 1.0.

7.3 Floating-Point Exceptions X
7.4 Relative Error as ULPs ○ Single precision floating-point operations conform

with the numerical accuracy requirements for an
embedded profile of the OpenCL Specification
version 1.0.

Preliminary support for double precision floating-
point operation. This feature might not conform
with the OpenCL Specification version 1.0.

7.5 Edge Case Behavior ●

Image Addressing and Filtering Implementation
The Altera SDK for OpenCL (AOCL) does not support image addressing and filtering. The AOCL does
not support images.

Atomic Functions
Section 9 of the OpenCL Specification version 1.0 describes a list of optional features that some OpenCL
implementations might support. The Altera SDK for OpenCL (AOCL) supports atomic functions
conditionally.

• Section 9.5: Atomic Functions for 32-bit Integers—The AOCL supports all 32-bit global and local
memory atomic functions. The AOCL also supports 32-bit atomic functions described in Section
6.11.11 of the OpenCL Specification version 1.1 and Section 6.12.11 of the OpenCL Specification version
1.2.

• The AOCL does not support 64-bit atomic functions described in Section 9.7 of the OpenCL Specifi‐
cation version 1.0.

Attention: The use of atomic functions might lower the performance of your design. The operating
frequency of the hardware might decrease further if you implement more than one type of
atomic functions (for example, atomic_add and atomic_sub) in the kernel.

OCL002-15.0.0
2015.05.04 Image Addressing and Filtering Implementation A-9

Support Statuses of OpenCL Features Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Embedded Profile Implementation
Section 10 of the OpenCL Specification version 1.0 describes the OpenCL embedded profile. The Altera
SDK for OpenCL (AOCL) conforms with the OpenCL embedded profile with clarifications and
exceptions.

The table below summarizes the clarifications and exceptions to the OpenCL embedded profile:

Clause Feature Support
Status

Notes

1 64-bit integers ●

2 3D images X The AOCL does not support images.
3 Create 2D and 3D images

with image_channel_data_
type values

X The AOCL does not support images.

4 Samplers X
5 Rounding modes ● The default rounding mode for CL_DEVICE_SINGLE_

FP_CONFIG is CL_FP_ROUND_TO_NEAREST.
6 Restrictions listed for single

precision basic floating-point
operations

X

7 half type X This clause of the OpenCL Specification version 1.0
does not apply to the AOCL.

8 Error bounds listed for
conversions from CL_UNORM_
INT8, CL_SNORM_INT8, CL_
UNORM_INT16 and CL_SNORM_
INT16 to float

● Refer to the table below for a list of allocation limits.

AOCL Allocation Limits
Item Limit

Maximum number of contexts Limited only by host memory size
Maximum number of queues 70

Attention: Each context uses two queues for
system purposes.

Maximum number of program objects per context 20
Maximum number of even objects per context Limited only by host memory size
Maximum number of dependencies between events
within a context

1000

Maximum number of event dependencies per
command

20

A-10 Embedded Profile Implementation
OCL002-15.0.0

2015.05.04

Altera Corporation Support Statuses of OpenCL Features

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Item Limit

Maximum number of concurrently running kernels The total number of queues
Maximum number of enqueued kernels 1000
Maximum number of kernels per FPGA device 64
Maximum number of arguments per kernel 128
Maximum total size of kernel arguments 256 bytes per kernel

Document Revision History

Table A-4: Document Revision History of the Altera SDK for OpenCL Programming Guide Appendix A:
Support Statuses of OpenCL Features

Date Document
Version

Changes

May 2015 15.0.0 • Listed the double precision floating-point functions that the Altera
SDK for OpenCL supports preliminarily.

• Added OpenCL C Programming Language Restrictions for Pipes.

December
2014

14.1.0 • In AOCL Allocation Limits, updated the maximum number of kernels
per FPGA device from 32 to 64.

June 2014 14.0.0 • Updated the following AOCL allocation limits:

• Maximum number of contexts
• Maximum number of queues
• Maximum number of even objects per context

December
2013

13.1.1 • Modified support status designations in Appendix: Support Statuses
of OpenCL Features.

• Removed information on OpenCL programming language restric‐
tions from the section OpenCL Programming Language Implementa‐
tion, and presented the information in a new section titled OpenCL
Programming Language Restrictions.

November
2013

13.1.0 • Maintenance release.

June 2013 13.0 SP1.0 • Renamed Optional Extensions to Atomic Functions, and updated its
content.

• Removed Platform Layer and Runtime Implementation.

May 2013 13.0.1 • Maintenance release.

OCL002-15.0.0
2015.05.04 Document Revision History A-11

Support Statuses of OpenCL Features Altera Corporation

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Date Document
Version

Changes

May 2013 13.0.0 • Added updated information on allocation limits and OpenCL
language support.

November
2012

12.1.0 • Initial release.

A-12 Document Revision History
OCL002-15.0.0

2015.05.04

Altera Corporation Support Statuses of OpenCL Features

Send Feedback

mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Support%20Statuses%20of%20OpenCL%20Features%20(OCL002-15.0.0%202015.05.04)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

