Operational Amplifiers, High Slew Rate, Low Voltage, Rail-to-Rail Output

The NCS2003 family of op amps features high slew rate, low voltage operation with rail-to-rail output drive capability. The 1.8 V operation allows high performance operation in low voltage, low power applications. The fast slew rate and wide unity-gain bandwidth (5 MHz at 1.8 V) make these op amps suited for high speed applications. The low input offset voltage (4 mV max) allows the op amp to be used for current shunt monitoring. Additional features include no output phase reversal with overdriven inputs and ultra low input bias current of 1 pA.

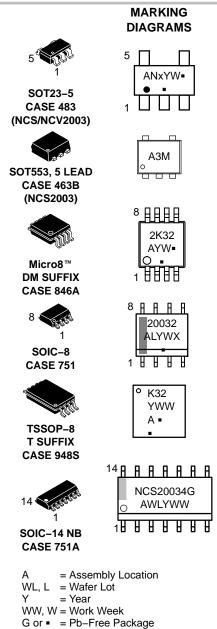
The NCS2003 family is the ideal solution for a wide range of applications and products. The single channel NCS2003, dual channel NCS20032, and quad channel NCS20034 are available in a variety of compact and space–saving packages. The NCV prefix denotes that the device is AEC–Q100 Qualified and PPAP Capable.

Features

- Unity Gain Bandwidth: 7 MHz at $V_S = 5 V$
- Fast Slew Rate: 8 V/ μ s rising, 12.5 V/ μ s falling at V_S = 5 V
- Rail-to-Rail Output
- No Output Phase Reversal for Over-Driven Input Signals
- Low Offset Voltage: 0.5 mV typical
- Low Input Bias Current: 1 pA typical
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

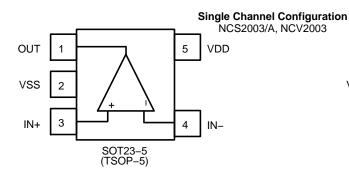
Applications

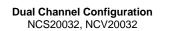
- Current Shunt Monitor
- Signal Conditioning
- Active Filter
- Sensor Buffer

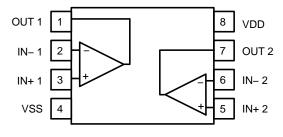

End Products

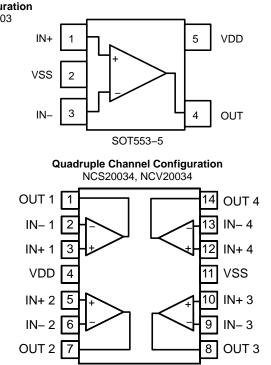
- Motor Control Drives
- Hard Drives
- Medical Devices
- White Goods and Air Conditioners

ON Semiconductor®


www.onsemi.com




(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS2003SN2T1G	Single	No	AN3	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS2003ASN2T1G		No	AN4	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS2003XV53T2G		No	A3	SOT553–5 (Pb–Free)	4000 /Tape and Reel
NCV2003SN2T1G*		Yes	AN3	SOT23–5 (Pb–Free)	3000 / Tape and Reel
NCS20032DMR2G (In Development)**	Dual	No	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCS20032DR2G			20032	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20032DTBR2G (In Development)**			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCV20032DMR2G* (In Development)**		Yes	2K32	Micro8 (Pb–Free)	4000 / Tape and Reel
NCV20032DR2G*			20032	SOIC–8 (Pb–Free)	2500 / Tape and Reel
NCV20032DTBR2G*			K32	TSSOP-8 (Pb-Free)	3000 / Tape and Reel
NCS20034DR2G	Quad	No	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20034DR2G*		Yes	NCS20034G	SOIC-14 (Pb-Free)	2500 / Tape and Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

**Contact local sales office for more information.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated

Parameter	Symbol	Limit	Unit
Supply Voltage (V _{DD} – V _{SS})	V _S	7.0	V
INPUT AND OUTPUT PINS	· · · ·		
Input Voltage (Note 1)	V _{IN}	V_{SS} – 0.3 to 7.0	V
Input Current	I _{IN}	10	mA
Output Short Current (Note 2)	۱ ₀	100	mA
TEMPERATURE			
Storage Temperature	T _{STG}	-65 to 150	°C
Junction Temperature	TJ	150	°C
ESD RATINGS (Note 3)	· · ·		

Human Body Model	NCx2003, A NCx20032 NCx20034	НВМ	3000 2000 3000	V
Machine Model	NCx2003, A NCx20032 NCx20034	MM	200 100 150	V
Charged Device Model	NCx2003, A NCx2003x	CDM	1000 2000	V

OTHER PARAMETERS

Moisture Sensitivity Level (Note 5)	MSL	Level 1	
Latch-up Current (Note 4)	ILU	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Neither input should exceed the range of V_{SS} – 300 mV to 7.0 V. This device contains internal protection diodes between the input pins and V_{DD}. When V_{IN} exceeds V_{DD}, the input current should be limited to the specified value.

2. Indefinite duration; however, maximum package power dissipation limits must be observed to ensure that the maximum junction temperature is not exceeded.

3. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 and JESD22-A114 ESD Machine Model tested per AEC-Q100-003 and JESD22-A115

ESD Machine Model tested per AEC-Q100-003 and JESD22-A115 ESD Charged Device Model tested per AEC-Q100-011 and ANSI/ESD S5.3.1-2009

4. Latch-up current tested per JEDEC Standard JESD78.

5. Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A.

THERMAL INFORMATION

Thermal Metric	Symbol	Package	Single Layer Board (Note 6)	Multi Layer Board (Note 7)	Unit
		SOT23-5/TSOP-5	408	355	
		SOT553-5	428	406	
Junction to Ambient	0	Micro8/MSOP8	235	163	0000
Thermal Resistance	θ_{JA}	SOIC-8	240	179	°C/W
		TSSOP-8	300	238	
		SOIC-14	167	123	

6. Values based on a 1S standard PCB according to JEDEC51–3 with 1.0 oz copper and a 300 mm² copper area

7. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

RECOMMENDED OPERATING CONDITIONS

Paramete	Parameter		Min	Max	Unit
Operating Supply Voltage (V _{DD} – V _{SS})		V _S	1.7	5.5	V
Specified Operating Range	NCS2003, A NCV2003, NCx20032, NCx20034	T _A	-40 -40	+85 +125	°C
Input Common Mode Range		V _{CM}	V _{SS}	V _{DD} -0.6	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS			·			
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003, NCx20032, NCx20034		0.5	4.0	mV
					5.0	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			2.0		μV/°C
		NCS2003A (Note 8)			6.0	μV/°C
Input Bias Current	I _{IB}			1		pА
Input Offset Current	I _{OS}			1		pА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		TΩ
Input Capacitance	C _{IN}			1.2		pF
Common Mode Rejection	CMRR	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	70	80		dB
Ratio		V_{IN} = V_{SS} + 0.2 V to V_{DD} – 0.6 V	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	A _{VOL}	$R_L = 10 \ k\Omega$		80	92		dB
				75			
		$R_L = 2 k\Omega$			92		
				70			
Output Current Capability	I _{SC}	Sourcing		5	8		mA
(Note 8)		Sinking		10	14		
Output Voltage High	V _{OH}	R _L = 10 kΩ		1.75	1.798		V
		$R_L = 2 k\Omega$		1.7	1.78		
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$	NCx2003, A		7	50	mV
			NCx2003x		7	100	
		$R_L = 2 k\Omega$	•		20	100	

NOISE PERFORMANCE

Voltage Noise Density	e _N	f = 1 kHz	20	nV/√ Hz
Current Noise Density	i _N	f = 1 kHz	0.1	pA√Hz

DYNAMIC PERORMANCE

Gain Bandwidth Product	GBWP			5	MHz
Clow Data at Unity Cain	SR	Rising Edge, $R_L = 2 k\Omega$, $A_V = +1$		6	1///
Slew Rate at Unity Gain	SR	Falling Edge, R _L = 2 I	$\propto \Omega, A_V = +1$	9	V/μs
Phase Margin	ψm	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$		53	٥
Gain Margin	A _m	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$	NCx2003, A	12	dB
			NCx2003x	8	
Settling Time	ts	V _O = 1 Vpp, Gain = 1, C _L = 20 pF	Settling time to 0.1%	1.8	μS

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +1.8 V

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions		Тур	Max	Unit
DYNAMIC PERORMANCE						
Total Harmonics Distortion + Noise	THD+N	V_{O} = 1 V_{pp} , R_{L} = 2 k Ω , A_{V} = +1, f = 1 kHz		0.005		%
NOISE		V_{O} = 1 V_{pp} , R_{L} = 2 k Ω , A_{V} = +1, f = 10 kHz		0.025		

POWER SUPPLY

Power Supply Rejection Ratio	PSRR	NCx2003		72	80		dB
				65			
		NCx20032, NCx2	NCx20032, NCx20034		100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		230	560	μΑ
						1000	
			NCx20032,		275	375	
			NCx20034			575	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V

At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	3					
Input Offset Voltage	V _{OS}	NCS2003A		0.5	3.0	mV
		NCx2003		0.5	4.0	mV
		NCx20032, NCx20034			5.0	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$			2.0		μV/°C
		NCS2003A (Note 9)			6.0	μV/°C
Input Bias Current	I _{IB}			1		pА
Input Offset Current	I _{OS}			1		pА
Channel Separation	XTLK	DC, NCx20032, NCx20034		100		dB
Input Resistance	R _{IN}			1		TΩ
Input Capacitance	C _{IN}			1.2		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

9. Guaranteed by design and/or characterization.

ELECTRICAL CHARACTERISTICS: V_S = +5.0 V

At $T_A = +25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. Boldface limits apply over the specified temperature range. Guaranteed by design and/or characterization.

Parameter	Symbol	Conditi	ons	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Common Mode Rejection Ratio	CMRR	NCx2003, A	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	65	90		dB
			$V_{IN} = V_{SS} + 0.2 V$ to $V_{DD} - 0.6 V$	63			
		NCx20032, NCx20034	$V_{IN} = V_{SS}$ to $V_{DD} - 0.6$ V	70	90		
			$V_{IN} = V_{SS} + 0.2 V$ to $V_{DD} - 0.6 V$	65			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain A _{VOL}		$R_L = 10 k\Omega$		86	92		dB
				78			
		R _L = 2	2 kΩ	83	92		
				78			
Output Current Capability	I _{SC}	Sourcing Sinking		40	76		mA
(Note 9)				50	96		
Output Voltage High	V _{OH}	R _L = 2	10 kΩ	4.95	4.99		V
		R _L =	2 kΩ	4.9	4.97		
Output Voltage Low	ge Low VOL $R_L = 10 \text{ k}\Omega$		NCx2003, A		8	50	mV
			NCx2003x		8	100	
		R _L = 2	2 kΩ		24	100	1

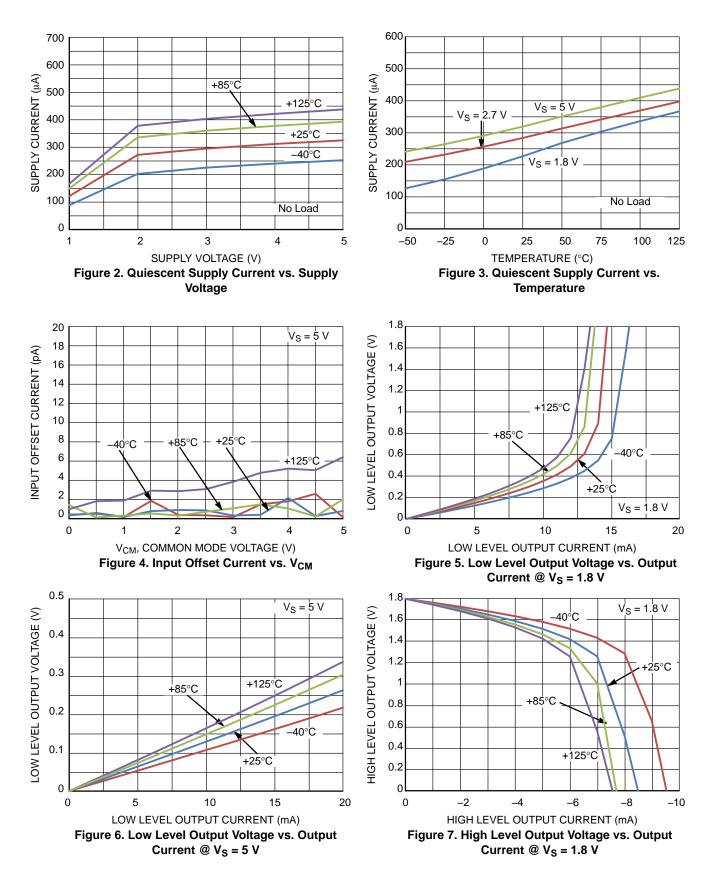
NOISE PERFORMANCE

Voltage Noise Density	e _N	f = 1 kHz	20	nV/√Hz
Current Noise Density	i _N	f = 1 kHz	0.1	pA√ Hz

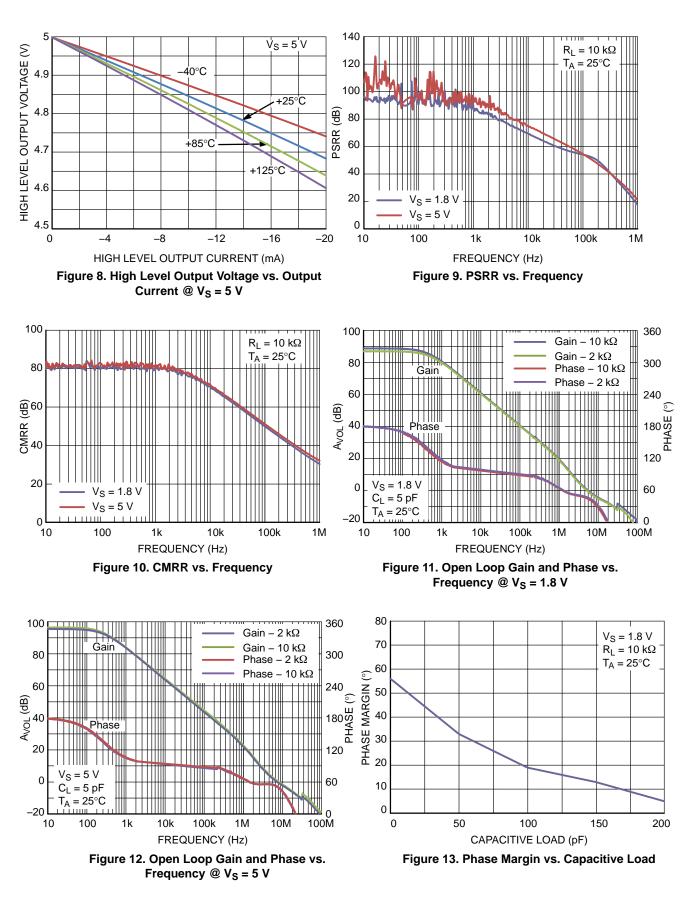
DYNAMIC PERORMANCE

Gain Bandwidth Product	GBWP				7	MHz
Slew Rate at Unity Gain	SR	Rising Edge, $R_L = 2 k\Omega$, $AV = +1$			8	V/μs
		Falling Edge, R _L =	2 kΩ, AV = +1		12.5	
Phase Margin	Ψm	$R_L = 10 \text{ k}\Omega, C_L = 5 \text{ pF}$	$R_{\rm L} = 10 \text{ k}\Omega, C_{\rm L} = 5 \text{ pF}$ NCx2003, A		64	0
			NCx2003x		56	
Gain Margin	A _m	R _L = 10 kΩ, C	C _L = 5 pF		9	dB
Settling Time	t _S	V _O = 1 V _{pp} , Gain = 1, C _L = 20 pF	Settling time to 0.1%		0.6	μs
Total Harmonics Distortion +	THD+N	$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega,$	$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega, A_{V} = +1, f = 1 \text{ kHz}$		0.002	%
Noise		$V_{O} = 4 V_{pp}, R_{L} = 2 k\Omega, A$	A _V = +1, f = 10 kHz	(0.01	

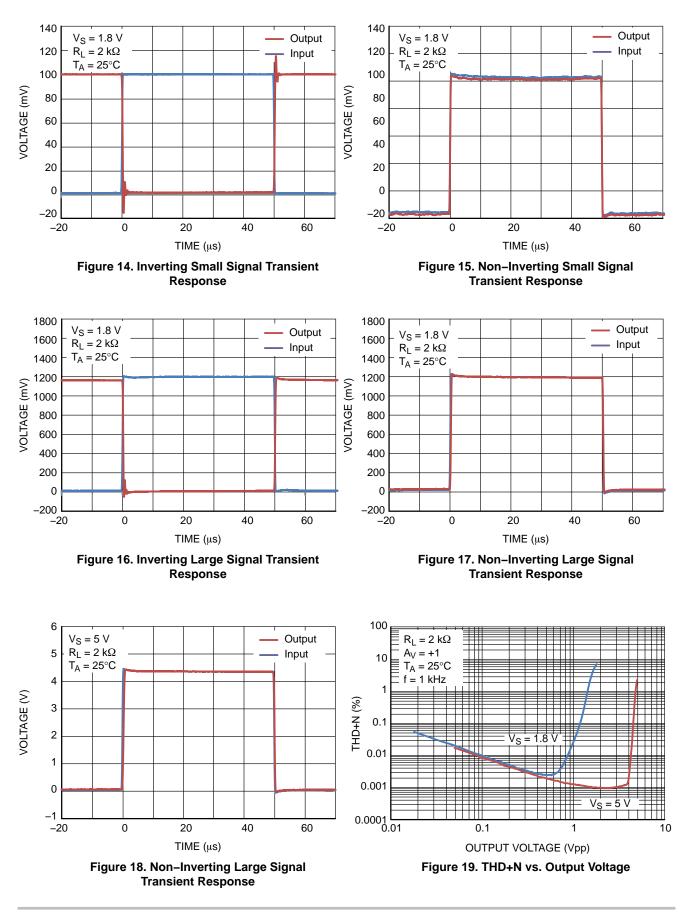
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 9. Guaranteed by design and/or characterization.


ELECTRICAL CHARACTERISTICS: $V_S = +5.0 V$

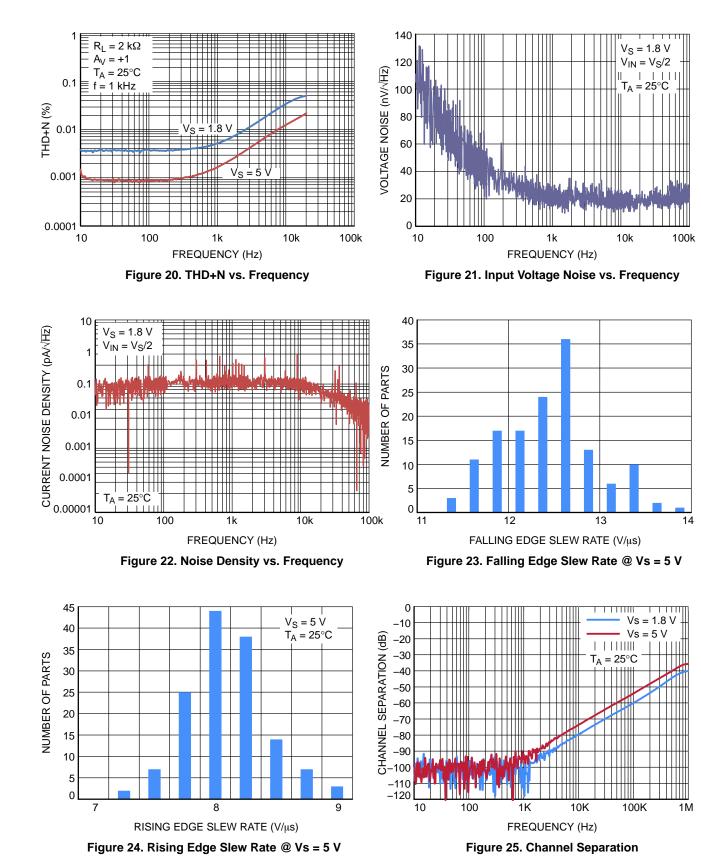
At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT}$ = midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range. Guaranteed by design and/or characterization.


Parameter	Symbol	Conditions		Min	Тур	Max	Unit
POWER SUPPLY							
Power Supply Rejection Ratio	PSRR	NCx2003, A		72	80		dB
				65			
		NCx20032, N	NCx20032, NCx20034		100		
Quiescent Current	I _{DD}	No load, per channel	NCx2003, A		300	660	μΑ
						1000	
		NCx20032,			325	450	
			NCx20034			675	1

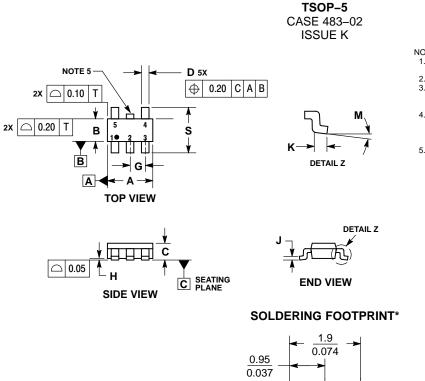
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


9. Guaranteed by design and/or characterization.

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

www.onsemi.com

TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

1 1.0 0.039

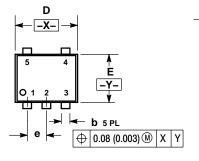
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

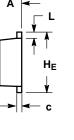
0.7

0.028

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS. SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. ODTIONAL CONSTRUCTION A. ADDITIONAL 4.
- OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. 5. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

THOM BOB II							
	MILLIMETERS						
DIM	MIN	MAX					
Α	3.00	BSC					
В	1.50	BSC					
С	0.90	1.10					
D	0.25	0.50					
G	0.95	BSC					
н	0.01	0.10					
J	0.10	0.26					
ĸ	0.20 0.60						
М	0 °	10 °					
S	2.50	3.00					

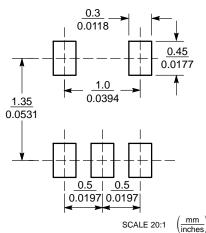

2.4 0.094


SCALE 10:1

 $\left(\frac{mm}{inches}\right)$

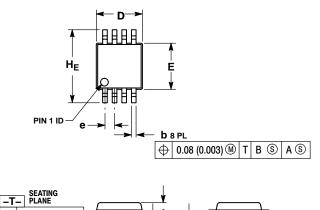
PACKAGE DIMENSIONS

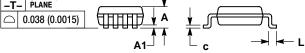
SOT-553, 5 LEAD CASE 463B ISSUE C



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	м	ILLIMETE	RS		INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.15	1.20	1.25	0.045	0.047	0.049	
е		0.50 BSC		0.020 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.55	1.60	1.65	0.061	0.063	0.065	

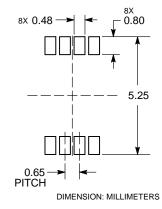

RECOMMENDED **SOLDERING FOOTPRINT***



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

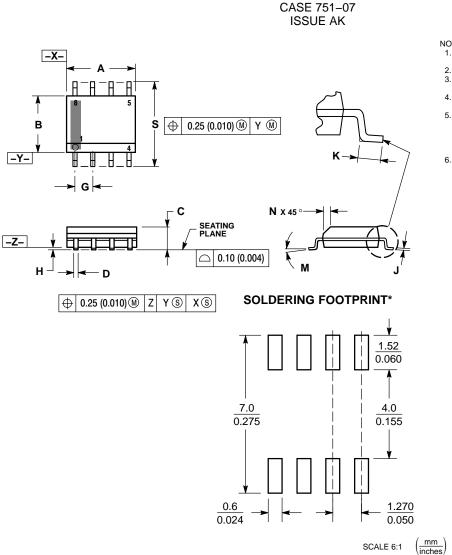
Micro8[™] CASE 846A-02 **ISSUE J**



NOTES:

- IDIESS:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED
- MOLD FLASH, FRO HOSIONS ON GATE BORRS SHALL NOT EACEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846A-01 OBSOLETE, NEW STANDARD 846A-02.

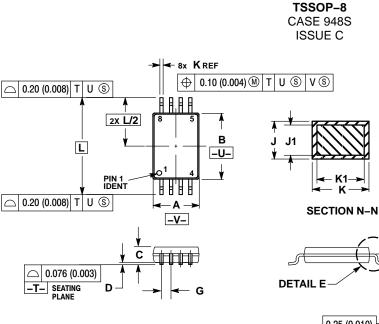
	м	ILLIMETE	RS		INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.05	0.08	0.15	0.002	0.003	0.006	
b	0.25	0.33	0.40	0.010	0.013	0.016	
С	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	2.90	3.00	3.10	0.114	0.118	0.122	
е		0.65 BSC		0.026 BSC			
L	0.40	0.55	0.70	0.016	0.021	0.028	
HE	4.75	4.90	5.05	0.187	0.193	0.199	



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOIC-8 NB


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

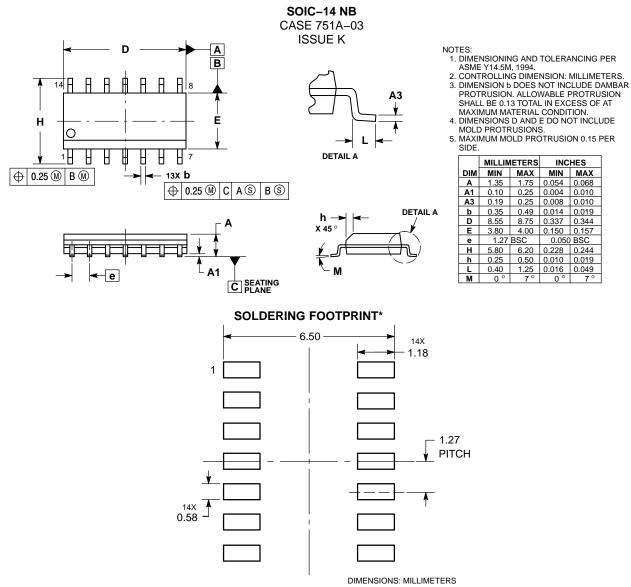
NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MANUNUNUN DO DOCTUNION A 45 40 200
- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE.
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
в	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
ĸ	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

PACKAGE DIMENSIONS

0.25 (0.010) Ν Μ Ν < F →


DETAIL E

-W-

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH 3. OR GATE BURRS SHALL NOT EXCEED 0.15
- On GATE BORNS SINCE INCLEDE INTERLEAD (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
- PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- a. Terminal complete and one of own for a REFERENCE ONLY.
 b. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
в	4.30	4.50	0.169	0.177	
c		1.10		0.043	
D	0.05	0.15	0.002	0.006	
F	0.50	0.70	0.020	0.028	
G	0.65	BSC	0.026 BSC		
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L				BSC	
М	0 °	8°	0°	8°	

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8 is a trademark of International Rectifier.

ON Semiconductor and the use are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regardi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative