

TPS65132

SLVSBM1G -JUNE 2013-REVISED AUGUST 2015

TPS65132 Single Inductor - Dual Output Power Supply

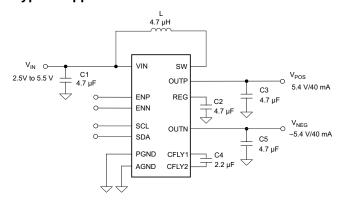
1 Features

- Split-Rail Power Supply
- SIMO (Single-Inductor Multiple-Output) Technology
- >85% Efficiency at I_{OUT} > 10 mA
- >83% Efficiency at I_{OUT} > 10 mA (TPS65132Wx)
- 2.5-V to 5.5-V Input Voltage Range
- Undervoltage Lockout Rising/Falling
- · Programmable Output Voltages
- Positive Output Voltage Range : 4 V to 6 V (0.1-V step)
- Negative Output Voltage Range:
 -6 V to -4 V (0.1-V step)
- 1% Output Voltage Accuracy
- Maximum Output Current: 150 mA (TPS65132Sx)
- Programmable Power-Up and Power-Down Sequencing (TPS65132Sx)
- Programmable Active Discharge
- Internal EEPROM Type Memory (1000x Reprogrammable)
- · Excellent Line Regulation
- Advanced Power-Save Mode for Light-Load Efficiency
- Thermal Shutdown
- 15-Ball CSP Package
- 20-Pins QFN Package

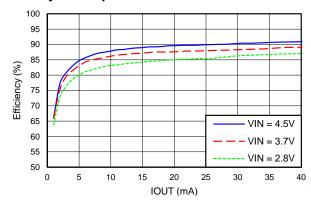
2 Applications

- General Dual Power Supply Applications
- Operational Amplifier Supply (Including Audio)
- DAC Supply
- TFT LCD Smartphones
- TFT LCD Tablets
- OLED Displays

3 Description


The TPS65132 is designed to support general positive/negative driven applications. The device uses a single inductor scheme in order to provide the user the smallest solution size possible as well as high efficiency. With its input voltage range of 2.5 V to 5.5 V, it is optimized for products powered by single-cell batteries (Li-Ion, Ni-Li, Li-Polymer) and output currents up to 80 mA for the A- and B-version, and up to 150 mA for the S-version. The device is delivered in a WCSP package of 15 balls.

Device Information (1)


PART NUMBER	PACKAGE	BODY SIZE (NOM.)
TPS65132	DSBGA (15)	2.11 mm x 1.51 mm
TPS65132S (2)	DSBGA (15)	2.11 mm x 1.51 mm
TPS65132W	WQFN (20)	4.00 mm × 3.00 mm

- (1) For all available packages, see the orderable addendum at the end of the datasheet.
- (2) Product Preview

Typical Application

Efficiency vs Output Current

Features 1

1	Га	h	۵۱	∩ f	C	٦n	tο	nte
ı	ıa	v	16	v		_	LC	11.5

2	Applications 1		8.5 Programming	17
3	Description 1		8.6 Register Maps	
4	Revision History2	9	Application and Implementation	
5	Device Comparison Table4		9.1 Application Information	
6	Pin Configuration and Functions5		9.2 Typical Applications	
7	Specifications8	10		
	7.1 Absolute Maximum Ratings 8	11	Layout	
	7.2 ESD Ratings 8		11.1 Layout Guidelines	
	7.3 Recommended Operating Conditions 8		11.2 Layout Example	
	7.4 Thermal Information8	12	Device and Documentation Support	
	7.5 Electrical Characteristics9		12.1 Device Support	
	7.6 I ² C Interface Timing Requirements / Characteristics		12.2 Community Resources	
	10		12.3 Trademarks	
	7.7 Typical Characteristics11		12.4 Electrostatic Discharge Caution	
8	Detailed Description 12		12.5 Glossary	54
	8.1 Overview	13	,	
	8.2 Functional Block Diagram 12		Information	
	8.3 Feature Description		13.1 CSP Package Summary	55
• (Changed scope figures for Boost Converter switching			13
Char	nges from Revision E (November 2014) to Revision F			Page
• A	Added high current Feature (150mA)			1
	Added TPS65132L1 device to Device Comparison table			
	Added TPS65132T6 device to the Device Comparison Table			
	Separated LOGIC SCL, SDA spec MIN/MAX from LOGIC EI			
• (Changed DAC Registers section for clarity			21
• A	Added High-current Applications (≤ 150 mA) section			43
Char	nges from Revision D (October 2014) to Revision E			Page
• A	added TPS65132L0 device to Device Comparison table			4
Char	nges from Revision C (July 2014) to Revision D			Page
• (Changed package type to industry standard identifier in the I	Device I	nformation table	1
Char	nges from Revision B (May 2014) to Revision C			Page

Submit Documentation Feedback

Copyright © 2013-2015, Texas Instruments Incorporated

Added note to Device Comparison Table4

www.ti.com

•	Added "Power-Down And Discharge (CPN) shows the V _{NEG} discharge behavior of each device variant"
<u>•</u>	Added note to Figure 22
Cł	nanges from Revision A (August 2013) to Revision B
•	Formatted to the new data sheet standard
•	Added new package option (QFN) to Device Information table
•	Added new package option (QFN) to Pin Configurations section
•	Added the ESD Ratings table
Cł	nanges from Original (June 2013) to Revision A Pag
•	Added TPS65132Bx devices to the Device Comparison table

ISTRUMENTS

Device Comparison Table

		DEFAULT		CTARTUR TIME			
PART NUMBER (1)	OUTPUT VOLTAGES	I _{OUT_MAX} (3)	ACTIVE DISCHARGE ⁽⁴⁾	VPOS / VNEG (2)	I _{SD}	PACKAGE	
TPS65132A	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	40 mA	M /M	FAST	204	CSP	
TPS65132A0	$V_{POS} = 5.0 \text{ V}$ $V_{NEG} = -5.0 \text{ V}$	40 MA	V_{POS} / V_{NEG}	FAST	30 µA	CSP	
TPS65132B	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$						
TPS65132B0	$V_{POS} = 5.0 \text{ V}$ $V_{NEG} = -5.0 \text{ V}$	40 mA	V _{POS} / V _{NEG}	FAST	130 nA	CSP	
TPS65132B5	$V_{POS} = 5.5 \text{ V}$ $V_{NEG} = -5.5 \text{ V}$						
TPS65132B2	$V_{POS} = 5.2 \text{ V}$ $V_{NEG} = -5.2 \text{ V}$						
TPS65132L	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	40 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP	
TPS65132L0	$V_{POS} = 5.0 \text{ V}$ $V_{NEG} = -5.0 \text{ V}$						
TPS65132L1 ⁽⁵⁾	$V_{POS} = 5.1 \text{ V}$ $V_{NEG} = -5.1 \text{ V}$	40 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP	
TPS65132T6	$V_{POS} = 5.6 \text{ V}$ $V_{NEG} = -5.6 \text{ V}$	80 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP	
TPS65132S ⁽⁵⁾	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	150 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP	
TPS65132W	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	80 mA	V _{POS} / V _{NEG}	SLOW	130 nA	QFN	

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com

Product preview.

Submit Documentation Feedback

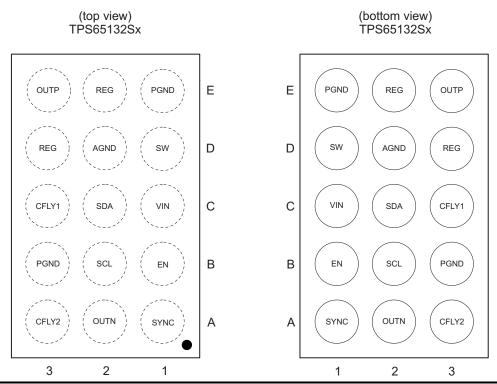
Please refer to *Power-Up And Soft-Start (LDO)* and *Power-Up And Soft-Start (CPN)* for more details. For higher output current variant, please contact display_contact@list.ti.com.

See *Power-Down And Discharge (LDO)* and *Power-Down And Discharge (CPN)* for a detailed description of how each device variant implements the active discharge function.

6 Pin Configuration and Functions

3

2


1

YFF Package 15 Bumps (top view) (bottom view) TPS65132Ax / Bx / Lx TPS65132Ax / Bx / Lx PGND Ε Ε PGND REG OUTP OUTP REG D D SW AGND AGND SW REG SDA VIN С С SDA CFLY1 ENP PGND SCL ENP В В SCL PGND OUTN ENN Α Α OUTN CFLY2

1

2

3

Copyright © 2013–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Pin Functions

	PIN		I/O	DESCRIPTION	
NAME	Ax, Bx, Lx	Sx	1/0	DESCRIPTION	
AGND	D2	D2	_	Analog ground	
CFLY1	C3	C3	I/O	Negative charge pump flying capacitor pin	
CFLY2	A3	А3	I/O	Negative charge pump flying capacitor pin	
EN	_	B1		Enable pin (sequence programmed)	
ENN	A1	_	I	Enable pin for V _{NEG} rail	
ENP	B1	B1	1	Enable pin for V _{POS} rail	
OUTP	E3	E3	0	Output pin of the LDO (V _{POS})	
OUTN	A2	A2	0	Output pin of the negative charge pump (V _{NEG})	
OUTN PGND	B3	В3		Dower around	
FGND	E1	E1	_	Power ground	
REG	D3	D3	I/O	Decet converter output pie	
REG	E2	E2	1/0	Boost converter output pin	
SCL	B2	B2	I/O	I ² C interface clock signal pin	
SDA	C2	C2	I/O	I ² C interface data signal pin	
SW	D1	D1	I/O	Switch pin of the boost converter	
SYNC	_	A1	1	Synchronization pin. 150 mA current enabled if this pin is pulled HIGH.	
VIN	C1	C1	1	Input voltage supply pin	

ENN

6

8

SCL

SDA

ENN

6

QFN Package 20 Pins **RVC** package **RVC** package (top view) (bottom view) AGND AGND REG REG SW SWSW 17 17 20 20 19 18 19 18 OUTP 16 16 **PGND** OUTP PGND OUTP 15 15 **PGND** 2 OUTP **PGND** AGND 14 REG REG 14 3 AGND PowerPAD **PowerPAD** 13 CFLY1 13 VIN CFLY1 4 VIN 5 12 PGND 12 ENP **PGND** 5 ENP

Pin Functions

11

PGND

PGND

11

	PIN	1/0	DESCRIPTION			
NAME	Wx	1/0	DESCRIPTION			
AGND	3		Analog ground			
AGND	17	_	Analog ground			
CFLY1	13	I/O	Negative charge pump flying capacitor pin			
CFLY2	10	I/O	Negative charge pump flying capacitor pin			
ENN	6	1	Enable pin for V _{NEG} rail			
ENP	5	1	Enable pin for V _{POS} rail			
OUTP	16	0	Output his of the LDO (V			
OUTP	15	O	Output pin of the LDO (V _{POS})			
OUTN	9	0	Output pin of the negative charge pump (V _{NEG})			
	1					
PGND	2		Dower ground			
FGND	11	_	Power ground			
	12					
REG	14	I/O	Boost converter output hin			
KEG	18	1/0	Boost converter output pin			
SCL	8	I/O	I ² C interface clock signal pin			
SDA	7	I/O	I ² C interface data signal pin			
CW	19	1/0	Cuitab air of the beast appropriate			
SW	20	I/O	Switch pin of the boost converter			
VIN	4	1	Input voltage supply pin			

7 Specifications

7.1 Absolute Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

		VAI	_UE	UNIT
		MIN	MAX	UNII
Voltage range	CFLY1, EN, ENN, ENP, OUTP, REG, SCL, SDA, SW, SYNC, VIN	-0.3	7	V
	CFLY2, OUTN	-7	0.3	V
Continuous total pov	ver dissipation	See Thermal Information		
Operating junction to	Operating junction temperature, T _J		150	°C
Operating ambient to	perating ambient temperature, T _A		85	°C
Storage temperature	ting ambient temperature, T _A		150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
V _{ESD}	Charged device model (CDM) per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	TYP MAX	UNIT
V _{IN}	Input voltage range	2.5	5.5	٧
L	Inductor ⁽¹⁾	2.2	4.7	μΗ
C _{IN}	Input capacitor(1)(2)	4.7		μF
C _{FLY}	Flying capacitor ⁽¹⁾⁽²⁾	2.2		μF
C _{OUTP} , C _{OUTN} , C _{REG}	Output capacitors ⁽¹⁾⁽²⁾	4.7		μF
T _A	Operating ambient temperature	-40	85	°C
TJ	Operating junction temperature	-40	125	°C

⁽¹⁾ Please see Detailed Description section for further information.

7.4 Thermal Information

		TPS	65132	
	THERMAL METRIC(1)	YFF	RVC	UNIT
		(15) BALLS	(20) PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	76.5	39.0	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	0.2	42.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	44	13.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.6	0.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	43.4	13.6	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	N/A	3.8	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ All voltage values are with respect to ground.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ X7R (or better dielectric material) is recommended.

7.5 Electrical Characteristics

 V_{IN} = 3.7 V, EN = ENN = ENP = V_{IN} , V_{POS} = 5.4 V, V_{NEG} = -5.4 V, T_A = -40°C to 85°C; typical values are at T_A = 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY C	URRENT					
V _{IN}	Input voltage range		2.5		5.5	V
	Hadamakana laabaat thaaabad	V _{IN} rising	2.3		2.5	
V_{UVLO}	Undervoltage lockout threshold	V _{IN} falling	2.1		2.3	V
IQ	Quiescent current			0.54		mA
	Thermal shutdown			140		°C
	Thermal shutdown hysteresis			5		°C
LOGIC EN	, ENN, ENP, SYNC					
V _{IH}	High level input voltage	V 25 V to 5 5 V	1.1			V
V _{IL}	Low level input voltage	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V}$			0.4	V
R _{EN}	Pulldown resistors			200		kΩ
LOGIC SC	L, SDA					
V _{IH}	High level input voltage	V 25 V to 55 V	1.1			V
V_{IL}	Low level input voltage	V _{IN} = 2.5 V to 5.5 V			0.54	v
BOOST C	ONVERTER					
I _{LIM}	Boost converter valley current limit		0.9	1.2	1.5	Α
f _{SW}	Boost converter switching frequency		1.35	1.80	2.25	MHz
LDO OUT	PUT V _{POS}					
V_{POS}	Positive output voltage range		4.0		6.0	V
V _{POS_acc}	Positive output voltage accuracy		-1 %		+1 %	
I _{POS}	Positive output current capability		200			mA
V_{DO}	Dropout voltage	$V_{REG} = V_{POS(NOM)} = 5.4V$, $I_{OUT} = 150$ mA		160		mV
	Line regulation	V_{IN} = 2.5 V to 5.5 V, I_{OUT} = 40 mA		2.7		mV
	Load regulation	$\Delta I_{OUT} = 80 \text{ mA}$		3.4		%/A
R_D	Discharge resistor			70		Ω
NEGATIV	CHARGE PUMP OUTPUT V _{NEG}					
V_{NEG}	Negative output voltage range		-6.0		-4.0	V
V _{NEG_acc}	Negative output voltage accuracy		-1 %		+1 %	
luco	Negative output current capability	Smartphone MODE	40			mA
I _{NEG}	recyative output current capability	Tablet MODE	80			11174
I _{NEG}	Negative output current capability	TPS65132Sx, SYNC = HIGH	150			mA
f _{OSC}	Negative charge pump switching frequency		0.8	1.0	1.2	MHz
	Line regulation	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V}, I_{OUT} = 40 \text{ mA}$		3.3		mV
	Load regulation	$\Delta I_{OUT} = 80 \text{ mA}$		6.1		%/A
R _D	Discharge resistor			20	T	Ω

7.6 I²C Interface Timing Requirements / Characteristics (1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
,	001 -11 (Standard mode			100	kHz
f _{SCL}	SCL clock frequency	Fast mode			400	kHz
	1000 - 1 (1 00) - 1	Standard mode	4.7			μs
t_{LOW}	LOW period of the SCL clock	Fast mode	1.3			μs
		Standard mode	4.0			μs
tHIGH	HIGH period of the SCL clock	Fast mode	600			ns
	Dog for the between OTOD and OTADT and Star	Standard mode	4.7			μs
t _{BUF}	Bus free time between a STOP and START condition	Fast mode	1.3			μs
	Lield time for a neglected CTART condition	Standard mode	4.0			μs
t _{hd;STA}	Hold time for a repeated START condition	Fast mode	600			ns
	Cohun time for a neglected CTART condition	Standard mode	4.7			μs
t _{su;STA}	Setup time for a repeated START condition	Fast mode	600			ns
	Data action time	Standard mode	250			ns
t _{su;DAT}	Data setup time	Fast mode	100			ns
	Data hald time	Standard mode			3.45	μs
t _{hd;DAT}	Data hold time	Fast mode	0.05		0.9	μs
	Rise time of SCL signal after a repeated START condition	Standard mode	20 + 0.1C _B		1000	ns
t _{RCL1}	nd after an acknowledge bit	Fast mode	20 + 0.1C _B		1000	ns
	Directions of CCI sincel	Standard mode	20 + 0.1C _B		1000	ns
t _{RCL}	Rise time of SCL signal	Fast mode	20 + 0.1C _B		300	ns
	Fall time of SCI gianal	Standard mode	20 + 0.1C _B		300	ns
t _{FCL}	Fall time of SCL signal	Fast mode	20 + 0.1C _B		300	ns
	Rise time of SDA signal	Standard mode	20 + 0.1C _B		1000	ns
t _{RDA}	Kise time of SDA signal	Fast mode	20 + 0.1C _B		300	ns
	Fall time of CDA signal	Standard mode	20 + 0.1C _B		300	ns
t _{FDA}	Fall time of SDA signal	Fast mode	20 + 0.1C _B		300	ns
	Saturation for STOR condition	Standard mode	4.0			μs
t _{su;STO}	Setup time for STOP condition	Fast mode	600			ns
Св	Capacitive load for SDA and SCL				0.4	nF

(1) Industry standard I²C timing characteristics according to I²C-Bus Specification, Version 2.1, January 2000. Not tested in production.

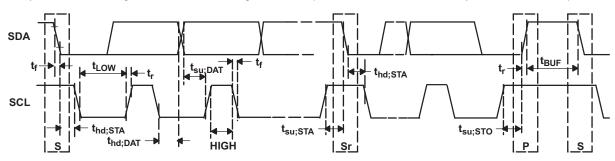
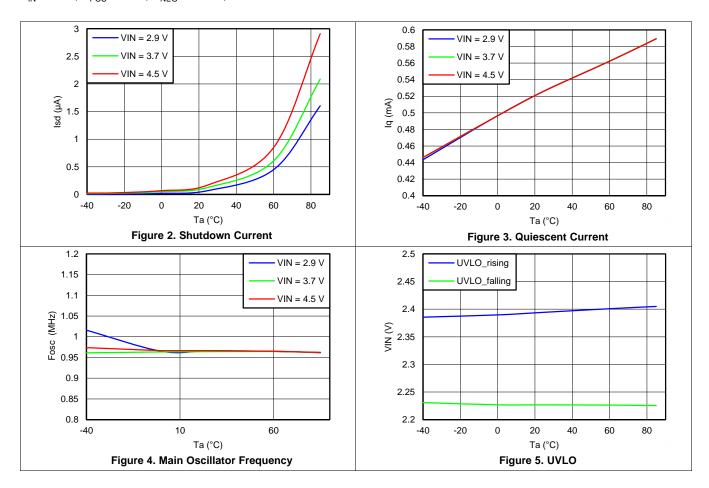
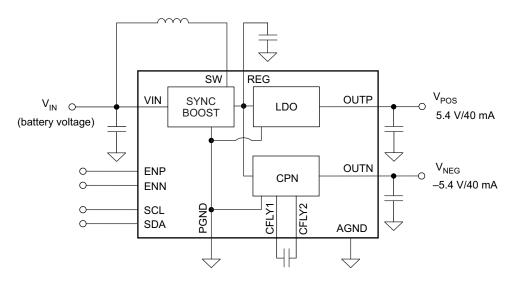



Figure 1. Serial Interface Timing For F/S-Mode

7.7 Typical Characteristics

 V_{IN} = 3.7 V, V_{POS} = 5.4 V, V_{NEG} = -5.4 V, unless otherwise noted



8 Detailed Description

8.1 Overview

The TPS65132, supporting input voltage range from 2.5 V to 5.5 V, operates with a single inductor scheme to provide a high efficiency with a small solution size. The synchronous boost converter generates a positive voltage that is regulated down by an integrated LDO, providing the positive supply rail (V_{POS}). The negative supply rail (V_{NEG}) is generated by an integrated negative charge pump (or CPN) driven from the boost converter output pin REG. The operating mode can be selected between Smartphone and Tablet in order to select the necessary output current capability and to get the best efficiency possible based on the application. The device topology allows a 100% asymmetry of the output currents.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Undervoltage Lockout (UVLO)

The TPS65132 integrates an undervoltage lockout block (UVLO) that enables the device once the voltage on the VIN pin exceeds the UVLO threshold (2.5 V maximum). No output voltage will however be generated as long as the enable signals are not pulled HIGH. The device, as well as all converters (boost converter, LDO, CPN), will be disabled as soon as the $V_{\rm IN}$ voltage falls below the UVLO threshold. The UVLO threshold is designed in a way that the TPS65132 will continue operating as long as $V_{\rm IN}$ stays above 2.3 V. This guarantees a proper operation even in the event of extensive line transients when the battery gets suddenly heavily loaded.

For TPS65132Ax, a 40 ms delay is starting as soon as the UVLO threshold is reached. This delay prevents the device to be disabled and enabled by an unwanted VIN voltage spike. Once this delay has passed, the output rails can be enabled and disabled as desired with the enable signals without any delay.

8.3.2 Active Discharge

An active discharge of the positive rail and/or the negative rail can be programmed (DISP and DISN bits respectively - refer to *DAC Registers*). If programmed to be active, the discharge will occur at power down, when the enable signals go LOW (Figure 41 and Figure 42 for TPS65132Ax, Bx, Lx, Wx — Figure 42 and Figure 41 for TPS65132Sx). See *Power-Down And Discharge (LDO)* and *Power-Down And Discharge (CPN)* for a detailed description of how each device variant implements the active discharge function.

Feature Description (continued)

8.3.3 Boost Converter

8.3.3.1 Boost Converter Operation

The synchronous boost converter uses a current mode topology and operates at a quasi-fixed frequency of typically 1.8 MHz, allowing chip inductors such as 2.2 μ H or 4.7 μ H to be used. The converter is internally compensated and provides a regulated output voltage automatically adjusted depending on the programmed V_{POS} and V_{NEG} voltages. The boost converter operates either in continuous conduction mode (CCM) or Pulse Frequency Modulation mode (PFM), depending on the load current in order to provide the highest efficiency possible. The switch node waveforms for CCM and DCM operation are shown in Figure 6 and Figure 7.

8.3.3.2 Power-Up And Soft-Start (Boost Converter)

The boost converter starts switching as soon as the enable signal is pulled HIGH and the voltage on VIN pin is above the UVLO threshold. For TPS65132Ax, in the case where the enable signal is already HIGH when V_{IN} reaches the UVLO threshold, the boost converter will only start switching after a 40 ms delay has passed (see *Undervoltage Lockout (UVLO)*).

The boost converter starts up with an integrated soft-start to avoid drawing excessive inrush current from the supply. The output voltage V_{REG} is slowly ramped up to its target value. Typical startup waveforms are shown in Figure 37 and Figure 39.

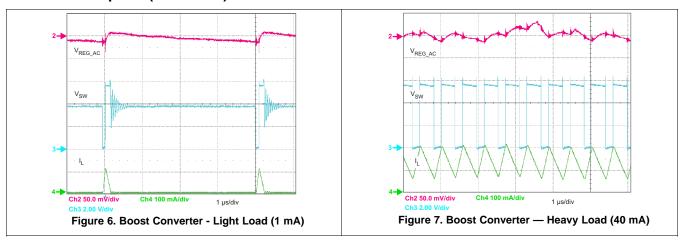
8.3.3.3 Power-Down (Boost Converter)

The boost converter stops switching when V_{IN} is below the UVLO threshold or when both output rails are disabled. For example, due to a special sequencing, the LDO might still be operating while the CPN is already disabled, in which case, the boost will continue operating until the LDO has been disabled. Typical power-down waveforms are shown in Figure 38 and Figure 40.

8.3.3.4 Isolation (Boost Converter)

The boost converter output (REG) is isolated from the input supply V_{IN}, provinding a true shutdown.

8.3.3.5 Output Voltage (Boost Converter)


The output voltage of the boost converter is automatically adjusted depending on the programmed V_{POS} and V_{NEG} voltages.

8.3.3.6 Advanced Power-Save Mode For Light-Load Efficiency And PFM

The TPS65132 device integrates a power save mode to improve efficiency at light load. In power save mode the converter stops switching when the inductor current reaches 0 A. The device resumes its switching activity with one or more pulses once the V_{REG} voltage falls below its regulation level, and goes again into power save mode once the inductor current reaches 0 A. The pulse duration remains constant, but the frequency of these pulses varies according to the output load. This operating mode is also known as Pulse Frequency Modulation or PFM. Figure 6 provides plots of the inductor current and the switch node in PFM mode.

TEXAS INSTRUMENTS

Feature Description (continued)

8.3.4 LDO Regulator

8.3.4.1 LDO Operation

The Low Dropout regulator (or LDO) generates the positive voltage rail V_{POS} by regulating down the output voltage of the boost converter (V_{REG}). Its inherent power supply rejection helps filtering the output ripple of the boost converter in order to provide on OUTP pin a clean voltage, e.g. to supply the source driver IC of the display.

8.3.4.2 Power-Up And Soft-Start (LDO)

The LDO starts operating as soon as the ENP signal is pulled HIGH, V_{IN} voltage is above the UVLO threshold and the boost converter has reached its Power Good threshold.

In the case where the enable signal is already HIGH when V_{IN} exceeds the UVLO threshold, the boost converter will start first and the LDO will only start after the boost converter has reached its target voltage. For TPS65132Ax, the boost will start after the 40 ms delay has passed (see *Undervoltage Lockout (UVLO)*).

The LDO integrates a soft-start that slowly ramps up its output voltage V_{POS} regardless of the output capacitor and the target voltage, as long as the LDO current limit is not reached. For TPS65132Ax and TPS65132Bx (except TPS65132B2), the typical startup time is 140 μ s. For TPS65132B2, TPS65132Lx, TPS65132Wx, the typical ramp-up time is 500 μ s and the inrush current is also reduced by a factor of 3. Typical startup waveforms are shown in Figure 37 to Figure 39.

8.3.4.3 Power-Down And Discharge (LDO)

The LDO stops operating when V_{IN} is below the UVLO threshold or when ENP is pulled LOW.

Or when EN is pulled LOW in the TPS65132Sx, and the internal sequencing has passed.

The positive rail can be actively discharged to GND during power-down if required. A discharge selection bit is available to enable or disable this function. See for more details, as well as waveforms on Figure 41 and Figure 42. Table 1 shows the V_{POS} active discharge behavior of each device variant.

Table 1. V_{POS} Active Discharge Behavior

PART NUMBER	V _{IN}	ENP	ENN	V _{POS} DISCHARGE
	< V _{UVLO}	Don't Care	Don't Care	On
		Low	Low	Determined by DISP bit
TPS65132Ax		Low High	Determined by DISP bit	
	> V _{UVLO}	High	Low	Off
		High	High	Off

Feature Description (continued)

Table 1. V_{POS} Active Discharge Behavior (continued)

PART NUMBER	PART NUMBER V _{IN}		ENN	V _{POS} DISCHARGE
	< V _{UVLO}	Don't Care	Don't Care	On
TPS65132Bx	> V _{UVLO}	Low	Low	On
TPS65132Lx		Low	High	Determined by DISP bit
TPS65132Wx		High	Low	Off
		High	High	Off

8.3.4.4 Isolation (LDO)

The LDO is isolating the V_{POS} rail from V_{REG} (boost converter output) as long as the rail is not enabled in order to ensure flexible startup like V_{NEG} before V_{POS} .

8.3.4.5 Setting The Output Voltage (LDO)

The output voltage of the LDO is programmable via a I^2C compatible interface, from -6.0 V to -4.0 V with 100 mV steps. For more details, please refer to the section.

8.3.5 Negative Charge Pump

8.3.5.1 Operation

The negative charge pump (CPN) generates the negative voltage rail V_{NEG} by inverting and regulating the output voltage of the boost converter (V_{REG}). The charge pump uses 4 switches and an external flying capacitor to generate the negative rail. Two of the switches are turned on in the first phase to charge the flying capacitor up to V_{REG} , and in the second phase they are turned-off and the two others turn on to pump the energy negatively out of the OUTN capacitor.

8.3.5.2 Power-Up And Soft-Start (CPN)

The CPN starts operating as soon as the ENN signal is pulled HIGH, V_{IN} voltage is above the UVLO threshold and the boost converter has reached its Power Good threshold.

In the case where the enable signal is already HIGH when V_{IN} reaches the UVLO threshold, the boost converter will start first and the CPN will only start after the boost converter has reached its target voltage. For TPS65132Ax, the boost will start after the 40 ms delay has passed (see *Undervoltage Lockout (UVLO)*).

The CPN integrates a soft-start that slowly ramps up its output voltage V_{NEG} within a time defined by the selected mode (Smartphone or Tablet), the output voltage and the output capacitor value. For TPS65132Ax and TPS65132Bx (except TPS65132B2), the startup current charging the output capacitor in Smartphone mode is 50 mA, and 100 mA typically in Tablet mode. For TPS65132B2, TPS65132Lx, TPS65132Wx, the typical ramp-up times are slowed down by a factor of 4 (i.e 12.5 mA and 25 mA typical output current for Smartphone and Tablet modes respectively.) and the inrush current is also reduced by a factor of about 4. For TPS65132Sx, the negative rail starts-up in Smartphone or Tablet mode, thus the startup current is set by the mode the device is programmed to, and not related to the SYNC pin state. The full current of 150 mA minimum is only released once both rails (V_{POS} and V_{NEG}) bave reached their Power Good levels. Typical startup waveforms are shown in Figure 43 to Figure 46.

 $t_{\text{STARTUP}} = \frac{C_{\text{OUT}} \times V_{\text{NEG}}}{I_{\text{STARTUP}}}$ The estimated startup time can be calculated using the following formula:

Where:

 $t_{STARTUP}$ = startup time of the V_{NEG} rail

 C_{OUT} = output capacitance of the V_{NFG} rail

 V_{NFG} = target output voltage

 $I_{STARTUP}$ = output current of the V_{NEG} rail charging up the output capacitor at startup (12.5 mA, 25 mA, 50 mA or 100 mA as described above)

8.3.5.3 Power-Down And Discharge (CPN)

The CPN stops operating when V_{IN} is below the UVLO threshold or when ENN is pulled LOW.

Or when EN is pulled LOW in the TPS65132Sx, and the internal sequencing has passed.

The negative rail can be actively discharged to GND during power-down if required. A discharge selection bit is available to enable or disable this function. See for more details, as well as waveforms Figure 41 and Figure 42. Table 2 shows the V_{NEG} discharge behavior of each device variant.

Table 2. V_{NEG} Active Discharge Behavior

PART NUMBER	V _{IN}	ENP	ENN	V _{NEG} DISCHARGE
	< V _{UVLO}	Don't Care	Don't Care	On
		Low	Low	Determined by DISN bit
TPS65132Ax		Low	High	Off
	> V _{UVLO}	High	Low	Determined by DISN bit
		High	High	Off
	< V _{UVLO}	Don't Care	Don't Care	On
TPS65132Bx	5132Bx 5132Lx	Low	Low	On
TPS65132Lx TPS65132Wx		Low	High	Off
	> V _{UVLO}	High	Low	Determined by DISN bit
		High	High	Off

8.3.5.4 Isolation (CPN)

The CPN isolates the V_{NEG} rail from V_{REG} (boost converter output) as long as the rail is not enabled in order to ensure flexible startup like V_{POS} before V_{NEG} .

8.3.5.5 Setting The Output Voltage (CPN)

The output voltage of the CPN is programmable via a I²C compatible interface, from 4.0 V to 6.0 V with 100 mV steps. For more details, please refer to the section.

8.4 Device Functional Modes

8.4.1 Enabling and Disabling the Device

The TPS65132 is enabled as long as the VIN voltage is above the UVLO and one of the enable pins (ENP or ENN) is HIGH. Pulling ENP or ENN LOW disables either rail (V_{POS} or V_{NEG} respectively); and, pulling both pins LOW disables the device entirely (the internal oscillator of the TPS65132Ax continues running to allow access to the I²C interface).

8.5 Programming

8.5.1 I²C Serial Interface Description

The TPS65132 communicates through an industry standard I²C compatible interface, to receive data in slave mode. I²C is a 2-wire serial interface developed by Philips Semiconductor (see I²C-Bus Specification, Version 2.1, January 2000).

The TPS65132 integrates a non-volatile memory (EEPROM) that allows the storage of the DAC values into the registers with a capability of up to 1000 programming cycles maximum.

The bus consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I²C compatible devices connect to the I²C bus through open drain I/O pins, SDA and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the bus under control of the master device.

The TPS65132 works as a slave and supports the following data transfer modes, as defined in the I²C-Bus specification: standard mode (100 kbps) and fast mode (400 kbps). The data transfer protocol for standard and fast modes is exactly the same, therefore they are referred to as F/S-mode in this document. The TPS65132 supports 7-bit addressing. The device 7-bit address is 3E (see Figure 8), and the LSB enables the write or read function.

Figure 8. TPS65132 Slave Address Byte

MSB		TPS65132		Address			LSB
0	1	1	1	1	1	0	R/W
$R/\overline{W} = R/(W)$							

The device that initiates the communication is called a master, and the devices controlled by the master are slaves. The master generates the serial clock on SCL, controls the bus access, and generates START and STOP conditions (see Figure 9). A START initiates a new data transfer to a slave. Transitioning SDA from high to low while SCL remains high generates a START condition. A STOP condition ends a data transfer to slave. Transitioning SDA from low to high while SCL remains high generates a STOP condition.

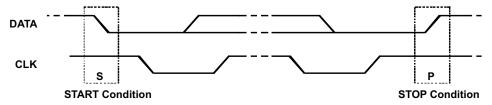


Figure 9. Start And Stop Conditions

The master then generates the SCL pulses, and transmits the 7-bit address and the read/write direction bit R/(W) on the SDA line. During all transmissions, the master ensures that the data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 10). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an Acknowledgment, ACK, (see Figure 11) by pulling the SDA line low during the entire high period of the SCL cycle. Upon detecting this Acknowledgment, the master knows that communication link with a slave has been established.

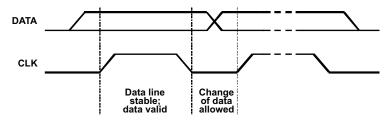


Figure 10. Bit Transfer On The Serial Interface

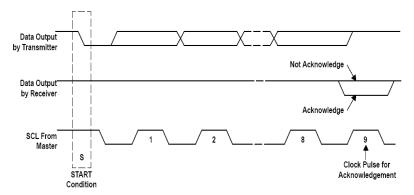


Figure 11. Acknowledge On The IC Bus²

The master generates further SCL cycles to either transmit data to the slave (R/(W) bit = 0) or receive data from the slave (R/(W) bit = 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So an acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To terminate the data transfer, the master generates a STOP condition by pulling the SDA line from low to high while the SCL line is high (see Figure 12). This releases the bus and stops the communication link with the addressed slave. All I^2C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released, and they wait for a start condition followed by a matching address.

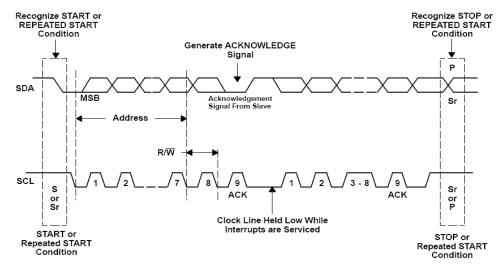


Figure 12. Bus Protocol

NOTE

With TPS65132Bx, TPS65132Lx, TPS65132Sx and TPS65132Wx, the I^2C interface is not accessible as long as EN = ENN = ENP = LOW. As soon as one of the enable pins is pulled HIGH, the I^2C interface is accessible.

8.5.2 I²C Interface Protocol

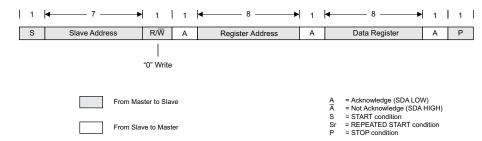


Figure 13. "Write" Data To DAC - Transfer Format In F/S-Mode

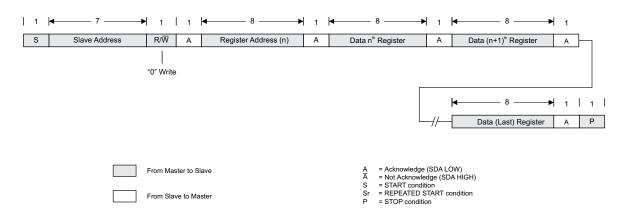


Figure 14. "Write" Data To DAC – Transfer Format In F/S-Mode Featuring Register Address Auto-Increment

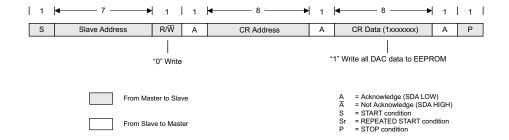


Figure 15. "Write" Data To EEPROM - Transfer Format In F/S-Mode

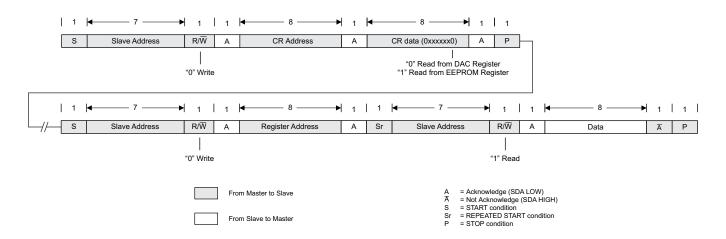


Figure 16. "Read" Data From DAC/EEPROM - Transfer Format In F/S-Mode

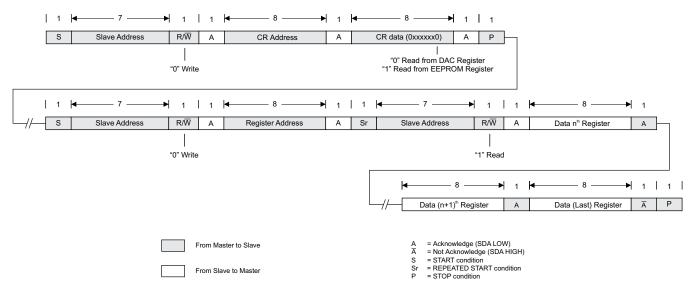


Figure 17. "Read" Data From DAC/EEPROM – Transfer Format In F/S-Mode Featuring Register Address Auto-Increment

8.6 Register Maps

The TPS65132 has one non-volatile memory which contains the initial value of the DAC and one volatile memory which contains the DAC setting. The non-volatile memory is called the Initial Value Register (IVR) and the volatile memory is called DAC Register (DR). The non-volatile IVR and the volatile DR are accessed with the same address.

Startup option: At power-up, the value contained in the IVR is loaded into the volatile DR and IVR presets the DAC to the last stored setting within less than 20 µs. The programmed factory value of the IVR of each address is described below and, at power-up, these data byte set the output voltage of each rail.

Write description: The user has to program all data registers first $(0\times00 \sim 0\times03)$, then set the WED (Write EEPROM Data) bit to 1 once all desired data are addressed. A dead time of 50 ms is then initiated during which all the register data $(0\times00 \sim 0\times03)$ are stored into the non volatile EEPROM cell. During that time, there should be no data flowing through the I^2C because the I^2C interface is momentarily not responding.

After the 50 ms have passed, the WED bit is automatically reset to 0, and the user is able to read the values or program again.

Register Maps (continued)

Slave address: 0x3E

X = R/W $R/W = 1 \rightarrow read mode$

 $R/W = 0 \rightarrow write mode$

8.6.1 DAC Registers

Attempting to read data from register addresses not listed in the following section will result in 0x00 being read out.

8.6.1.1 VPOS Register – Address: 0x00

Figure 18. VPOS Register

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VPOS[4:0]				
0	0	0	0 1 1 1 0				
R					R/W		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3. VPOS Register Field Descriptions

Bit	Field	Description						
7:5	RSVD[2:0]	Reserved, always set to 0						
		VPOS output voltage a	djustment					
		VPOS[4:0] Value (binary)	VPOS Output Voltage (V)					
		00000	4.0	01011	5.1			
		00001	4.1	01100	5.2			
		00010	4.2	01101	5.3			
		00011	4.3	01110	5.4			
4:0	VPOS[4:0]	00100	4.4	01111	5.5			
		00101	4.5	10000	5.6			
		00110	4.6	10001	5.7			
		00111	4.7	10010	5.8			
		01000	4.8	10011	5.9			
		01001	4.9	10100	6.0			
		01010	5.0	_				

8.6.1.2 VNEG Register – Address 0x01

Figure 19. VNEG Register

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VNEG[4:0]				
0	0	0	0 1 1 1 0				
	R				R/W		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. VNEG Register Field Descriptions

Bit	Field	Description						
7:5	RSVD[2:0]	Reserved, always set to 0						
		VNEG output voltage adjustment						
		VNEG[4:0] Value (binary)	VNEG Output Voltage (V)	VNEG[4:0] Value (binary)	VNEG Output Voltage (V)			
		00000	-4.0	01011	-5.1			
		00001	-4.1	01100	-5.2			
		00010	-4.2	01101	-5.3			
		00011	-4.3	01110	-5.4			
4:0	VNEG[4:0]	00100	-4.4	01111	-5.5			
		00101	-4.5	10000	-5.6			
		00110	-4.6	10001	-5.7			
		00111	-4.7	10010	-5.8			
		01000	-4.8	10011	-5.9			
		01001	-4.9	10100	-6.0			
		01010	-5.0					

8.6.1.3 DLYx Register – Address 0x02

Figure 20. DLYx Register

7	6	5	4	3	2	1	0
DLYP2	DLYP2	DLYN2	DLYN2	DLYP1	DLYP1	DLYN1	DLYN1
0	0	0	0	0	0	0	1
			R	W			

Table 5. DLYx Register Field Descriptions

Bit	Field	Description	
7:6	DLYP2[1:0]		
5:4	DLYN2[1:0]	Dolov milliogogada	
3:2	DLYP1[1:0]	Delay, milliseconds	
1:0	DLYN1[1:0]		
		DLYx Value	DLYx Delay (ms)
		00	0
	DLYx[1:0]	01	1
	10	10	5
		11	10

8.6.1.4 APPS - SEQU - SEQD - DISP - DISN Register - Address 0x03

Figure 21. APPS - SEQU - SEQD - DISP - DISN Register

7	6	5	4	3	2	1	0
RSVD	APPS	SEQU	SEQU	SEQD	SEQD	DISP	DISN
0	0	0	0	0	0	1	0
R	R/W						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. APPS - SEQU - SEQD - DISP - DISN Field Descriptions

Bit	Field	De	Description								
7	RSVD	Re	leserved, always set to 0								
	APPS.	Application, Sequencing, Discharge Positive, Discharge Negative									
	AL 10,										
	SEQU,	Al	PPS [6] Value	SE	QU [5:4] Value	SE	QD [3:2] Value		DISP [1] Value (1)		DISN [0] Value (1)
6:0	- /	A I	PPS [6] Value Smartphone	SE	QU [5:4] Value Simultaneous	SE	Simultaneous	0	DISP [1] Value (1) No discharge	0	DISN [0] Value (1) No discharge

⁽¹⁾ See Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN) for a detailed description of how each device variant implements the active discharge function.

8.6.1.5 Control Register - Address 0xFF

Figure 22. Control Register

7	6	5	4	3	2	1	0
WED		RSVDI6:11 EE/(DR)					FF/(DR)

The **Reserved** bits are ignored when written and return either 0 or 1 when read.

Table 7. Control Register Field Descriptions

Bit	Field	Description
7	WED	Write EEPROM Data
6:1	RSVD[6:1]	Reserved
0	EE/(DR)	EEPROM / (DAC Register)

8.6.2 Factory Default Register Value

Part number	Register address					
Part number	0x00	0x01	0x02	0x03		
TPS65132A	0x0E	0x0E	_	0x03		
TPS65132A0	0x0A	0x0A	_	0x03		
TPS65132B	0x0E	0x0E	_	0x03		
TPS65132B0	0x0A	0x0A	_	0x03		
TPS65132B2	0x0C	0x0C	_	0x03		
TPS65132B5	0x0F	0x0F	_	0x03		
TPS65132L	0x0E	0x0E	_	0x03		
TPS65132L0	0x0A	0x0A	_	0x03		
TPS65132L1 ⁽¹⁾	0x0B	0x0B	_	0x03		
TPS65132S (1)	0x0E	0x0E	0x00	0x43		
TPS65132T6	0x10h	0x10h	_	0x43		
TPS65132W	0x0E	0x0E	_	0x43		

(1) Product preview.

Submit Documentation Feedback

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS65132xx devices, primarily intended to supplying TFT LCD displays, can be used for any application that requires positive and negative supplies, ranging from ±4 V to ±6 V and current up to 80 mA (150 mA for the TPS65132Sx version). Both output voltages can be set independently and their sequencing is also independent. The following section presents the different operating modes that the device can support as well as the different features that the user can select.

9.2 Typical Applications

9.2.1 Low-current Applications (≤ 40 mA)

The TPS65132 can be programmed to Smartphone mode with the APPS bit to support applications that require output currents up to 40 mA (refer to). The Smartphone mode limits the negative charge pump output current to 40 mA DC in order to provide the highest efficiency possible. The V_{POS} rail can deliver up to 200 mA DC regardless of the mode. Output peak currents are supported by the output capacitors.



Figure 23. Typical Application Circuit For Smartphones

9.2.1.1 Design Requirements

Table 8. Design Parameters

PARAMETERS	EXAMPLE VALUES		
Input Voltage Range	2.5 V to 5.5 V		
Output Voltage	4.0 V to 6.0 V		
Output Current Rating	40 mA		
Boost Converter Switching Frequency	1.8 MHz		
Negative Charge Pump Switching Frequency	1.0 MHz		

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 **Sequencing**

Each output rail (V_{POS} and V_{NEG}) is enabled and disabled using an external enable signal. If not explicitly specified, the enable signal in the rest of the document refers to ENN or ENP: ENP for the positive rail V_{POS} and ENN for the negative rail V_{NEG}. Figure 37 to Figure 40 show the typical sequencing waveforms.

NOTE

In the case where V_{IN} falls below the UVLO threshold while one of the enable signals is still high, all converters will be shut down instantaneously and both V_{POS} and V_{NEG} output rails will be actively discharged to GND.

9.2.1.2.2 Boost Converter Design Procedure

The first step in the design procedure is to verify whether the maximum possible output current of the boost converter supports the specific application requirements. A simple approach is to estimate the converter efficiency, by taking the efficiency number from the provided efficiency curves at the application's maximum load or to use a worst case assumption for the expected efficiency, e.g., 85%.

1. Duty Cycle: D = 1 -
$$\frac{V_{IN_min} \times \eta}{V_{REG}}$$

- 2. Inductor ripple current: $\Delta I_L = \frac{V_{IN_min} \times D}{f_{SW} \times L}$
- 3. Maximum output current: $I_{OUT_max} = \left(I_{LIM_min} + \frac{\Delta I_L}{2}\right) \times \left(1 D\right)$
- 4. Peak switch current of the application: $I_{SWPEAK} = \frac{I_{OUT}}{1-D} + \frac{\Delta I_L}{2}$ η = Estimated boost converter efficiency (use the number from the efficiency plots or 85% as an estimation)

 f_{SW} = Boost converter switching frequency (1.8 MHz)

L = Selected inductor value for the boost converter (see the Inductor Selection section)

 I_{SWPFAK} = Boost converter switch current at the desired output current (must be < $[I_{IIM min} + \Delta I_{I}]$)

 ΔI_L = Inductor peak-to-peak ripple current

 V_{REG} = max (V_{POS} , $|V_{NEG}|$) + 200 mV (in Smartphone mode — + 300 mV in Tablet mode — + 500 mV with TPS65132Sx with SYNC = HIGH)

 $I_{OUT} = I_{OUT_VPOS} + |I_{OUT_VNEG}|$ (I_{OUT_max} being the maximum current delivered on each rail)

The peak switch current is the current that the integrated switch and the inductor have to handle. The calculation must be done for the minimum input voltage where the peak switch current is highest.

9.2.1.2.2.1 Inductor Selection (Boost Converter)

Saturation current: the inductor must handle the maximum peak current (I_{L SAT} > I_{SWPEAK}, or I_{L_SAT} > [I_{LIM_min} + ΔI_{\perp}] as conservative approach)

DC Resistance: the lower the DCR, the lower the losses

Inductor value: in order to keep the ratio $I_{OUT}/\Delta I_{L}$ low enough for proper sensing operation purpose, it is recommended to use a 4.7 µH inductor for Smartphone mode (a 2.2 µH might however be used, but the efficiency might be lower than with 4.7 µH at light output loads depending on the inductor characteristics).

Table	9	Inductor	Selection	Boost (1)
Iabic	J.	IIIuuctoi	OCICCIOII	DOOSL

L (µH)	SUPPLIER	COMPONENT CODE	EIA SIZE	DCR TYP (mΩ)	I _{SAT} (A)
2.2	Toko	1269AS-H-2R2N=P2	1008	130	2.4
2.2	Murata	LQM2HPN2R2MG0	1008	80	1.3
2.2	Murata	LQM21PN2R2NGC	0805	250	0.8
4.7	Toko	1269AS-H-4R7N=P2	1008	250	1.6
4.7	Murata	LQM21PN4R7MGR	0805	230	0.8
4.7	FDK	MIPS2520D4R7	1008	280	0.7

⁽¹⁾ See Third-Party Products Disclaimer

9.2.1.2.2.2 Input Capacitor Selection (Boost Converter)

For best input voltage filtering low ESR ceramic capacitors are recommended. TPS65132 has an analog input pin VIN. A $4.7~\mu F$ minimum bypass capacitor is required as close as possible from VIN to GND. This capacitor is also used as the boost converter input capacitor.

For better input voltage filtering, this value can be increased or two capacitors can be used: one 4.7 μ F input capacitor for the boost converter as well as a 1 μ F bypass capacitor close to the VIN pin. Refer to the Recommended Operating Conditions, Table 10 and the Figure 23 for input capacitor recommendations.

9.2.1.2.2.3 Output Capacitor Selection (Boost Converter)

For the best output voltage filtering, low-ESR ceramic capacitors are recommended. A minimum of 4.7 µF ceramic output capacitor is required. Higher capacitor values can be used to improve the load transient response. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 23 for output capacitor recommendations.

Table 10. Input And Output Capacitor Selection⁽¹⁾

CAPACITOR (µF)	SUPPLIER	COMPONENT CODE	EIA SIZE (Thickness max.)	VOLTAGE RATING (V)	COMMENTS
2.2	Murata	GRM188R61C225KAAD	0603 (0.9 mm)	16	C_{FLY}
4.7	Murata	GRM188R61C475KAAJ	0603 (0.95 mm)	16	$C_{IN}, C_{NEG}, C_{POS}, \\ C_{REG}$
10	Murata	GRM219R61C106KA73	0603 (0.95 mm)	16	C_{NEG}, C_{REG}

⁽¹⁾ See Third-Party Products Disclaimer

9.2.1.2.3 Input Capacitor Selection (LDO)

The LDO input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and the Figure 23.

9.2.1.2.4 Output Capacitor Selection (LDO)

The LDO is designed to operate with a 4.7 μF minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and the Figure 23.

9.2.1.2.5 Input Capacitor Selection (CPN)

The CPN input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and the Figure 23.

9.2.1.2.6 Output Capacitor Selection (CPN)

The CPN is designed to operate with a 4.7 μ F minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and the Figure 23.

9.2.1.2.7 Flying Capacitor Selection (CPN)

The CPN needs an external flying capacitor. The minimum value is 2.2 μ F. Special care must be taken while choosing the flying capacitor as it will directly impact the output voltage accuracy and load regulation performance. Therefore, a minimum capacitance of 1 μ F must be achieved by the capacitor at a DC bias voltage of $|V_{NEG}| + 300$ mV. For proper operation, the flying capacitor value must be lower than the output capacitor of the boost converter on REG pin.

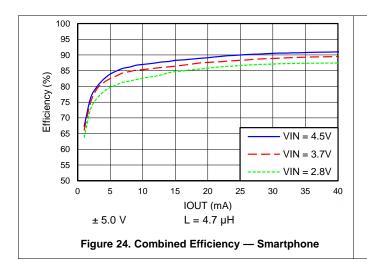
9.2.1.3 Application Curves

 $V_{IN} = 3.7 \text{ V}$, $V_{POS} = 5.4 \text{ V}$, $V_{NEG} = -5.4 \text{ V}$, unless otherwise noted

Table 11. Component List Used For The Application Curves

REFERENCE	DESCRIPTION	MANUFACTURER AND PART NUMBER
	2.2 µF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C225KAAD
С	4.7 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C475KAAJ
	10 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61E106MA73
1	$2.2~\mu\text{H},~2.4~\text{A},~130~\text{m}\Omega,~2.5~\text{mm} \times 2.0~\text{mm} \times 1.0~\text{mm}$	Toko - DFE252010C (1269AS-H-2R2N=P2)
L	4.7 μH, 1.6 A, 250 m Ω , 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-4R7N=P2)
U1	TPS65132AYFF	Texas Instruments

Table 12. Table Of Graphs


PARAMETER	CONDITIONS	Figure
EFFICIENCY		•
Efficiency vs. Output Current	± 5.0 V — Smartphone Mode — L = 4.7 μH	Figure 24
Efficiency vs. Output Current	± 5.4 V — Smartphone Mode — L = 4.7 μH	Figure 25
Efficiency vs. Output Current	± 5.0 V — Smartphone Mode — L = 2.2 μH	Figure 26
Efficiency vs. Output Current	± 5.4 V — Smartphone Mode — L = 2.2 μH	Figure 27
CONVERTERS WAVEFO	DRMS	•
V _{NEG} Output Ripple	$I_{NEG} = 2 \text{ mA} / 20 \text{ mA} / 40 \text{ mA}$ — Smartphone Mode — $C_{OUT} = 4.7 \mu F$	Figure 28
V _{NEG} Output Ripple	$I_{NEG} = 2 \text{ mA} / 20 \text{ mA} / 40 \text{ mA}$ — Smartphone Mode — $C_{OUT} = 2 \times 4.7 \mu F$	Figure 29
V _{POS} Output Ripple	Any load	Figure 30
LOAD TRANSIENT		
Load Transient	V_{IN} = 2.9 V — I_{POS} = $-I_{NEG}$ = 5 mA \rightarrow 35 mA \rightarrow 5 mA — Smartphone Mode — L = 4.7 μ H	Figure 31
Load Transient	V_{IN} = 3.7 V — I_{POS} = $-I_{NEG}$ = 5 mA \rightarrow 35 mA \rightarrow 5 mA — Smartphone Mode — L = 4.7 μ H	Figure 32
Load Transient	V_{IN} = 4.5 V — I_{POS} = $-I_{NEG}$ = 5 mA \rightarrow 35 mA \rightarrow 5 mA — Smartphone Mode — L = 4.7 μ H	Figure 33
LINE TRANSIENT		
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V $-$ I _{POS} = $-$ I _{NEG} = 0 mA $-$ Smartphone Mode $-$ L = 4.7 μ H	Figure 34
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V $-$ I _{POS} = $-$ I _{NEG} = 5 mA $-$ Smartphone Mode $-$ L = 4.7 μ H	Figure 35
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V \rightarrow I_{POS} = $-I_{NEG}$ = 35 mA \rightarrow Smartphone Mode \rightarrow L = 4.7 μ H	Figure 36

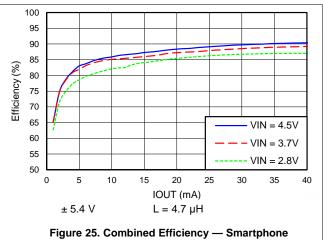
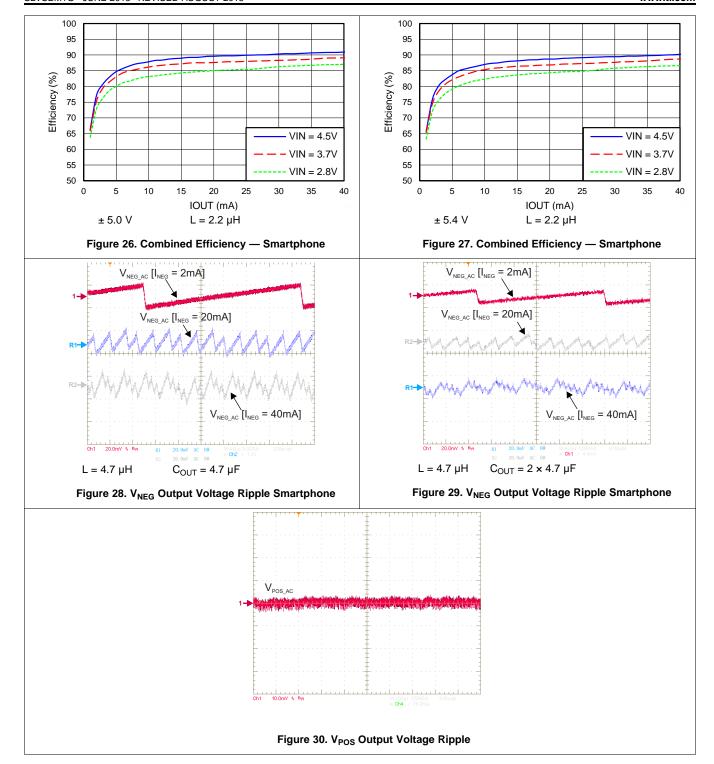
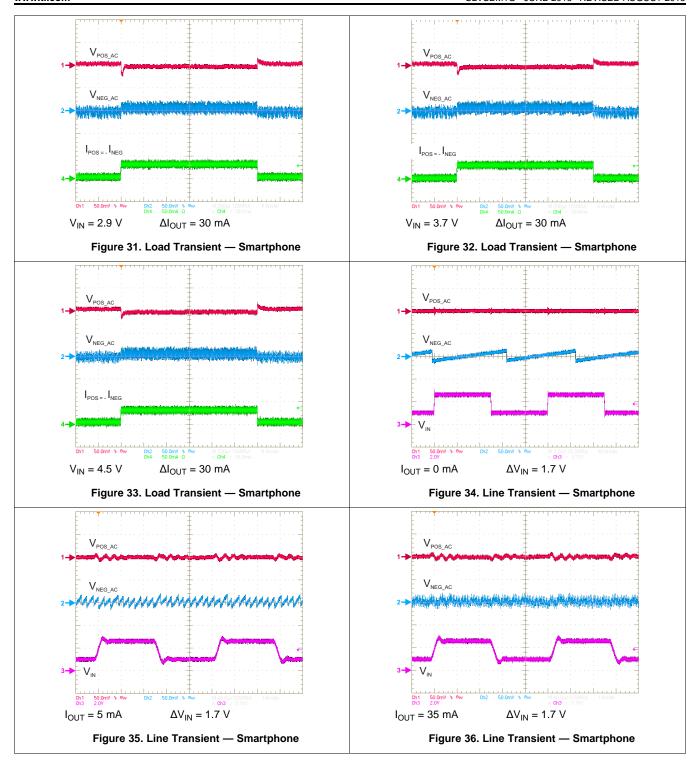
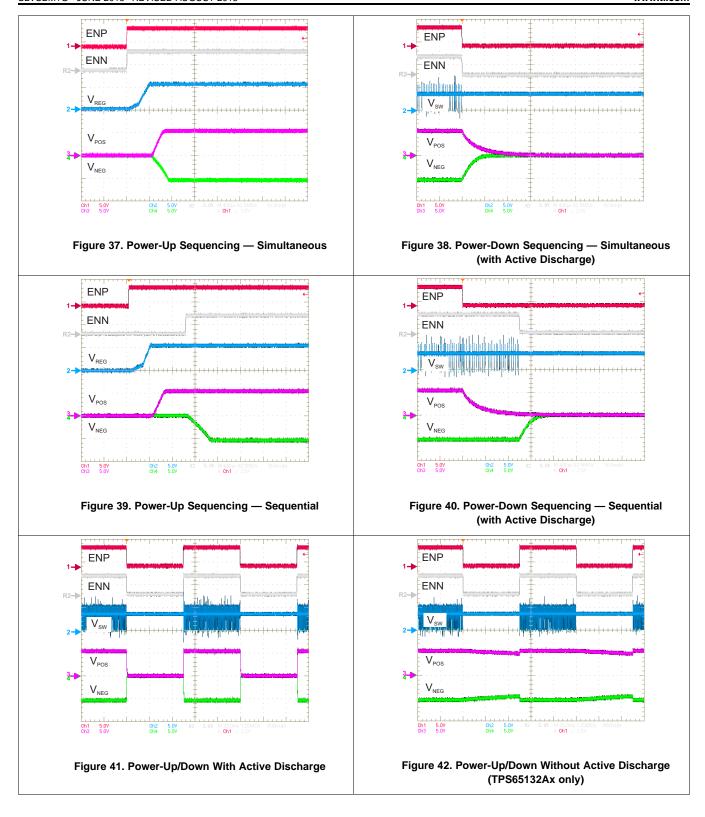


Table 12. Table Of Graphs (continued)


PARAMETER	CONDITIONS	Figure
POWER SEQUENCING		
Power-up Sequencing	Simultaneous — no load	Figure 37
Power-down Sequencing	Simultaneous — no load with Active Discharge	Figure 38
Power-up Sequencing	Sequential — no load	Figure 39
Power-down Sequencing	Sequential — no load with Active Discharge	Figure 40
Power-up/down Sequencing	Simultaneous — no load with Active Discharge	Figure 41
Power-up/down Sequencing	Simultaneous — no load without Active Discharge	Figure 42
INRUSH CURRENT		
Inrush Current	Simultaneous — no load — Smartphone Mode	Figure 43
Inrush Current	Sequential — no load — Smartphone Mode	Figure 44
Inrush Current	Simultaneous — no load — Smartphone Mode — TPS65132B2, -Lx, -Sx, -Wx	Figure 45
Inrush Current	Sequential — no load — Smartphone Mode — TPS65132B2, –Lx, –Sx, –Wx	Figure 46
LOAD REGULATION		
V _{POS} vs Output Current	V_{POS} = 5.0 V — Smartphone Mode — I_{POS} = 0 mA to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 47
V _{POS} vs Output Current	V_{POS} = 5.4 V — Smartphone Mode — I_{POS} = 0 mA to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 48
V _{NEG} vs Output Current	$V_{NEG} = -5.0 \text{ V}$ — Smartphone Mode — $I_{NEG} = 0 \text{ mA}$ to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 49
V _{NEG} vs Output Current	$V_{NEG} = -5.4 \text{ V}$ — Smartphone Mode — $I_{NEG} = 0 \text{ mA}$ to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 50
LINE REGULATION		
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.0 V — Smartphone Mode — I_{POS} = 20 mA — L = 4.7 μH and 2.2 μH	Figure 51
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.4 V — Smartphone Mode — I_{POS} = 20 mA — L = 4.7 μH and 2.2 μH	Figure 52
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = –5.0 V — Smartphone Mode — I_{NEG} = 20 mA — L = 4.7 μH and 2.2 μH	Figure 53
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.4 V — Smartphone Mode — I_{NEG} = 20 mA — L = 4.7 μ H and 2.2 μ H	Figure 54

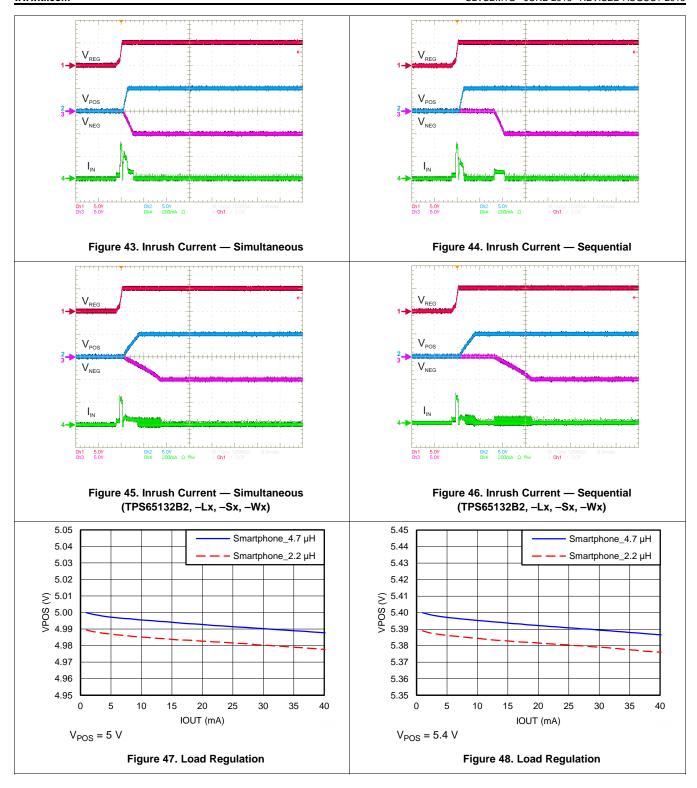
$\label{eq:NOTE} \textbf{In this section, I_{OUT} means that the outputs are loaded with $I_{POS} = -I_{NEG}$ simultaneously.}$





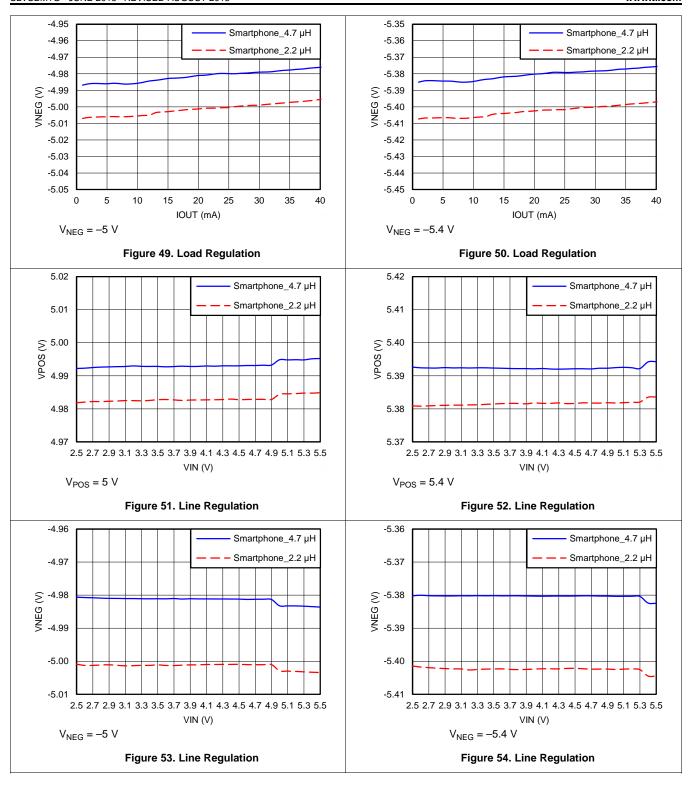
Copyright © 2013–2015, Texas Instruments Incorporated

Submit Documentation Feedback



Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated



Copyright © 2013–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Submit Documentation Feedback

Copyright © 2013–2015, Texas Instruments Incorporated

9.2.2 Mid-current Applications (≤ 80 mA)

The TPS65132 can be programmed to Tablet mode with the APPS bit to support applications that require output currents up to 80 mA (refer to). The Tablet mode is limiting the negative charge pump (CPN) output current to 80 mA DC in order to provide the highest efficiency possible where the $V_{(POS)}$ rail can deliver up to 200 mA DC regardless of the mode. Output peak currents are supported by the output capacitors.

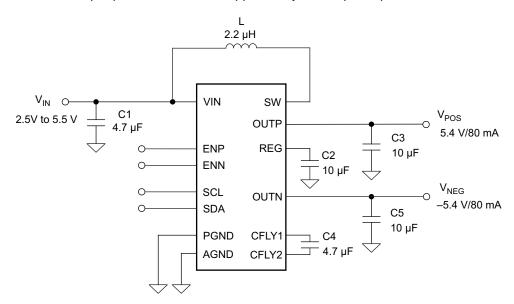


Figure 55. Typical Application Circuit For Tablets

9.2.2.1 Design Requirements

Table 13. Design Parameters

PARAMETERS	EXAMPLE VALUES		
Input Voltage Range	2.5 V to 5.5 V		
Output Voltage	4.0 V to 6.0 V		
Output Current Rating	80 mA		
Boost Converter Switching Frequency	1.8 MHz		
Negative Charge Pump Switching Frequency	1.0 MHz		

9.2.2.2 Detailed Design Procedure

The design procedure for the Tablet mode is identical to the Smartphone mode, except for the BOM (bill of materials). Refer to the *Sequencing* for details about the sequencing.and the general component selection.

9.2.2.2.1 Boost Converter Design Procedure

9.2.2.2.1.1 Inductor Selection (Boost Converter)

In order to keep the ratio $I_{OUT}/\Delta I_L$ low enough for proper sensing operation purpose, it is recommended to use a 2.2 μ H inductor for Tablet mode. Refer to the *Inductor Selection (Boost Converter)* for details about the boost inductor selection.

9.2.2.2.1.2 Input Capacitor Selection (Boost Converter)

A 4.7 μ F minimum bypass capacitor is required as close as possible from VIN to GND. This capacitor is also used as the boost converter input capacitor.

For better input voltage filtering, this value can be increased or two capacitors can be used: one 4.7 μ F input capacitor for the boost converter as well as a 1 μ F bypass capacitor close to the VIN pin. Refer to the Recommended Operating Conditions, Table 10 and Figure 55 for input capacitor recommendations.

9.2.2.2.1.3 Output Capacitor Selection (Boost Converter)

For best output voltage filtering low ESR ceramic capacitors are recommended. A minimum of 10 µF ceramic output capacitor is required. Higher capacitor values can be used to improve the load transient response. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 55 for output capacitor recommendations.

9.2.2.2.2 Input Capacitor Selection (LDO)

The LDO input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 55.

9.2.2.2.3 Output Capacitor Selection (LDO)

The LDO is designed to operate with a 4.7 μF minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 55.

9.2.2.2.4 Input Capacitor Selection (CPN)

The CPN input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 55.

9.2.2.2.5 Output Capacitor Selection (CPN)

The CPN is designed to operate with a 10 μF minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 55.

9.2.2.2.6 Flying Capacitor Selection (CPN)

The CPN needs an external flying capacitor. The minimum value is 4.7 μ F. Special care must be taken while choosing the flying capacitor as it will directly impact the output voltage accuracy and load regulation performance. Therefore, a minimum capacitance of 2.2 μ F must be achieved by the capacitor at a DC bias voltage of $|V_{NEG}|$ + 300 mV. For proper operation, the flying capacitor value must be lower than the output capacitor of the boost converter on REG pin.

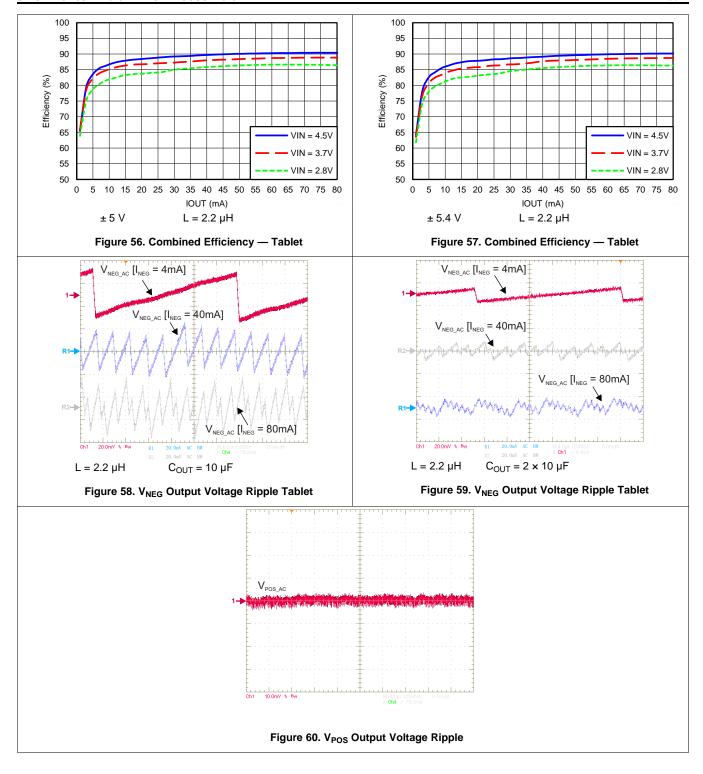
9.2.2.3 Application Curves

 $V_{IN} = 3.7 \text{ V}$, $V_{POS} = 5.4 \text{ V}$, $V_{NEG} = -5.4 \text{ V}$, unless otherwise noted

Table 14. Component List For Typical Characteristics Circuits

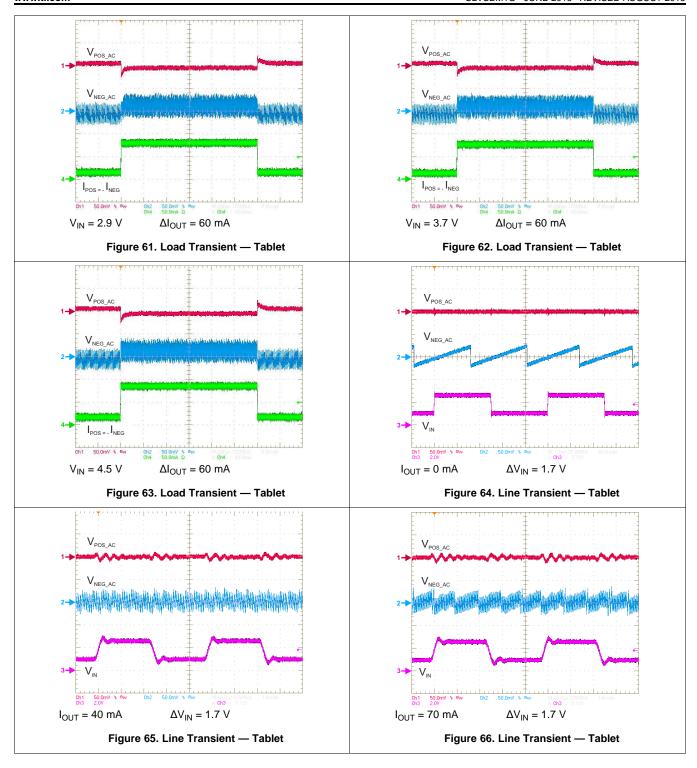
REFERENCE	DESCRIPTION	MANUFACTURER AND PART NUMBER
С	2.2 µF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C225KAAD
	4.7 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C475KAAJ
	10 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61E106MA73
L	2.2 μH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-2R2N=P2)
U1	TPS65132AYFF	Texas Instruments

Table 15. Table Of Graphs

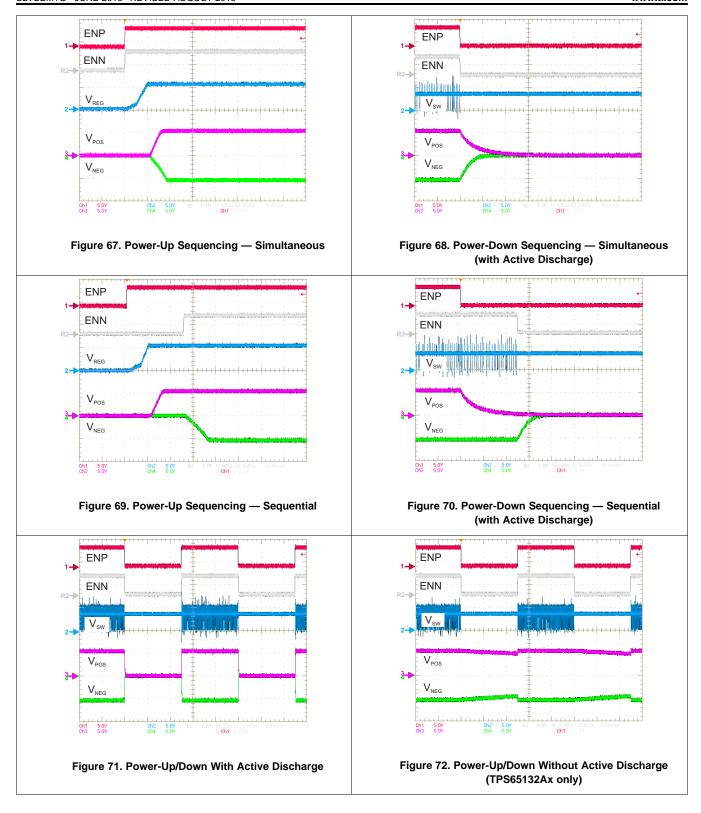

PARAMETER	CONDITIONS	Figure				
EFFICIENCY						
Efficiency vs. Output Current	± 5.0 V — Tablet Mode — L = 2.2 μH	Figure 56				
Efficiency vs. Output Current	± 5.4 V — Tablet Mode — L = 2.2 μH	Figure 57				
CONVERTERS WAVEFOR	RMS					
V _{NEG} Output Ripple	$I_{NEG} = 4 \text{ mA} / 40 \text{ mA} / 80 \text{ mA}$ — Tablet Mode — $C_{OUT} = 10 \mu F$	Figure 58				
V _{NEG} Output Ripple	$I_{NEG} = 4 \text{ mA} / 40 \text{ mA} / 80 \text{ mA}$ — Tablet Mode — $C_{OUT} = 2 \times 10 \mu\text{F}$	Figure 59				
V _{POS} Output Ripple	I _{POS} = 150 mA — Tablet Mode	Figure 60				
LOAD TRANSIENT		•				
Load Transient	V_{IN} = 2.9 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 70 mA \rightarrow 10 mA — Tablet Mode — L = 2.2 μ H	Figure 61				
Load Transient	V_{IN} = 3.7 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 70 mA \rightarrow 10 mA — Tablet Mode — L = 2.2 μ H	Figure 62				
Load Transient	V_{IN} = 4.5 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 70 mA \rightarrow 10 mA — Tablet Mode — L = 2.2 μ H	Figure 63				
LINE TRANSIENT		-				
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V \rightarrow I _{POS} = $-I_{\text{NEG}}$ = 0 mA \rightarrow Tablet Mode \rightarrow L = 2.2 μ H	Figure 64				
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V \rightarrow I_{POS} = $-I_{NEG}$ = 40 mA \rightarrow Tablet Mode \rightarrow L = 2.2 μ H	Figure 65				
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V \rightarrow I_{POS} = $-I_{NEG}$ = 70 mA \rightarrow Tablet Mode \rightarrow L = 2.2 μ H	Figure 66				
POWER SEQUENCING						
Power-up Sequencing	Simultaneous — no load	Figure 67				
Power-down Sequencing	Simultaneous — no load with Active Discharge	Figure 68				
Power-up Sequencing	Sequential — no load	Figure 69				
Power-down Sequencing	Sequential — no load with Active Discharge	Figure 70				
Power-up/down Sequencing	Simultaneous — no load with Active Discharge	Figure 71				
Power-up/down Sequencing	Simultaneous — no load without Active Discharge					
INRUSH CURRENT						
Inrush Current	Simultaneous — no load — Tablet Mode	Figure 73				
Inrush Current	Sequential — no load — Tablet Mode	Figure 74				
Inrush Current	Simultaneous — no load — Tablet Mode — TPS65132B2, -Lx, -Sx, -Wx	Figure 75				
Inrush Current	Sequential — no load — Tablet Mode — TPS65132B2, -Lx, -Sx, -Wx	Figure 76				
LOAD REGULATION		•				
V _{POS} vs Output Current	V_{POS} = 5.0 V — Tablet Mode — I_{POS} = 0 mA to 80 mA — L = 2.2 μ H	Figure 77				
V _{POS} vs Output Current	V_{POS} = 5.4 V — Tablet Mode — I_{POS} = 0 mA to 80 mA — L = 2.2 μ H	Figure 78				
V _{NEG} vs Output Current	V_{NEG} = -5.0 V — Tablet Mode — I_{NEG} = 0 mA to 80 mA — L = 2.2 μ H	Figure 79				
V _{NEG} vs Output Current	V_{NEG} = -5.4 V — Tablet Mode — I_{NEG} = 0 mA to 80 mA — L = 2.2 μ H	Figure 80				
LINE REGULATION						
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.0 V — Tablet Mode — I_{POS} = 60 mA — L = 2.2 μ H	Figure 81				
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.4 V — Tablet Mode — I_{POS} = 60 mA — L = 2.2 μ H	Figure 82				
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.0 V — Tablet Mode — I_{NEG} = 60 mA — L = 2.2 μ H	Figure 83				
V _{NEG} vs Output Voltage	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V} - V_{NEG} = -5.4 \text{ V} - \text{Tablet Mode} - I_{NEG} = 60 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 84				

NOTE

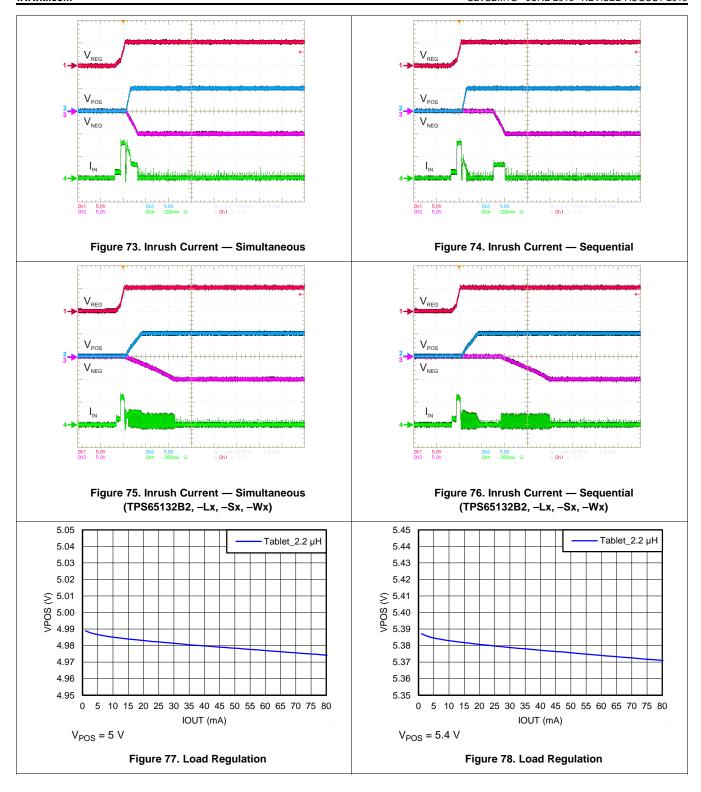
In this section, I_{OUT} means that the outputs are loaded with $I_{POS} = -I_{NEG}$ simultaneously.


Submit Documentation Feedback

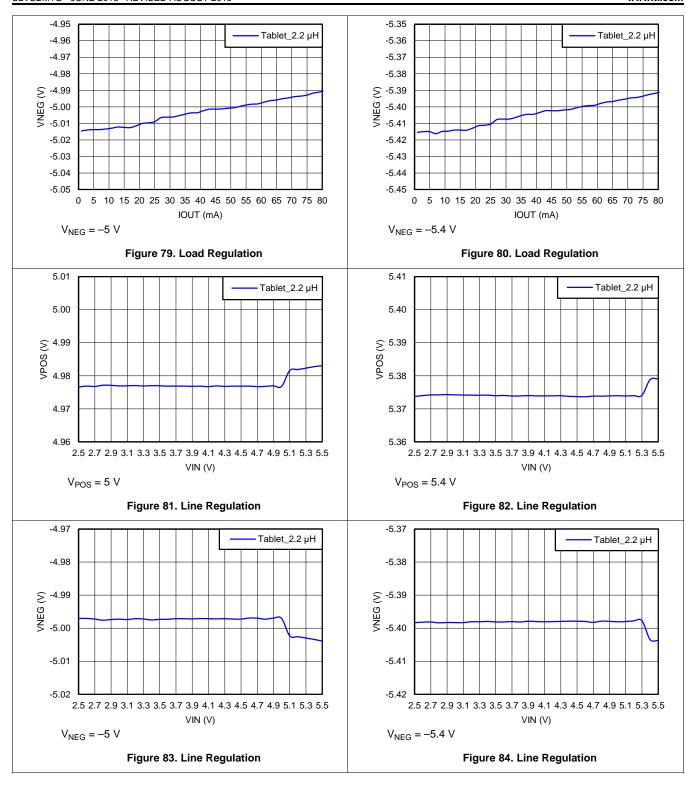
Submit Documentation Feedback



Copyright © 2013–2015, Texas Instruments Incorporated


Submit Documentation Feedback

Submit Documentation Feedback



Copyright © 2013–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Submit Documentation Feedback

9.2.3 High-current Applications (≤ 150 mA)

The TPS65132Sx version allows output current up to 150 mA on both V_{POS} and V_{NEG} when the SYNC pin is pulled HIGH. The TPS65132Sx can be programmed to Smartphone or Tablet mode with the APPS bit to lower the output current capability of the V_{NEG} rail if needed (in the case the efficiency is an important parameter). See Low-current Applications (\leq 40 mA) and Mid-current Applications (\leq 80 mA) for more details about the Smartphone and Tablet modes.

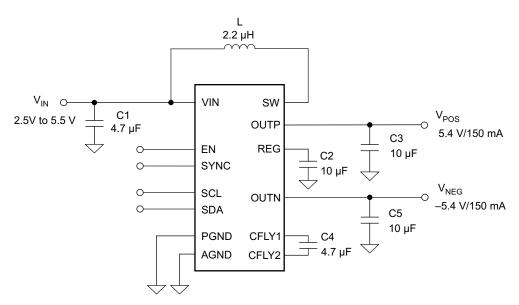


Figure 85. Typical Application Circuit For High Current

9.2.3.1 Design Requirements

Table 16. Design Parameters

PARAMETERS	EXAMPLE VALUES
Input Voltage Range	2.5 V to 5.5 V
Output Voltage	4.0 V to 6.0 V
Output Current Rating	150 mA
Boost Converter Switching Frequency	1.8 MHz
Negative Charge Pump Switching Frequency	1.0 MHz

9.2.3.2 Detailed Design Procedure

The design procedure and BOM list of the TPS65132Sx is identical to the Tablet mode. Please refer to the *Mid-current Applications* ($\leq 80 \text{ mA}$) for more details about the general component selection.

9.2.3.2.1 Sequencing

The output rails (V_{POS} and V_{NEG}) are enabled and disabled using an external logic signal on the EN pin. The power-up and power-down sequencing events are programmable. Please refer to *Programmable Sequencing Scenarios* for the different sequencing as well as *DAC Registers* for the programming options. Figure 102 to show the typical sequencing waveforms.

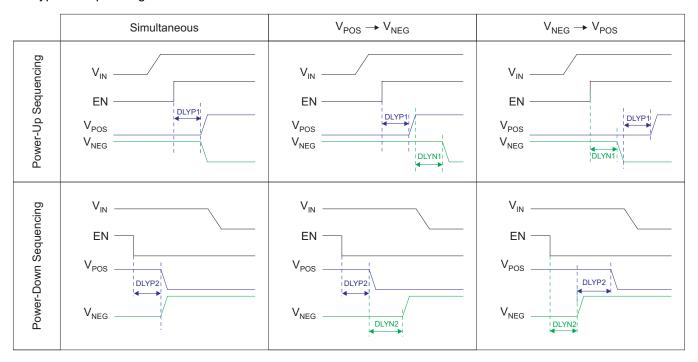


Figure 86. Programmable Sequencing Scenarios

NOTE

- In the case where the UVLO falling threshold is triggered while one of the enable signals is still high (ENN and/or ENP), all converters will be shut down instantaneously and both V_{POS} and V_{NEG} output rails will be actively discharged to GND.
- The power-up and power-down sequencings must be finalized (all delays have passed) before re-toggling the EN pin.

9.2.3.2.2 SYNC = HIGH

When the SYNC pin is pulled HIGH, the boost converter voltage increases instantaneously to allow enough headroom to deliver the 150 mA. When SYNC pin is pulled LOW, the boost converter keeps its offset for 300 μ s typically, and during this time, the device is still capable if supplying 150 mA on both output rail. After these 300 μ s have passed, current limit settles at 40 mA or 80 mA maximum, depending on the application mode it is programmed to (Smartphone or Tablet — see *Low-current Applications* (\leq 40 mA) and *Mid-current Applications* (\leq 80 mA) for more details) and the boost output voltage regulates down to its nominal value. See Figure 92 to Figure 95 for detailed waveforms.

9.2.3.2.3 Startup

The TPS65132Sx can startup with SYNC = HIGH, however, the boost offset as well as the 150 mA output current capability will only be available as soon as the last rail to start is in regulation.

9.2.3.3 Application Curves

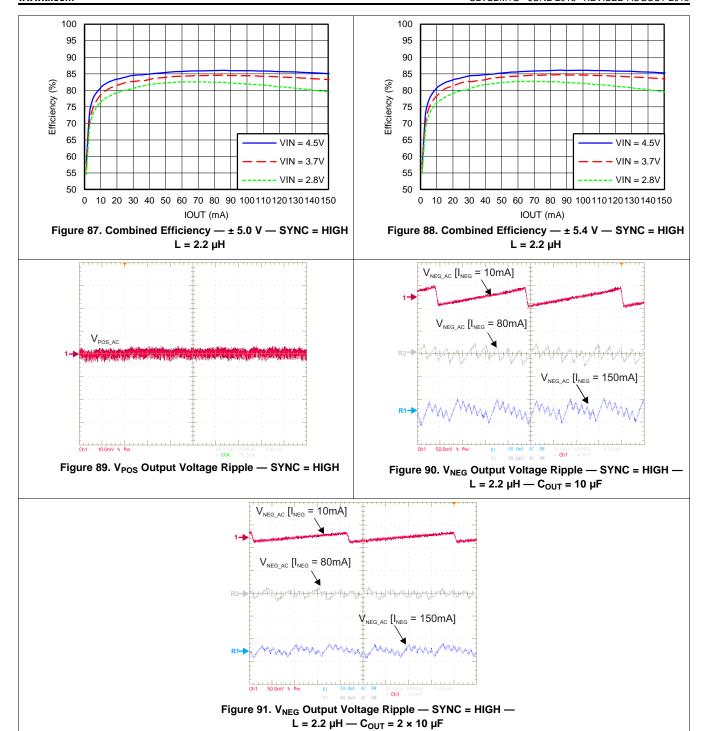
 V_{IN} = 3.7 V, V_{POS} = 5.4 V, V_{NEG} = -5.4 V, unless otherwise noted

Table 17. Component List For Typical Characteristics Circuits

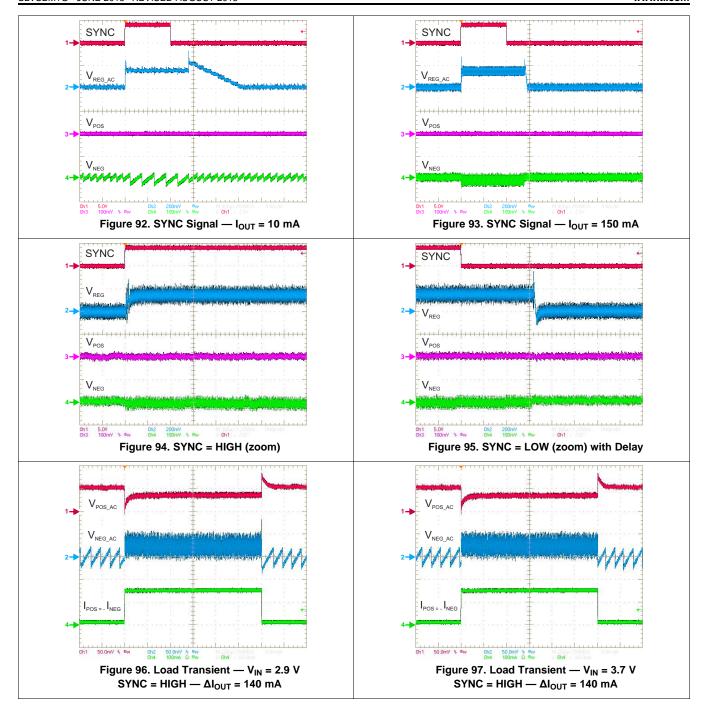
REFERENCE	DESCRIPTION	MANUFACTURER AND PART NUMBER
	2.2 µF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C225KAAD
С	4.7 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C475KAAJ
	10 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61E106MA73
L	2.2 μH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-2R2N=P2)
U1	TPS65132SYFF	Texas Instruments

Table 18. Table Of Graphs

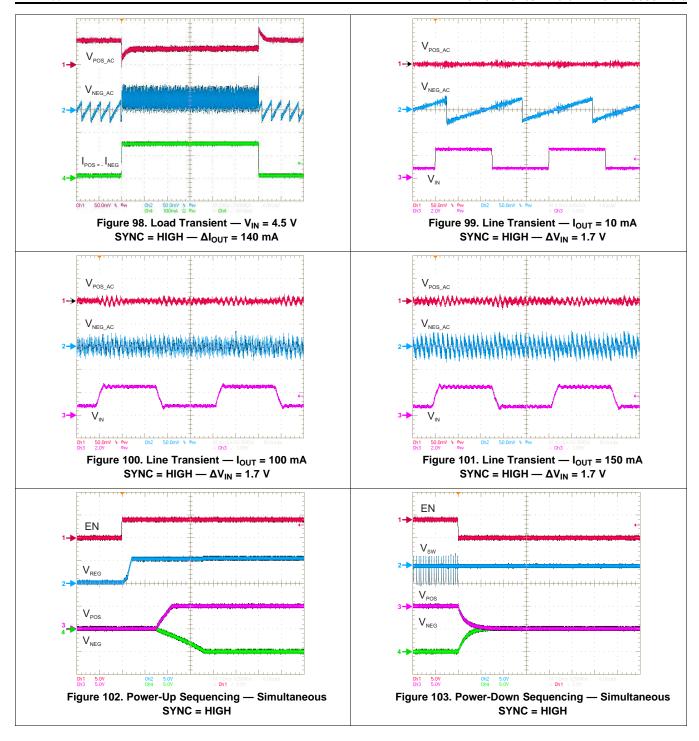
PARAMETER	CONDITIONS	Figure
EFFICIENCY		
Efficiency vs. Output Current	± 5.0 V — SYNC = HIGH — L = 2.2 μH	Figure 87
Efficiency vs. Output Current	± 5.4 V — SYNC = HIGH — L = 2.2 μH	Figure 88
CONVERTERS W	AVEFORMS	
V _{POS} Output Ripple	I _{POS} = 150 mA — SYNC = HIGH	Figure 60
V _{NEG} Output Ripple	I_{NEG} = 10mA / 80 mA / 150 mA — SYNC = HIGH — C_{OUT} = 10 μ F	Figure 90
V _{NEG} Output Ripple	$I_{NEG} = 4$ mA / 40 mA / 80 mA — SYNC = HIGH — $C_{OUT} = 2 \times 10 \mu F$	Figure 91
SYNC = HIGH Sig	nal	
SYNC = HIGH	$I_{POS} = -I_{NEG} = 10 \text{ mA}$	Figure 92
SYNC = HIGH	$I_{POS} = -I_{NEG} = 150 \text{ mA}$	Figure 93
SYNC = HIGH Zoom	$I_{POS} = -I_{NEG} = 10 \text{ mA}$	Figure 94
SYNC = LOW Zoom	$I_{POS} = -I_{NEG} = 10 \text{ mA}$	Figure 95
LOAD TRANSIEN	Т	
Load Transient	$V_{IN} = 2.9 \text{ V} - I_{POS} = -I_{NEG} = 10 \text{ mA} \rightarrow 150 \text{ mA} \rightarrow 10 \text{ mA} - \text{SYNC} = \text{HIGH} - \text{L} = 2.2 \mu\text{H}$	Figure 96
Load Transient	$V_{\text{IN}} = 3.7 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 10 \text{ mA} \rightarrow 150 \text{ mA} \rightarrow 10 \text{ mA} - \text{SYNC} = \text{HIGH} - \text{L} = 2.2 \mu\text{H}$	Figure 97
Load Transient	$V_{IN} = 4.5 \text{ V} - I_{POS} = -I_{NEG} = 10 \text{ mA} \rightarrow 150 \text{ mA} \rightarrow 10 \text{mA} - \text{SYNC} = \text{HIGH} - \text{L} = 2.2 \mu\text{H}$	Figure 98
LINE TRANSIENT	•	
Line Transient	$V_{\text{IN}} = 2.8 \text{ V} \rightarrow 4.5 \text{ V} \rightarrow 2.8 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 10 \text{ mA} - \text{SYNC} = \text{HIGH} - L = 2.2 \mu\text{H}$	Figure 99
Line Transient	$V_{\text{IN}} = 2.8 \text{ V} \rightarrow 4.5 \text{ V} \rightarrow 2.8 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 100 \text{ mA} - \text{SYNC} = \text{HIGH} - L = 2.2 \mu\text{H}$	Figure 100
Line Transient	$V_{\text{IN}} = 2.8 \text{ V} \rightarrow 4.5 \text{ V} \rightarrow 2.8 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 150 \text{ mA} - \text{SYNC} = \text{HIGH} - L = 2.2 \mu\text{H}$	Figure 101
POWER SEQUEN	CING	
Power-up Sequencing	Simultaneous — no load	Figure 102
Power-down Sequencing	Simultaneous — no load with Active Discharge	Figure 103
Power-up Sequencing	Sequential ($V_{POS} \rightarrow V_{NEG}$) — no load	Figure 104
Power-down Sequencing	Sequential ($V_{NEG} \rightarrow V_{POS}$) — no load with Active Discharge	Figure 105
Power-up Sequencing	Sequential ($V_{NEG} \rightarrow V_{POS}$) — no load	Figure 106
Power-down Sequencing	Sequential ($V_{POS} \rightarrow V_{NEG}$) — no load with Active Discharge	Figure 107

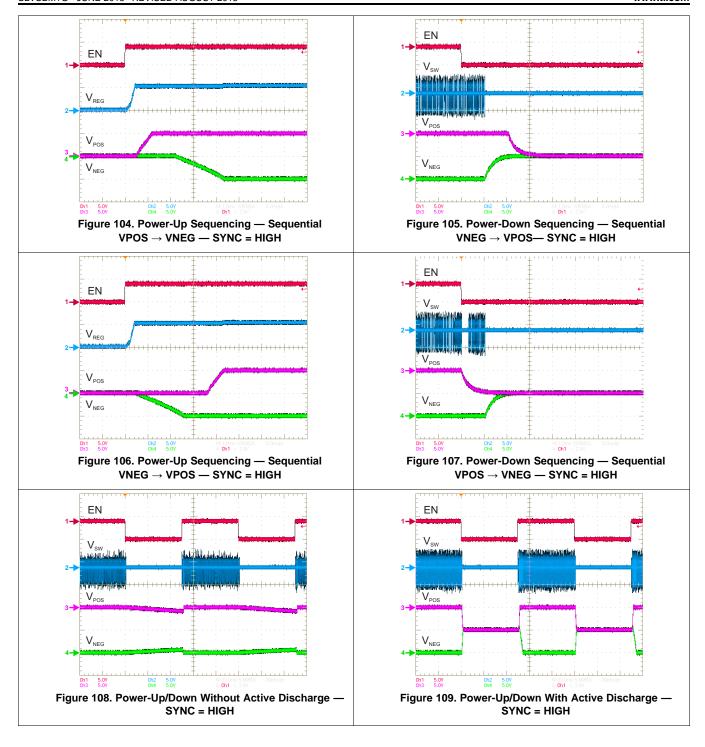

Table 18. Table Of Graphs (continued)

PARAMETER	CONDITIONS	Figure						
Power-up/down Sequencing	Simultaneous — no load without Active Discharge	Figure 108						
Power-up/down Sequencing	Simultaneous — no load with Active Discharge							
INRUSH CURREN	T							
Inrush Current	Simultaneous — no load — SYNC = HIGH — L = 2.2 μH	Figure 110						
Inrush Current	Sequential — no load — SYNC = HIGH — L = 2.2 μH	Figure 111						
LOAD REGULATI	ON							
V _{POS} vs Output Current	$V_{POS} = 5.0 \text{ V} - \text{SYNC} = \text{HIGH} - I_{POS} = 0 \text{ mA to } 150 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 112						
V _{POS} vs Output Current	V_{POS} = 5.4 V — SYNC = HIGH — I_{POS} = 0 mA to 150 mA — L = 2.2 μ H							
V _{NEG} vs Output Current	V_{NEG} = -5.0 V — SYNC = HIGH — I_{NEG} = 0 mA to 150 mA — L = 2.2 μ H							
V _{NEG} vs Output Current	V_{NEG} = -5.4 V — SYNC = HIGH — I_{NEG} = 0 mA to 150 mA — L = 2.2 μ H							
LINE REGULATIO	N .							
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.0 V — SYNC = HIGH — I_{POS} = 120 mA — L = 2.2 μ H	Figure 116						
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.4 V — SYNC = HIGH — I_{POS} = 120 mA — L = 2.2 μ H	Figure 117						
V _{NEG} vs Output Voltage	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V} - V_{NEG} = -5.0 \text{ V} - \text{SYNC} = \text{HIGH} - I_{NEG} = 120 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 118						
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.4 V — SYNC = HIGH — I_{NEG} = 120 mA — L = 2.2 μ H	Figure 119						

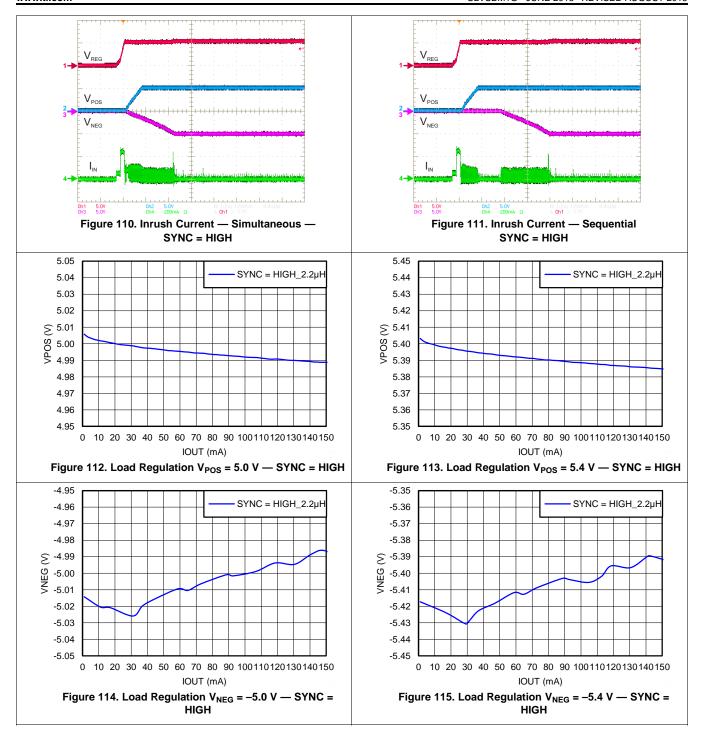

 $\label{eq:NOTE} \textbf{In this section, } I_{\text{OUT}} \text{ means that the outputs are loaded with } I_{\text{POS}} = -I_{\text{NEG}} \text{ simultaneously.}$

Product Folder Links: TPS65132

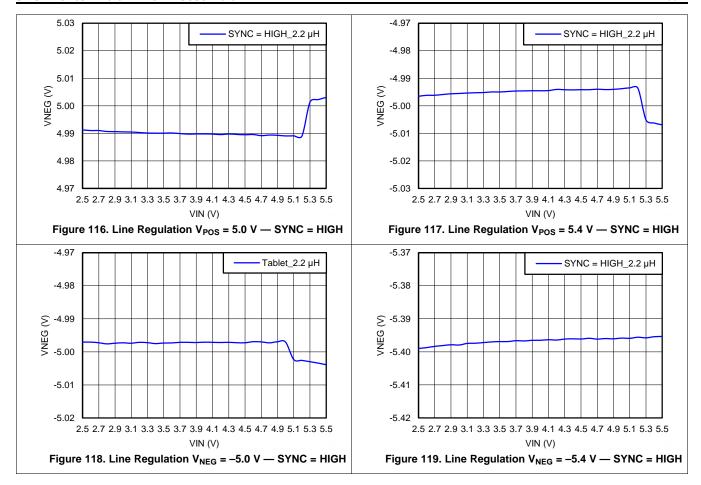




Submit Documentation Feedback



50



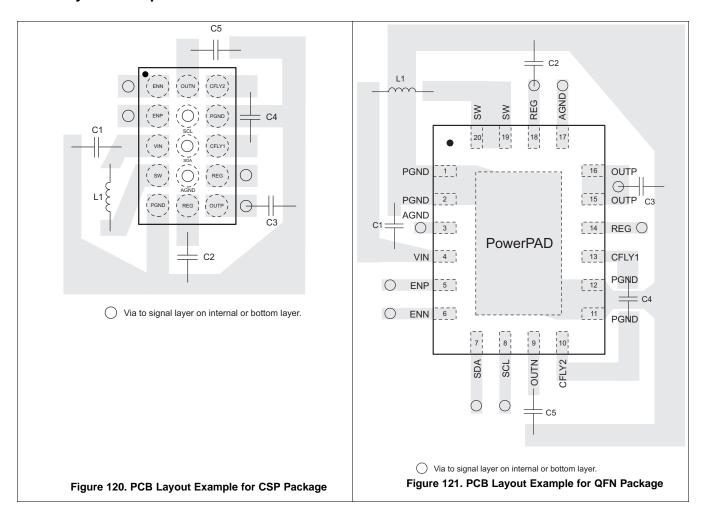
Copyright © 2013–2015, Texas Instruments Incorporated

Submit Documentation Feedback

10 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply must be well regulated. A ceramic input capacitor with a value of 4.7 μ F is a typical choice.

Submit Documentation Feedback


11 Layout

11.1 Layout Guidelines

PCB layout is an important task in the power supply design. Good PCB layout minimizes EMI and allows very good output voltage regulation. For the TPS65132 the following PCB layout guidelines are recommended.

- Keep the power ground plane on the top layer (all capacitor grounds and PGND pins must be connected together with one uninterrupted ground plane).
- AGND and PGND must be connected together on the same ground plane.
- Place the flying capacitor as close as possible to the IC.
- Always avoid vias when possible. They have high inductance and resistance. If vias are necessary, always
 use more than one in parallel to decrease parasitics especially for power lines.
- Connect REG pins together.
- For **high dv/dt** signals (switch pin traces): keep copper area to a minimum to prevent making unintentional parallel plate capacitors with other traces or to a ground plane. Best to route signal and return on same layer.
- For **high di/dt** signals: keep traces short, wide and closely spaced. This will reduce stray inductance and decrease the current loop area to help prevent EMI.
- Keep input capacitor close to the IC with low inductance traces.
- Keep trace from switching node pin to inductor short if possible: it reduces EMI emissions and noise that may couple into other portions of the converter.
- Isolate analog signal paths from power paths.

11.2 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.

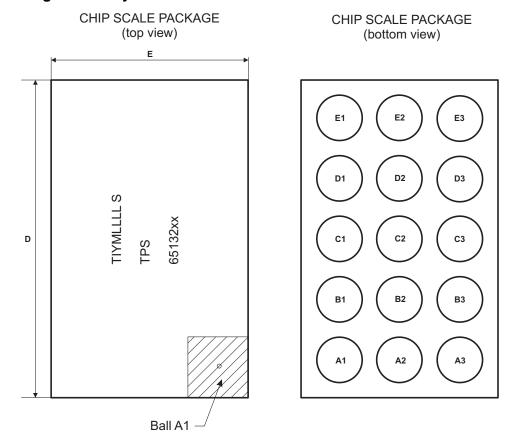
All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.


This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.1 CSP Package Summary

Code:

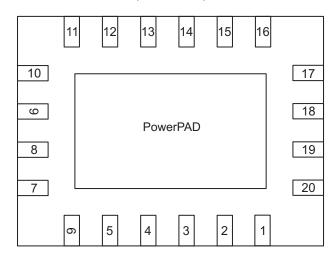
- TI -- TI letters
- YM -- Year-Month date code
- · LLLL -- Lot trace code
- S -- Assembly site code
- xx -- Revision code (contains alpha-numeric characters can be left blank), refer to the Ordering Information section for detailed information)

13.1.1 Chip Scale Package Dimensions

Copyright © 2013-2015, Texas Instruments Incorporated

The TPS65132 device is available in a 15-bump chip scale package (YFF, NanoFree™). The package dimensions are given as:


- D = $2108 \pm 30 \mu m$
- \bullet E = 1514 ±30 μm


CSP Package Summary (continued)

13.1.2 RVC Package Summary

QFN PACKAGE (top view)

QFN PACKAGE (bottom view)

Code:

- TI -- TI letters
- · YM -- Year-Month date code
- · LLLL -- Lot trace code
- S -- Assembly site code
- xx -- Revision code (contains alpha-numeric characters can be left blank), refer to the Ordering Information section for detailed information)

Submit Documentation Feedback

23-Jul-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS65132A0YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132A0	Samples
TPS65132AYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132A	Samples
TPS65132B0YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B0	Samples
TPS65132B2YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B2	Samples
TPS65132B5YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B5	Samples
TPS65132BYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B	Samples
TPS65132L0YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132L0	Samples
TPS65132L0YFFT	ACTIVE	DSBGA	YFF	15	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132L0	Samples
TPS65132LYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132L	Samples
TPS65132T6YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132T6	Samples
TPS65132T6YFFT	ACTIVE	DSBGA	YFF	15	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132T6	Samples
TPS65132WRVCR	ACTIVE	WQFN	RVC	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	65132YA	Samples
TPS65132WRVCT	ACTIVE	WQFN	RVC	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	65132YA	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

23-Jul-2015

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

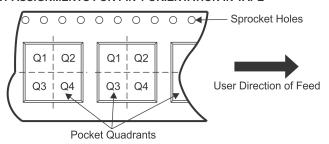
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

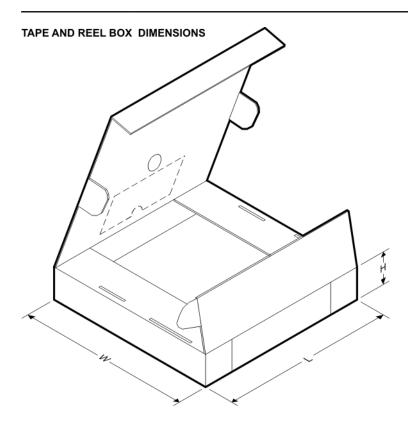
www.ti.com 21-Aug-2015


TAPE AND REEL INFORMATION

TAPE DIMENSIONS KO P1 BO W Cavity AO

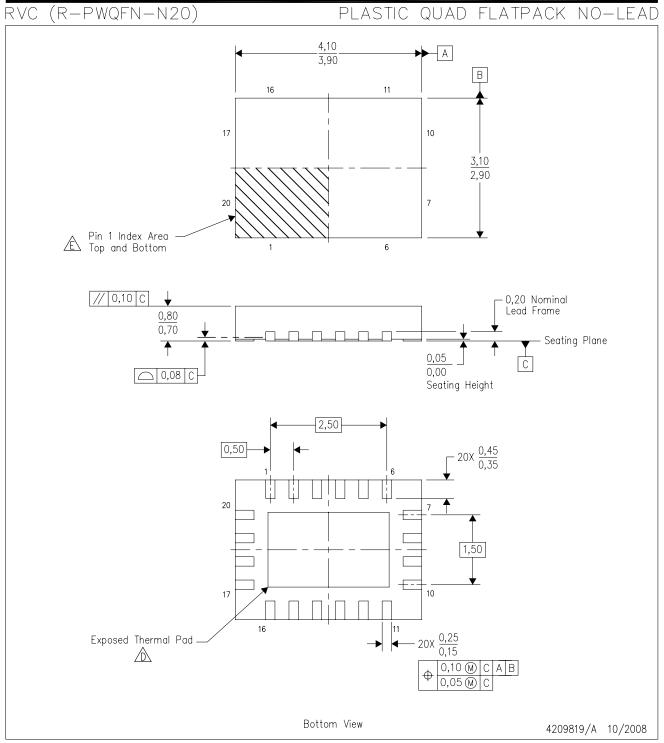
A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65132A0YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132AYFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132B0YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132B2YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132B5YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132BYFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132L0YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132L0YFFT	DSBGA	YFF	15	250	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132LYFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132T6YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132T6YFFT	DSBGA	YFF	15	250	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132WRVCR	WQFN	RVC	20	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS65132WRVCT	WQFN	RVC	20	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 21-Aug-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65132A0YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132AYFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132B0YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132B2YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132B5YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132BYFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132L0YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132L0YFFT	DSBGA	YFF	15	250	182.0	182.0	20.0
TPS65132LYFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132T6YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132T6YFFT	DSBGA	YFF	15	250	182.0	182.0	20.0
TPS65132WRVCR	WQFN	RVC	20	3000	552.0	367.0	36.0
TPS65132WRVCT	WQFN	RVC	20	250	552.0	185.0	36.0

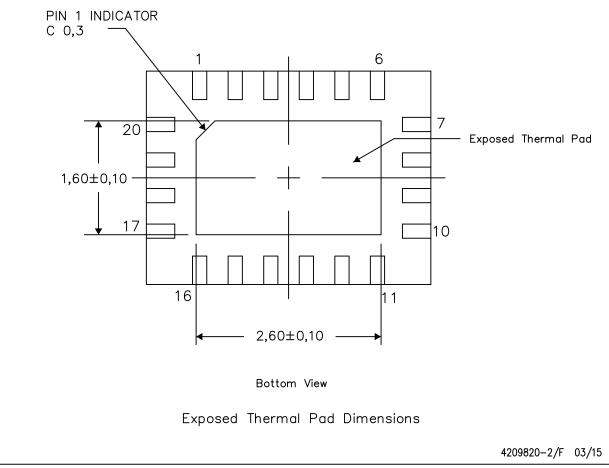
- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - See the Product bata sheet is actual regarding the exposed thermal pad dimensions.

 Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.

 The Pin 1 identifiers are either a molded, marked, or metal feature.

RVC (R-PWQFN-N20)

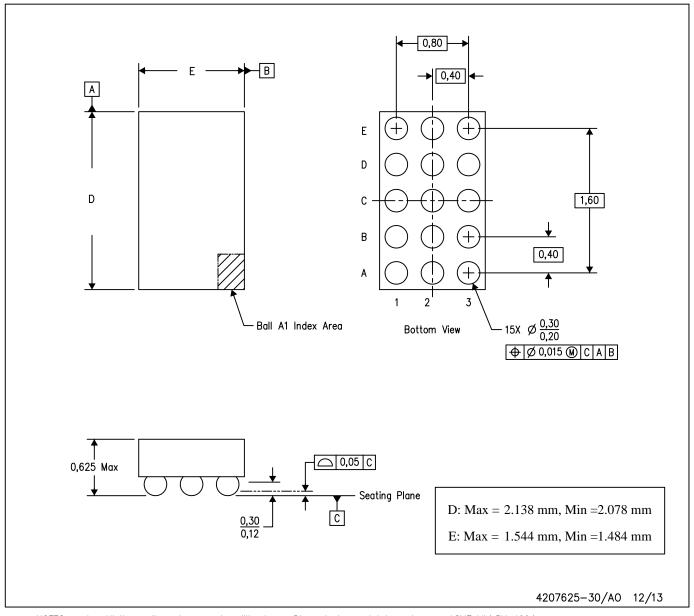

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

YFF (R-XBGA-N15)

DIE-SIZE BALL GRID ARRAY

All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. This drawing is subject to change without notice. NOTES:

- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity