

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

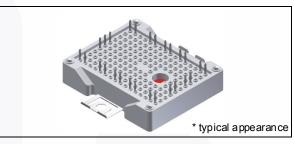
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FPF2C110BI07AS2 F2, Boost and Inverter module with Press-fit

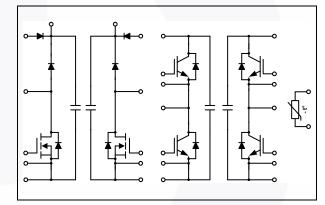
General Description

Fairchild's Boost and H-Bridge module is designed for a power stage that needs more compact design. And the Press-fit technology provides simple and reliable mounting. This module is optimized for the application such as solar inverter where a high efficiency and robust design are needed.

Electrical Features


- Boost Stage
 - Dual Boost Topology
 - SiC Boost Diode
 - Low R_{DS(ON)} Boost Switch
 - Low V_F and High Voltage Bypass Diode
- Inverter Stage
 - H-bridge Topology
 - High Speed IGBT and Fast Recovery FWD
- Integrated DC-capacitor for Boost and Inverter
- Temperature Sensor

Mechanical Features


- Compact size : F2 Package
- Press-fit Contact Technology
- Al₂O₃ Substrate with Low Thermal Resistance

Applications

Solar Inverter

Package Code: F2

Internal Circuit Diagram

Package Marking and Ordering Information

ĺ	Device	Device Marking	Package	Packing Type	Quantity / Tray
[FPF2C110BI07AS2	FPF2C110BI07AS2	F2	Tray	14

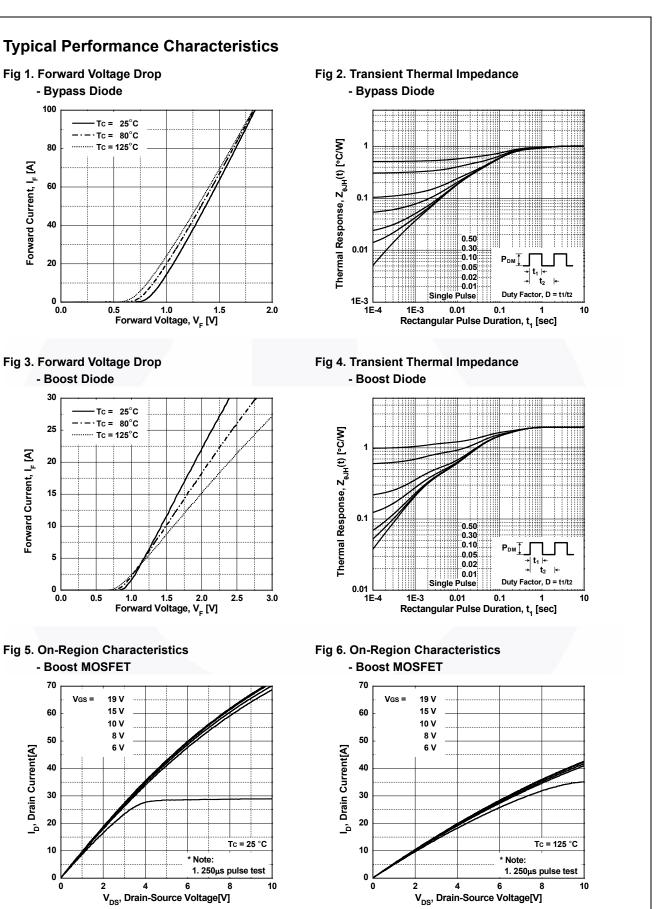
FPF2C110BI07AS2 F2, Boost and Inverter module with Press-fit

Nov. 2016

Symbol	Description	Condition	Rating	Units
Bypass Dio	ode (DA1, DA2)			
V _{RRM}	Peak Repetitive Reverse Voltage		1000	V
l _F	Continuous Forward Current T _C = 80 °C, T _{Jmax} = 175 °C		50	Α
I _{FSM}	Non-repetitive Peak Surge Current	60 Hz Single Half-Sine Wave	350	А
l ² t	Surge Current Integral Value	_	510	A ² s
P _D	Maximum Power Dissipation	T _{Jmax} = 175 °C	300	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
Boost Diod	e (DB1, DB2)			
V _{RRM}	Peak Repetitive Reverse Voltage		650	V
IF	Continuous Forward Current	T _C = 80 °C, T _{Jmax} = 175 °C	10	A
I _{FSM}	Non-repetitive Peak Surge Current	60 Hz Single Half-Sine Wave	40	A
l ² t	Surge Current Integral Value		6.6	A ² s
P _D	Maximum Power Dissipation			W
TJ	Operating Junction Temperature		- 40 to + 150	°C
Boost MOS	FET (M1, M2)			
V _{DSS}	Drain-Source Voltage		650	V
V _{GSS}	Gate-Source Voltage		± 20	V
ID	Drain Current	T _C = 25 °C, T _{Jmax} = 150 °C	25	A
b		$T_{\rm C} = 80 ^{\circ}{\rm C}, T_{\rm Jmax} = 150 ^{\circ}{\rm C}$	19	A
I _{DM}	Pulsed Drain Current	limited by T _{Jmax}	50	A
P _D	Maximum Power Dissipation	T _{Jmax} = 150 °C	199	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
H-bridge IG	BT (QA, QB, QC, QD)			
V _{CES}	Collector-Emitter Voltage		650	V
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	T _C = 80 °C, T _{Jmax} = 175 °C	40	A
I _{CM}	Pulsed Collector Current	limited by T _{Jmax}	80	A
P _D	Maximum Power Dissipation	T _{Jmax} = 175 °C	158	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
H-bridge F\	ND (QAD, QBD, QCD, QDD)			
V _{RRM}	Peak Repetitive Reverse Voltage		650	V
IF	Diode Forward Current			Α
I _{FM}	Pulsed Maximum Forward Currents	limited by T _{Jmax}	60	A
PD	Maximum Power Dissipation	T _{Jmax} = 175 °C	109	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
DC Link Ca	pacitor			
V _{MAX}	Maximum DC Voltage		1000	V
T _{OP}	Operating Temperature		- 55 to + 125	°C

Symbol	Description	Condition	Rating	Units
Module				
T _{STG}	Storage Temperature		- 40 to + 125	°C
V _{ISO}	Isolation Voltage	AC 1 min. 2500		V
IsoMaterial	Internal Isolation Material	Al ₂ O ₃	-	
T _{MOUNT}	Mounting Torque ₍₁₎	2.4	N•m	
Creepage	Terminal to Heat Sink		11.5	mm
	Terminal to Terminal		6.3	mm
Clearance	Terminal to Heat Sink		10.0	mm
	Terminal to Terminal		5.0	mm

Notes:


1. Recommendable value : 2.0 ~ 2.4 Nm (M4)

FPF2C110BI07AS2
F2,
Boost ar
nd Ir
าverter
S2 F2, Boost and Inverter module with
th Press-fit

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Bypass D	liode (DA1, DA2)					
V _F	Diode Forward Voltage	I _F = 50 A	-	1.37	1.7	V
•		I _F = 50 A, T _C = 125 °C	-	1.3	-	V
I _R	Reverse Leakage Current	V _R = 1000 V	-	-	250	μA
R _{0JC}	Thermal Resistance of Junction to Case	per Diode	-	-	0.49	°C/W
R _{0CH}	Thermal Resistance of Case to Heat sink	per Chip, λ_{PCM} = 3.4 W/mK	-	0.56	-	°C/W
	ode (DB1, DB2)					1
V _F	Diode Forward Voltage	I _F = 10 A	-	1.42	1.58	V
- F	- · · · · · · · · · · · · · · · · · · ·	I _F = 10 A, T _C = 125 °C	-	1.61	-	V
I _R	Reverse Leakage Current	V _B = 650 V	-	-	250	μA
Im	Reverse Recovery Current	V _B = 300 V, I _F = 10 A,	-	6	-	A
Q _C	Total Capacitive Charge	di / dt = 1560 A/us,	-	60	-	nC
E _{rec}	Reverse Recovery Energy	T _C = 25 °C	-	7.5	-	μJ
I _m	Reverse Recovery Current	V _R = 300 V, I _F = 10 A,	-	6	-	A
Q _C	Total Capacitive Charge di / dt = 1560 A/us,		-	61	-	nC
E _{rec}	Reverse Recovery Energy	T _C = 125 °C	-	7.5	-	μJ
R _{0JC}	Thermal Resistance of Junction to Case	per Chip	-	-	1.63	°C/W
R _{0CH}	Thermal Resistance of Case to Heat sink	per Chip, λ_{PCM} = 3.4 W/mK	-	0.42	-	°C/W
				1	1	
Off Charac	DSFET (M1, M2)					
	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA	650		_	V
V _{DSS}	Drain Cut-off Current	$V_{GS} = 0$ V, $I_D = 1$ HIA $V_{DS} = V_{DSS}$, $V_{GS} = 0$ V	650 -	-	250	ν μA
I _{DSS}	Gate-Source Leakage Current	$V_{\text{DS}} = V_{\text{DSS}}, V_{\text{GS}} = 0 \text{ V}$ $V_{\text{GS}} = V_{\text{GSS}}, V_{\text{DS}} = 0 \text{ V}$	-	-	± 1	μΑ
I _{GSS} On Charac	-	$v_{GS} - v_{GSS}, v_{DS} - 0 v$	-	-	ΤI	μΑ
V _{GS(th)}	Gate-Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250uA	3.0	3.9	5.0	V
R _{DS(ON)}	Static Drain-Source On Resistance	$I_{\rm D} = 17.5 \text{ A}, V_{\rm GS} = 10 \text{ V}$	-	110	137	mΩ
V _{SD}	Drain-Source Diode Forward Voltage	$I_{SD} = 17.5 \text{ A}, V_{GS} = 0 \text{ V}$	-	1.07	1.37	V
• SD	Dian-Oblice Didde i ofward voltage	$I_{SD} = 17.5 \text{ A}, V_{GS} = 0 \text{ V}, T_{C} = 125 \text{ °C}$		0.93	-	V
R _{LEAD}	Lead Resistance of Pin to Chip	per Chip		3.2	_	mΩ
	Characteristics	per enip	-	0.2		1113.2
t _{d(on)}	Turn-On Delay Time	V _{CC} = 300 V	-	27	-	ns
t _r	Rise Time	I _D = 17.5 A	-	5.0	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 V$	-	3.0	-	ns
t _f	Fall Time	$R_G = 4.7 \Omega$ Inductive Load	-	5.5	-	ns
E _{ON}	Turn-On Switching Loss per Pulse	$T_{\rm C} = 25 ^{\circ}{\rm C}$	-	33	-	μJ
E _{OFF}	Turn-Off Switching Loss per Pulse		-	20	-	μJ
t _{d(on)}	Turn-On Delay Time	V _{CC} = 300 V	-	26	-	ns
t _r	Rise Time	$I_D = 17.5 \text{ A}$ $V_{GS} = 10 \text{ V}$		5.3	-	ns
t _{d(off)}	Turn-Off Delay Time			87	-	ns
t _f	Fall Time $R_G = 4.7 \Omega$ Inductive Load		-	6.0	-	ns
E _{ON}	Turn-On Switching Loss per Pulse	T _C = 125 °C	-	39	-	μJ
E _{OFF}	Turn-Off Switching Loss per Pulse		-	21	-	μJ
Q _g	Total Gate Charge	V _{CC} = 300 V, I _{SD} = 17.5 A, V _{GS} = 10 V	-	84	-	nC
	Thermal Resistance of Junction to Case	per Chip			0.63	°C/W
$R_{\theta JC}$			-	-	0.05	U/VV

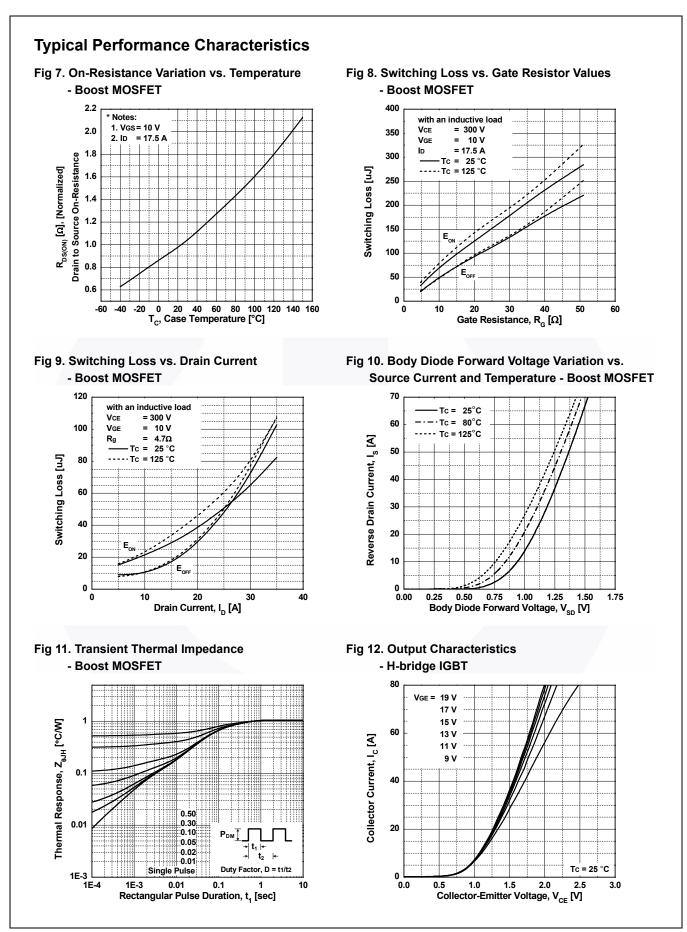
FPF2C110BI07AS2
F2,
Boost
and
S2 F2, Boost and Inverter module wi
module
with
ith Press-fit

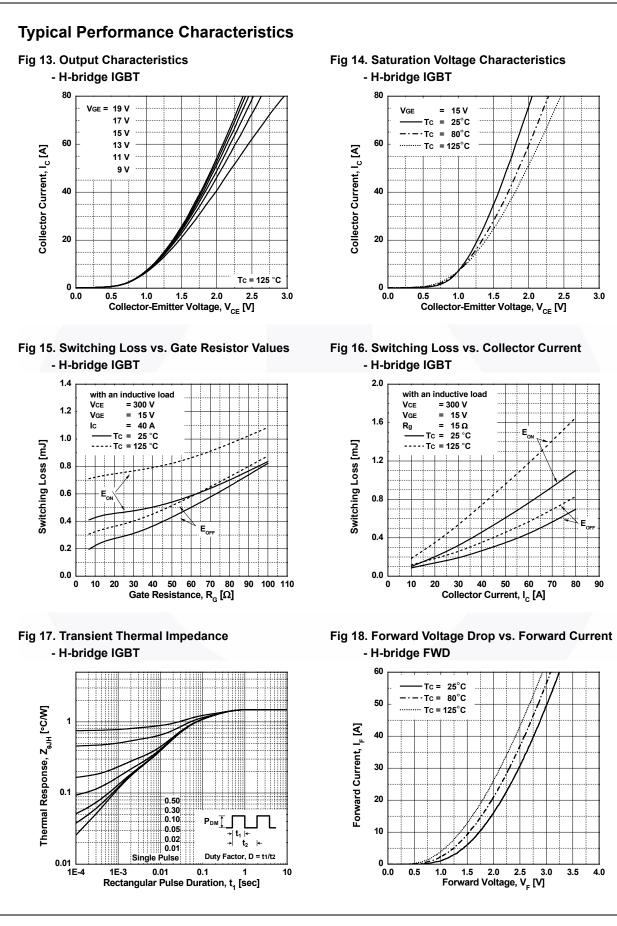
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
H-Bridge	IGBT (QA, QB, QC, QD)					
Off Charac						
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
ICES	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	± 2	μΑ
On Charac						
V _{GE(th)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 40 \text{ mA}$	3.0	5.2	6.1	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V}$	-	1.6	2.3	V
02(001)		$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$	-	1.8	-	V
R _{LEAD}	Lead Resistance of Pin to Chip	per Chip	-	3.5	-	mΩ
	Characteristics (QB-QAD / QD-QCD)					
t _{d(on)}	Turn-On Delay Time	V _{CC} = 300 V	-	26	-	ns
t _r	Rise Time	I _C = 40 A	-	22	-	ns
t _{d(off)}	Turn-Off Delay Time	$-V_{GE} = 15 V$	-	125	-	ns
t _f	Fall Time	$R_{G} = 15 \Omega$ Inductive Load	-	14	-	ns
E _{ON}	Turn-On Switching Loss per Pulse	$T_{\rm C} = 25 ^{\circ}{\rm C}$	-	0.45	-	mJ
E _{OFF}	Turn-Off Switching Loss per Pulse	-	-	0.27	-	mJ
t _{d(on)}	Turn-On Delay Time	V _{CC} = 300 V	-	24	-	ns
t _r	Rise Time	I _C = 40 A	-	25	-	ns
t _{d(off)}	Turn-Off Delay Time	$-V_{GE} = 15 V$	-	139	-	ns
t _f	Fall Time	$R_{G} = 15 \Omega$ Inductive Load	-	13	-	ns
E _{ON}	Turn-On Switching Loss per Pulse	$T_{\rm C} = 125 ^{\circ}{\rm C}$	-	0.74	_	mJ
E _{OFF}	Turn-Off Switching Loss per Pulse			0.35	_	mJ
Q _g	Total Gate Charge	V _{CC} = 300 V, I _C = 40 A, V _{GE} = 15 V	-	60	_	nC
R _{0JC}	Thermal Resistance of Junction to Case	per Chip	-	-	0.95	°C/W
R _{0CH}	Thermal Resistance of Case to Heat sink	per Chip, λ_{PCM} = 3.4 W/mK	-	0.64	-	°C/W
				0.01		0,11
-	FWD (QAD, QBD, QCD, QDD)					
V _F	Diode Forward Voltage	I _F = 30 A	-	2.45	3.2	V
		I _F = 30 A, T _C = 125 °C	-/	2.15	-	V
I _R	Reverse Leakage Current	V _R = 650 V	-	-	250	μA
Irr	Reverse Recovery Current	$V_{R} = 300 \text{ V}, I_{F} = 30 \text{ A},$	-	20.1	-	A
t _{rr}	Reverse Recovery Time	di / dt = 1570 A/us, ⊣ T _C = 25 °C	-	30	-	ns
E _{rec}	Reverse Recovery Energy	, i i i i i i i i i i i i i i i i i i i	-	27	-	μJ
Irr	Reverse Recovery Current	$V_{R} = 300 \text{ V}, I_{F} = 30 \text{ A},$	-	23.1	-	A
t _{rr}	Reverse Recovery Time	│ di / dt = 1135 A/us, │ T _C = 125 °C	-	52	-	ns
E _{rec}	Reverse Recovery Energy	-	-	73	-	μJ
$R_{\theta JC}$	Thermal Resistance of Junction to Case	per Chip	-	-	1.38	°C/W
$R_{\theta CH}$	Thermal Resistance of Case to Heat sink	per Chip, λ_{PCM} = 3.4 W/mK	-	0.45	-	°C/W
DC link C	apacitor					
C value	Capacitance Value		-	47	-	nF
NTC (The			1	1		
	Rated Resistance	T _C = 25 °C		22		ko
R _{NTC}	Raieu Resisiance	$T_{\rm C} = 25 ^{\circ}{\rm C}$ $T_{\rm C} = 100 ^{\circ}{\rm C}$	-	1.486	-	kΩ kΩ
	Tolerance	$T_{\rm C} = 100 {\rm C}$ $T_{\rm C} = 25 {\rm ^{\circ}C}$	-5	1.480	- +5	kΩ %
P _D	Power Dissipation	$T_{\rm C} = 25 ^{\circ}{\rm C}$ $T_{\rm C} = 25 ^{\circ}{\rm C}$	-5	-	+5 20	mW
P _D B _{Value}	B-Constance	$B_{25/50}$, tol.	-	- 3950	- 20	K
Value	D CONStantoc	25/50, 101.	-	5550		n n

©2016 Fairchild Semiconductor Corporation FPF2C110BI07AS2 Rev. 1.0

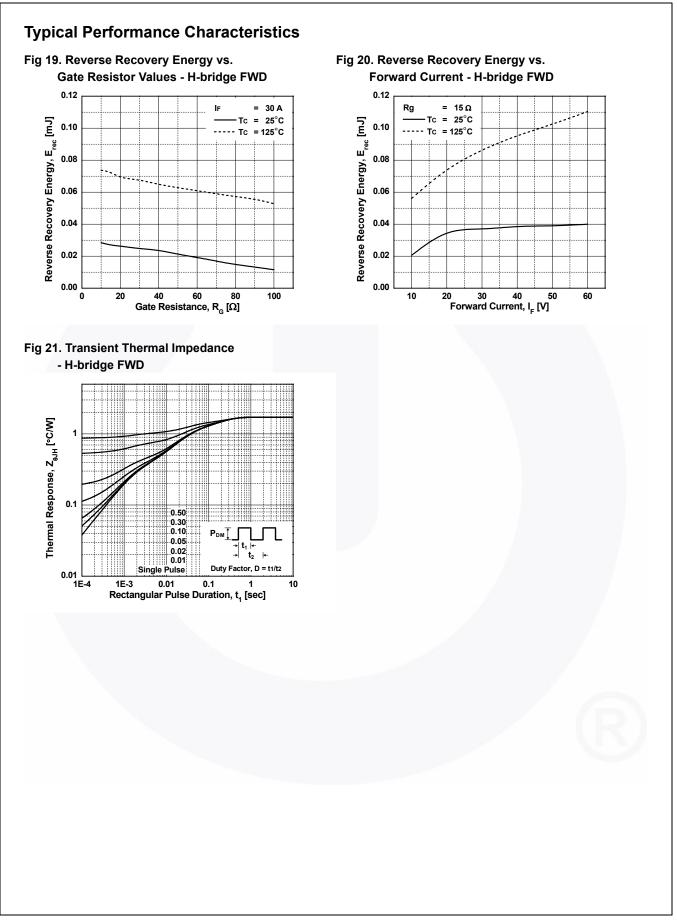
l_D, Drain Current[A]

0.0

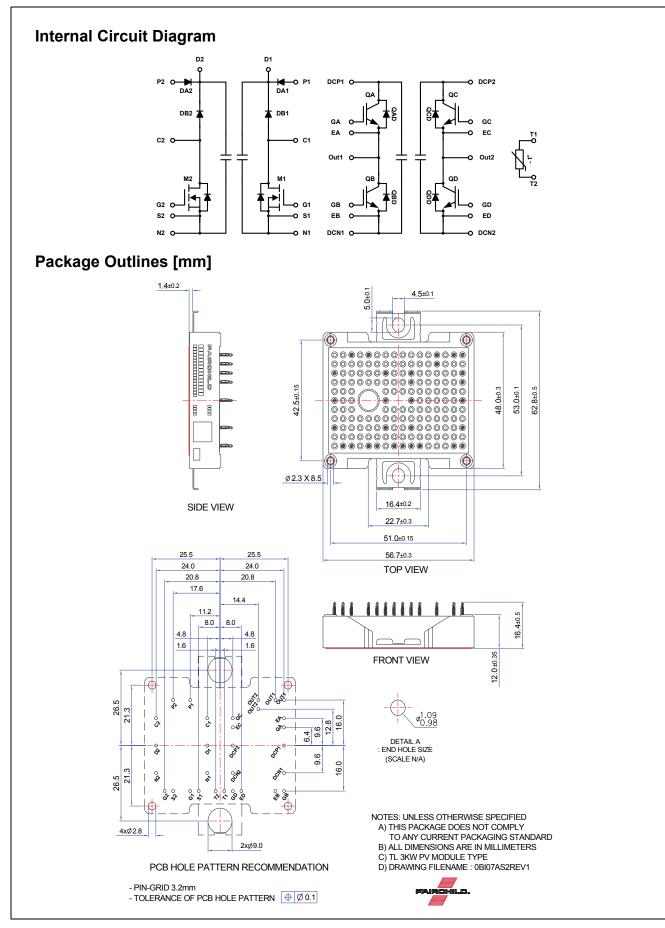

0.5


Vgs =

Forward Current, I_F [A]


0.0

Forward Current, I_F [A]





©2016 Fairchild Semiconductor Corporation FPF2C110BI07AS2 Rev. 1.0

9

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT HTTP://WWW.FAIRCHILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product. Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms						
Datasheet Identification Product Status		Definition				
Advance Information	Formati∨e / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FPF2C110BI07AS2