
CY3674/CY3684

EZ-USB® Development Kit User Guide
Doc. # 001-66390 Rev. *D

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

www.cypress.com

http://www.cypress.com/

2 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2011-2013. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components
in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.
The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such
use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by
and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty
provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom soft-
ware and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci-
fied in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-
RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support sys-
tems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all
charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

All trademarks or registered trademarks referenced herein are property of the respective corporations.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 3

Contents

1. Introduction 7
1.1 Introduction ..7
1.2 Kit Contents ...7

1.2.1 Hardware..7
1.2.2 Software on CD-ROM ..7
1.2.3 Required Tools Not Included ..8
1.2.4 Other Suggested Tools...8

1.3 Document Revision History ..8
1.4 Documentation Conventions ...8

2. Getting Started 9
2.1 Kit Installation ...9
2.2 Install Hardware...17

3. Advanced Development Board 19
3.1 Introduction ..19
3.2 Schematic Summary..19
3.3 Jumpers ...20
3.4 EEPROM Select and Enable Switches SW1 and SW2 ...20
3.5 Interface Connectors ...22
3.6 ATA Connector P8...25
3.7 U2 - 22v10 Gate Array Logic (GAL)...25
3.8 Memory Maps ..26
3.9 I2C Expanders ...27
3.10 Indicators – Power and Breakpoint..27
3.11 General-Purpose Indicators ...28

4. Development Kit Contents 29
4.1 Bin..29
4.2 Documentation...30
4.3 Drivers ...30
4.4 Firmware..31
4.5 GPIF_Designer ..32
4.6 Hardware ...32
4.7 SuiteUSB ...32
4.8 Target ..33
4.9 Utilities ...33
4.10 uV2_4k...33

5. EZ-USB Firmware Frameworks 35
5.1 Frameworks Overview ...35
5.2 Building FrameWorks ..37

4 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Contents

5.3 Function Hooks..38
5.3.1 Task Dispatcher Functions...38

5.3.1.1 TD_Init()...38
5.3.1.2 TD_Poll() ...38
5.3.1.3 TD_Suspend() ...38
5.3.1.4 TD_Resume() ..38

5.3.2 Device Request Functions...38
5.3.2.1 DR_GetDescriptor() ...38
5.3.2.2 DR_GetInterface() ...39
5.3.2.3 DR_SetInterface()..39
5.3.2.4 DR_GetConfiguration() ..39
5.3.2.5 DR_SetConfiguration() ..39
5.3.2.6 DR_GetStatus() ...39
5.3.2.7 DR_ClearFeature() ..39
5.3.2.8 DR_SetFeature() ...39
5.3.2.9 DR_VendorCmnd()..40

5.3.3 ISR Functions ..40
5.3.3.1 ISR_Sudav() ..40
5.3.3.2 ISR_Sof()...40
5.3.3.3 ISR_Ures()...40
5.3.3.4 ISR_Susp() ..40
5.3.3.5 ISR_Highspeed() ...40

5.4 EZ-USB Library ...41
5.4.1 Building the Library ..41
5.4.2 Library Functions ...41

5.4.2.1 EZUSB_Delay() ...41
5.4.2.2 EZUSB_Discon() ...41
5.4.2.3 EZUSB_GetStringDscr()..41
5.4.2.4 EZUSB_Susp() ..42
5.4.2.5 EZUSB_Resume()...42
5.4.2.6 I2C Routines..42

6. Cypress USB Drivers for EZ-USB Kits 43
6.1 Cypress USB Signed Driver Package for EZ-USB Devices43
6.2 Drivers for Firmware Examples and Default EZ-USB Configuration44

6.2.1 Binding Cypress USB Driver to EZ-USB Development Board.......................45
6.3 Drivers for Firmware and Keil Monitor Automatic Download using Script Files.........47

6.3.1 How to Generate and Play Script Files (.spt)...47
6.3.1.1 Script File Generation using the Cyscript Tool47
6.3.1.2 Script File Generation and Play using CyConsole...........................48
6.3.1.3 Script Generation and Play using CyControlCenter49

6.3.2 Firmware Download using CyLoad Driver Package49
6.3.2.1 How to Test CyLoad Driver Package ..52

6.3.3 Keil Debug Monitor Download using Script and CyMonfx1_fx2lp Driver Pack-
age53

6.4 SuiteUSB Driver Packages..53

7. USB PC Host Utilities and SuiteUSB Applications 55
7.1 USB Applications in EZ-USB Development Kit ..55
7.2 SuiteUSB Applications...55

7.2.1 Cyconsole Utility ..56
7.2.2 CyControlCenter Utility ..59

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 5

Contents

7.2.3 Streamer Utility...60
7.2.4 Cydesc Utility ...62
7.2.5 FxEEPROM Utility..63

8. EZ-USB Development Kit Firmware Examples 65
8.1 Method to Verify the Firmware Example Functionality ..66
8.2 hid_kb Firmware Example ...66

8.2.1 Building Firmware Example Code for EZ-USB Internal RAM and External EE-
PROM.67

8.2.2 Method to Download Firmware Image to EZ-USB Internal RAM Memory69
8.2.3 Method to Download Firmware Image to External I2C EEPROM..................69
8.2.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............70
8.2.5 Testing the hid_kb Firmware Example Functionality70

8.3 IBN Firmware Example..71
8.3.1 Description ...71
8.3.2 Building Firmware Example Code for EZ-USB RAM and EEPROM..............73
8.3.3 Method to Download Firmware Image to EZ-USB Internal RAM and External

EEPROM73
8.3.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............73
8.3.5 Testing the IBN Firmware Functionality..73

8.4 Pingnak Firmware Example...74
8.4.1 Description ...74
8.4.2 Building Firmware Example Code for EZ-USB RAM and EEPROM..............76
8.4.3 Method to Download Firmware Image to EZ-USB Internal RAM and External

EEPROM76
8.4.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............76
8.4.5 Testing the pingnak Firmware Functionality ...76

8.5 Bulkloop Example ..77
8.5.1 Description ...77
8.5.2 Building Bulkloop Firmware Example Code for EZ-USB RAM and EEPROM ...

79
8.5.3 Method to Download Bulkloop Firmware Image to Internal RAM or EEPROM..

79
8.5.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............80
8.5.5 Testing the Bulkloop Firmware Functionality..80

8.5.5.1 Test using Cyconsole PC Application ..80
8.5.5.2 Test using Cybulk Application..81
8.5.5.3 Testing Bulkloop Example using Bulkloop C# .NET Application......82

8.6 Bulksrc Firmware Example ..83
8.6.1 Description ...83
8.6.2 Building Bulksrc Firmware Example Code for EZ-USB RAM Memory and EE-

PROM85
8.6.3 Method to Download Bulksrc Firmware Image to EZ-USB Internal RAM and

EEPROM85
8.6.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............85
8.6.5 Testing the Bulksrc Firmware Functionality..85

8.7 Bulkext Firwmare Example ..86
8.7.1 Description ...86
8.7.2 Building Bulkext fIrmware Example Code for EZ-USB RAM Memory and EE-

PROM87
8.7.3 Method to Download Firmware Image to EZ-USB Internal RAM and EEPROM

87
8.7.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............88

6 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Contents

8.7.5 Testing the Bulkext Firmware Functionality..88
8.8 EP_Interrupts Example..88

8.8.1 Description...88
8.8.2 Building EP_Interrupts Firmware Example Code for EZ-USB RAM and EE-

PROM88
8.8.3 Method to Program EP_Interrupts Firmware Image to EZ-USB Internal RAM

and EEPROM88
8.8.4 Binding Cypress USB Driver for the Downloaded Firmware Image...............88
8.8.5 Testing the EP_Interrupts Firmware Functionality ...89

8.9 iMemtest Firmware Example ...89
8.10 LEDcycle Firmware Example ..89
8.11 Dev_IO Firmware Example ...89
8.12 extr_intr Firmware Example...90

8.12.1 Testing the Example ..91
8.13 Vend_ax Example ...91

8.13.1 Testing the vend_ax Example..92
8.14 Debugging Using Keil Monitor Program ..97

9. Resources 105
9.1 Hardware Resources...105
9.2 Reference Designs ..105

9.2.1 CY4611B - USB 2.0 to ATA Reference Design..105
9.2.2 CY4651 v1.3 - Cypress and AuthenTec Reference Design for Biometric Secu-

rity in External USB Hard Disk Drives106
9.2.3 CY3686 NX2LP-FLEX USB 2.0-to-NAND Reference Design Kit106

9.3 Application Notes...106

A. Appendix 111
A.1 U2 (GAL) code (file is 'FX2LP.ABL')..111
A.2 Board Layout ...113
A.3 Schematic..114
A.4 Frequently Asked Questions ...115

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 7

1. Introduction

1.1 Introduction
The EZ-USB® Development Kit (DVK) is a good starting point for developing an EZ-USB based
product. The DVK includes everything you will need to get started: a development board, example
firmware, a Microsoft-certified signed generic USB device driver (cyusb.sys), documentation, and
assorted tools. This section provides an overview of the DVK. The software installation of the kit
includes additional help files and documentation more specific to the various components in the kit.
The DVK is designed to work with the EZ-USB FX2LP and FX1 chips. FX1 is a full-speed only ver-
sion of FX2LP. Other than the absence of a high-speed transceiver, FX1 is identical to FX2LP.
Except where distinction is required, both chips are generically referred to as EZ-USB throughout
this document.

1.2 Kit Contents
The following list shows the components supplied in the EZ-USB DVK. They represent most of the
development tools required to build a USB system.

1.2.1 Hardware
■ EZ-USB advanced development board
■ EZ-USB prototyping board (breadboard)
■ USB A-to-B cable
■ RS-232 cable
■ Software installation CD-ROM
■ Three samples: EZ-USB FX1 IC (CY7C64713-128AXC) for the CY3674 kit and EZ-USB FX2LP

IC (CY7C68013A-128AXC) for the CY3684 kit.
■ Quick start guide booklet

1.2.2 Software on CD-ROM
■ EZ-USB firmware library and firmware frameworks
■ Firmware sample code
■ Microsoft-certified signed Cypress generic USB driver (3.4.5.000) for Windows XP, Vista, and 7

OS platforms.
■ Cypress USB class library (CyApi)
■ Cypress USB console
■ SuiteUSB 3.4.7 Development tools for Visual Studio
■ Cypress GPIF Designer
■ Cypress firmware and Keil monitor download driver sample
■ EZ-USB documentation and help files

8 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Introduction

■ Reference schematics and PCB design and layout files.
■ Limited evaluation version of the Keil 8051 development tools (Compiler, Assembler, IDE,

Debugger)

1.2.3 Required Tools Not Included
■ Full retail Keil Development System (Keil uVision2)
■ Microsoft Visual C++ and C# (all PC sample codes are developed on this platform).
■ USB-capable PC running Windows 2000, XP, Vista, or 7.

1.2.4 Other Suggested Tools
■ CATC USB Protocol Analyzer.

1.3 Document Revision History

1.4 Documentation Conventions

Table 1-1. Revision History

Revision
PDF

Creation
Date

Origin
of

Change
Description of Change

** 02/07/2011 ROSM Initial version of user guide
*A 05/09/2011 NMMA Update to section 2.2 Schematic Summary
*B 06/06/2012 NMMA The document has to be updated with the OOB review comments.

*C 06/29/2012 NMMA Minor text edits. Updated correct path “Start->All programs->Cypress-
>Cypress Suite USB 3.4.7-->CyConsole” in the document.

*D 09/27/2013 DBIR Removed Section 7.2.4, Bulkloop Application.

Table 1-2. Document Conventions for Guides

Convention Usage

Courier New
Displays file locations, user entered text, and source code:
C:\ ...cd\icc\

Italics Displays file names and reference documentation:
Read about the sourcefile.hex file in the PSoC Designer User Guide.

[Bracketed, Bold] Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open Represents menu paths:
File > Open > New Project

Bold Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Times New Roman Displays an equation:
2 + 2 = 4

Text in gray boxes Describes Cautions or unique functionality of the product.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 9

2. Getting Started

This chapter describes the installation of the CY3684 EZ-USB FX2LP DVK software. The process is
similar for the CY3674 EZ-USB FX1 DVK.

2.1 Kit Installation
To install the kit software, follow these steps:
1. Insert the kit CD/DVD into the CD/DVD drive of your PC. The CD/DVD is designed to auto-run

and the kit installer startup screen appears.
You can also download the latest kit installer ISO file for CY3684 and CY3674
Create an installer CD/DVD or extract the ISO using WinRar and install the executables.

2. Click Install CY3684 EZ-USB FX2LP DVK to start the installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

Note For EZ-USB FX1, click on Install CY3674 EZ-USB FX1 DVK. If auto-run does not execute,
double-click on the cyautorun.exe file in the root directory of the CD.

3. The InstallShield Wizard screen appears. The default location for setup is shown on the
InstallShield Wizard screen. You can change the location for setup using Change, as shown in
Figure 2-2. Click Next to launch the kit installer.

http://www.cypress.com/go/CY3684
http://www.cypress.com/go/CY3674

10 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Getting Started

Figure 2-2. InstallShield Wizard

4. On the Product Installation Overview screen, select the installation type that best suits your
requirement. The drop-down menu has three options - Typical, Complete, and Custom, as
shown in Figure 2-3. In the current installer, all three installation types result in the same set of
software getting installed. Select the default typical installation and click Next.

Figure 2-3. Installation Type Options

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 11

Getting Started

5. When the installation begins, all packages are listed on the Installation page. A green check mark
appears adjacent to every package that is downloaded and installed, as shown in Figure 2-4.
Wait until all the packages are downloaded and installed successfully.

Figure 2-4. Installation Page

6. The Keil uVision2 trial version IDE triggers at this stage. If the software is already installed in the
PC, then the installer will not trigger the installation. If the PC does not contain the software, then
the Keil welcome screen appears, as shown in Figure 2-5. Click Next.

12 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Getting Started

Figure 2-5. Keil Welcome Screen

7. Enter the user name and company name credentials, as shown in Figure 2-6, to proceed with the
installation.

Figure 2-6. Keil User Information lnput Window

8. The Keil software proceeds with the installation and copies the necessary packages at the default
directory C:\Keil. After completion, click on Finish, as shown in Figure 2-7.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 13

Getting Started

Figure 2-7. Keil User Information lnput Window

9. The GPIF designer software is triggered after Keil installation.This software is used to create
State machine waveforms to communicate between the EZ-USB device and devices such as
FPGA, image sensors, FIFO, and so on. If the software is already installed in the PC, then the
installer will not trigger the installation. If the PC does not contain the software, then the GPIF
Designer welcome screen appears, as shown in Figure 2-8. Click Next.

Figure 2-8. GPIF Designer Welcome Window

14 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Getting Started

10. Click Next in the subsequent windows and the Finish window appears, as shown in Figure 2-9.

Figure 2-9. GPIF Designer Welcome Window

11. The SuiteUSB 3.4.7 package install shield is triggered after the GPIF designer software installa-
tion. If the software is already installed in the PC, then the installer will not trigger the installation.
If the PC does not contain the software, then the SuiteUSB welcome screen appears, as shown
in Figure 2-10. Click Next and accept the Cypress Software license agreement, as shown in
Figure 2-11.

Figure 2-10. SuiteUSB Welcome Window

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 15

Getting Started

Figure 2-11. SuiteUSB License Agreement Window

12.Enter the user credentials in the SuiteUSB window, as shown in Figure 2-12. Click Next. The
default directory of the SuiteUSB is C:\Cypress\Cypress Suite USB 3.4.7. The default
directory can be changed at this stage. Click Next after selecting the directory. Click the Install
button in the subsequent window. The SuiteUSB package installation progress is shown in the
next window. Finally the SuiteUSB Finish window appears. Click Finish button to complete the
installation process of SuiteUSB.

16 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Getting Started

Figure 2-12. SuiteUSB User Login Window

13.The CY3684 EZ-USB FX2LP development Kit Finish window appears after installing the kit con-
tent, Keil software, GPIF Designer, and the SuiteUSB 3.4.7 package.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 17

Getting Started

Figure 2-13. CY3684 Finish Window

Note The procedure to install the CY3674 installer is similar to CY3684.

2.2 Install Hardware
No hardware installation is required for this kit.

18 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Getting Started

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 19

3. Advanced Development Board

3.1 Introduction
The EZ-USB Advanced Development Board provides a compact evaluation and design vehicle for
the EZ-USB family. The board provides expansion and interface signals on six 20-pin headers. A
mating prototype board allows quick construction and testing of USB designs. All ICs on the board
operate at 3.3 V. The board can be powered from the USB connector.

The EZ-USB Advanced Development Board is supplied as part of the Cypress EZ-USB DVK, which
includes an evaluation version of Cypress-customized software development tools from Keil
Software Inc. The Keil 8051 assembler, C compiler, and debugger work with the development board
to provide a complete code development environment. An 8051 debug monitor is typically loaded
into the development board expansion RAM to leave the internal RAM free for code development.
The evaluation version of the Keil tools that ships with the DVK has several restrictions that make it
inappropriate for real-world development. Most significantly, it limits the compiled object size to 4 KB.
The full retail version allows a code of any size.

3.2 Schematic Summary
Read this description while referring to the EZ-USB FX2LP development board schematic and the
FX2LP development board assembly drawing. Both drawings are located in the Schematic on
page 114 and are available in PDF format in the DVK hardware directory. With the exception of the
EZ-USB chip, the development boards in the FX2LP and FX1 DVKs are identical and are referred to
generically as the EZ-USB development board in the following sections.

U1 is either EZ-USB FX2LP (CY7C68013A-128AC) or FX1 (CY7C64713-128AC). This is the full-
function EZ-USB chip, which brings out the 8051 address and data buses for external memory
expansion. U2, a reprogrammable GAL, provides RAM enable signals for four jumper-selectable
memory maps. U3 is a 128-KB RAM, used for external 8051 memory expansion. Only 64 KB of this
memory is addressed by the 8051; the A16 pin is connected to a pull-up resistor that can be
attached to a GAL output to provide bank switching options.

U4 is a 3.3-V, 500-milliamp voltage regulator. U5 and U6 are socketed EEPROMS, used for EZ-USB
initialization and 8051 general-purpose access. U7 converts the 3.3-V 8051 serial port signals to
bipolar RS-232 levels. U8 and U10 are Philips PCF8574 I/O expanders, which attach to the EZ-USB
I2C bus and provide eight GPIO pins. U10 reads the four push-button switches, S2–S5, and U8
drives the 7-segment readout U9.

Six 20-pin headers, P1-P6, provide interface signals to the plug-in prototyping board supplied in this
kit. They also serve as connection points for HP (Agilent) logic analyzer pods. P8 contains a subset
of signals from P1–P6 on a connector that is pinned out for connection to a ‘straight-through’ ATA
cable.

Two slide switches, SW1 and SW2, control the connection and selection of the two socketed
EEPROMS at U5 and U6.

20 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Advanced Development Board

3.3 Jumpers

Table 3-1. EZ-USB Development Board Jumpers

3.4 EEPROM Select and Enable Switches SW1 and SW2
SW1 selects between two socketed EEPROMs, one strapped to address 000 (U6), and the other
strapped to address 001(U5).

SW2 enables or disables the EEPROM selected by SW1.

The EZ-USB chip has various startup modes, which depend on the existence of an EEPROM
connected to its SCL and SDA lines. Switches SW1 and SW2 allow the EEPROMs to be
disconnected from FX1/FX2LP, or to be connected using one of the two EEPROMs installed in
sockets U5 and U6.

The EZ-USB chip contains two I2C controllers, a “boot load” controller and an 8051 controller. The
boot load controller operates when EZ-USB comes out of reset, and the 8051 controller operates
under firmware control when the 8051 is running, allowing the 8051 to access general-purpose I2C
devices connected to the SCL and SDA lines. The following section deals with the roles of SW1 and
SW2 in accommodating the various boot load mechanisms.

The EZ-USB bootloader accommodates two EEPROM types, in “Small” and “Large” versions, as
shown in Table 3-2.

Jumper Function Default Notes

JP1, JP10 Connects 3.3 V power to
the EZ-USB chip. IN (1-2)

JP2
Powers the on-board 3.3 V
regulator from USB Vbus
pin

IN (1-2)
To operate the board in self-powered mode, remove
JP2 and supply 4 V to 5 V to JP2-1, and GND to a
ground pin (TP1 is a convenient GND point).

JP3 Connects four GAL pins to
LEDS D2, D3, D4, D5

IN (1-2) (3-4)
(5-6) (7-8)

U2, the on-board GAL, contains code to use the four
LEDs as software indicators that can be set. To use
the GAL pins for something else, which requires re-
programming the GAL or to wire the general purpose
indicators D2-D5 to other parts of the board, first
remove the appropriate shorting plug(s).

JP5 3.3 V power IN (1-2)
Supplies 3.3-V power to the board. It can be removed
and replaced with ammeter probes in series to mea-
sure board current.

JP6, JP7 Memory map selection OUT (1-2)
These jumpers select one of the four memory maps
for U3, the external 128 KB RAM. See Memory Maps
on page 26 for details.

JP8 Wakeup2 pin OUT (1-2)

Inserting a shorting plug into JP8 connects an on-
board RC network (R42,C43) to the secondary
remote wakeup pin WU2. This R-C network can be
used to test the periodic remote wakeup firmware
when this dual-purpose pin (it defaults to PA3) is pro-
grammed as WU2.

JP9 I2C bus test points N/A The I2C bus SCL and SDA lines can be monitored or
externally connected using JP9.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 21

Advanced Development Board

Table 3-2. Typical EZ-USB external EEPROMS

Small EEPROMs are typically used to supply custom VID and PID information, allowing the EZ-USB
to enumerate with a driver associated with your EZ-USB design.

Large EEPROMs are typically used to boot-load code into the internal EZ-USB RAM, and then start
up the 8051 to execute this internal code, which performs the enumeration.

The EZ-USB loader determines the EEPROM size by first initiating an I2C transfer to address
1010000 (1010 is the EEPROM-class address, and 000 is the sub-address). If the device supplies
an I2C acknowledge pulse, the EZ-USB loader writes a single EEPROM address byte to initialize the
internal EEPROM address pointer to zero.

If this transfer does not return an ACK pulse, the EZ-USB loader initiates a second I2C transfer, this
time to address 10100001 (1010 = EEPROM, sub-address 001). If an ACK is returned by the I2C
device, the EZ-USB loader writes two EEPROM address bytes to initialize the internal EEPROM
address pointer to 0.

If neither transfer returns an ACK pulse, the EZ-USB loader boots in the ‘generic’ mode.

Three EZ-USB startup sequences and the associated settings for SW1 and SW2, are as follows:
■ Generic: SW2 = No EEPROM, SW1 = either position

When no EEPROM is connected to SCL and SDA, the EZ-USB chip enumerates using its inter-
nal, “hard-wired” VID and PID values. This mode can be selected without removing any socketed
EEPROMs by switching SW2 to the ‘off’ (down) position. This electrically disconnects any
EEPROMs that occupy the EEPROM sockets U5 and U6. The “OFF” mode is useful to start up
EZ-USB in a manner (using internal VID/PID) that binds the development system board to the
Cypress debug tools, such as the Control Panel and Keil. When running, SW2 can be switched to
the ON position to allow 8051 access, for example, to reprogram the EEPROM.

■ C0 Load: SW2 = EEPROM, SW1 = SMALL
A “C0” load provides EZ-USB with external Vendor ID (VID), Product ID (PID), and Device ID
(DID) values, allowing it to enumerate with the EEPROM-supplied VID, PID, and DID. At power-
on, if the EZ-USB chip detects an EEPROM with the hex value ‘C0’ as its first byte, it continues to
load seven additional EEPROM bytes, which correspond to the USB VID, PID, DID, and an EZ-
USB configuration byte. When EZ-USB enumerates, it uses these EEPROM values instead of
the hard-wired internal values.
Because only eight bytes of data are required, a ‘small’ EEPROM is generally used for this mode;
for example, the 16-byte 24LC00.

■ C2 Load: SW2 = EEPROM, SW1 = LARGE
A “C2” load provides a method to load the EZ-USB internal RAM with 8051 firmware before enu-
meration. This boot load mechanism allows EZ-USB to enumerate as a fully custom device,
because the 8051 code handles enumeration using VID/PID values embedded in the code.
At power-on, if the EZ-USB chip detects an EEPROM with the hex value ‘C2’ as its first byte, it
continues to load an EZ-USB configuration byte, followed by blocks of 8051 code. The last byte
loaded takes the 8051 out of reset. This mode usually requires a large EEPROM, such as the
8 KB 24LC64.

EEPROM Type Size A2A1A0 Typical P/N
Small 16×8 000 24LC00

128×8 000 24LC01
256×8 000 24LC02

Large 8K×8 001 24LC64/5

22 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Advanced Development Board

Note If an EEPROM is connected to the SCL and SDA lines, but does not contain 0xC0 or 0xC2 as
its first byte, the loader reverts to the ‘generic’ case. In other words, the bootloader operates as
though no EEPROM is connected. However, when the 8051 is running, it has full access to any con-
nected EEPROM because the 8051 I2C controller is completely independent of the boot load logic.

3.5 Interface Connectors

Table 3-3. Logic Analyzer Pinout

Six 20-pin headers, P1–P6, on the EZ-USB Development Board have pins assigned to be compati-
ble with HP (Agilent) logic analyzers, as shown in Table 3-3.

These six headers serve three purposes:
■ They mate with the prototyping board supplied in the EZ-USB DVK.
■ They allow direct connection of the HP (Agilent) logic analyzer pods (Agilent P/N 01650-63203).
■ They allow general-purpose probing by other logic analyzers or oscilloscopes.

Table 3-3 shows the logic analyzer pod pin designations. The EZ-USB signals on P1–P6 are
arranged to fulfill the following requirements:
■ High-speed EZ-USB strobe signals (PSEN, WR#, CLKOUT, IFCLK, and RD#) are connected to

pin 3 of each of the five connectors for P1–P6. Therefore, they are used as the logic analyzer
clock, CLK1.

■ CLK2 is not used. Instead, each connector brings 3.3-V power from the EZ-USB development
board up to the prototype board using pin 2.

■ The signals are logically grouped. For example, the 8051 address bus is on P5 and the EZ-USB
FIFO data, which shares PORTB and PORTD pins, is on P1.

The 20-pin headers on the prototyping board can be stacked. Therefore, it is possible to build cus-
tom circuitry on the prototyping board, plug the board into the EZ-USB development board, and still
plug the logic analyzer pods to the six connectors P1–P6. Table 3-4 to Table 3-9 show the EZ-USB
pin designations for P1 through P6. The alternate pin names are listed in the last columns.

Agilent 01650-63203 Pod Pins
CLK1 3 4 D15
D14 5 6 D13
D12 7 8 D11
D10 9 10 D9
D8 11 12 D7
D6 13 14 D5
D4 15 16 D3
D2 17 18 D1
D0 19 20 GND

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 23

Advanced Development Board

Table 3-4. Pin Designation (P1)

Table 3-5. Pin Designation (P2)

Table 3-6. Pin Designation (P3)

Alternate Default P1 Default Alternate
NC 1 2 3.3V

PSEN# 3 4 PD7 FD[15]
FD[14] PD6 5 6 PD5 FD[13]
FD[12] PD4 7 8 PD3 FD[11]
FD[10] PD2 9 10 PD1 FD[9]
FD[8] PD0 11 12 PB7 FD[7]
FD[6] PB6 13 14 PB5 FD[5]
FD[4] PB4 15 16 PB3 FD[3]
FD[2] PB2 17 18 PB1 FD[1]
FD[0] PB0 19 20 GND

Alternate Default P2 Default Alternate
NC 1 2 3.3V
NC 3 4 RDY1 SLWR

SLRD RDY0 5 6 CTL5
CTL4 7 8 CTL3

FLAGC CTL2 9 10 CTL1 FLAGB
FLAGA CTL0 11 12 PA7 FLAGD

PKTEND PA6 13 14 PA5 FIFOADR1
FIFOADR0 PA4 15 16 PA3 WU2

SLOE PA2 17 18 PA1 INT1#
INT0# PA0 19 20 GND

Alternate Default P3 Default Alternate
NC 1 2 3.3V

WR# 3 4 RDY5
RDY4 5 6 RDY3
RDY2 7 8 BKPT

RESET# 9 10 N.C.
N.C. 11 12 PC7 GPIFADR7

GPIFADR6 PC6 13 14 PC5 GPIFADR5
GPIFADR4 PC4 15 16 PC3 GPIFADR3
GPIFADR2 PC2 17 18 PC1 GPIFADR1
GPIFADR0 PC0 19 20 GND

24 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Advanced Development Board

Table 3-7. Pin Designation (P4)

Table 3-8. Pin Designation (P5)

Table 3-9. Pin Designation (P6)

Alternate Default P4 Default Alternate
NC 1 2 3.3 V

CLKOUT 3 4 GND
OE# 5 6 CS#
5V 7 8 5V

PLD2 9 10 PLD1
N.C. 11 12 D7
D6 13 14 D5
D4 15 16 D3
D2 17 18 D1
D0 19 20 GND

Alternate Default P5 Default Alternate
NC 1 2 3.3 V

IFCLK 3 4 A15
A14 5 6 A13
A12 7 8 A11
A10 9 10 A9
A8 11 12 A7
A6 13 14 A5
A4 15 16 A3
A2 17 18 A1
A0 19 20 GND

Alternate Default P6 Default Alternate
NC 1 2 3.3 V

RD# 3 4 INT5#
INT4 5 6 T2
T1 7 8 T0

WAKEUP# 9 10 SDA
SCL 11 12 PE7 GPIFADR8

T2EX PE6 13 14 PE5 INT6
RxD1OUT PE4 15 16 PE3 RxD0OUT

T2OUT PE2 17 18 PE1 T1OUT
T0OUT PE0 19 20 GND

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 25

Advanced Development Board

3.6 ATA Connector P8
Table 3-10 shows the pinout for P8, a 40-pin connector that interfaces with a standard ATA cable.
This is for ATA use only. SP1, 2, and 3 should be bridged with the solder to connect the appropriate
pull-up and pull-down resistors required for ATA. An 80-pin cable is required for UDMA transfer
modes and recommended for all transfer modes.

Table 3-10. P8 (ATA)

3.7 U2 - 22v10 Gate Array Logic (GAL)
A standard 22v10 GAL provides a general-purpose “glue logic” on the board. It provides the AND
gate required to combine the PSEN and READ signals, adds memory map support, debug LEDs,
and provides three spare outputs for customer-defined functions.

RESET# PA7 1 2 GND GND
DD7 PB7 3 4 PD0 DD8
DD6 PB6 5 6 PD1 DD9
DD5 PB5 7 8 PD2 DD10
DD4 PB4 9 10 PD3 DD11
DD3 PB3 11 12 PD4 DD12
DD2 PB2 13 14 PD5 DD13
DD1 PB1 15 16 PD6 DD14
DD0 PB0 17 18 PD7 DD15
GND GND 19 20 N.C. KEYPIN

DMARQ RDY1 21 22 GND GND
DIOW# CTL0 23 24 GND GND
DIOR# CTL1 25 26 GND GND
IORDY RDY0 27 28 GND CSEL

DMACK# CTL2 29 30 GND GND
INTRQ PA0 31 32 N.C. RESERVED

DA1 PA2 33 34 N.C. PDIAG#
DA0 PA1 35 36 PA3 DA2

CS0# PA4 37 38 PA5 CS1#
DASP# 10K Pull-up 39 40 GND GND

26 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Advanced Development Board

3.8 Memory Maps
Figure 3-1. Four EZ-USB Development Board Memory Maps

Note The GAL sets EA=1 for the Ext Flash configuration only, enabling external code memory.

The factory default is to have both MM1 and MM0 jumpers removed. This setting should be used for
all development work using the Keil software tools.
■ The default configuration provides 16 KB of on-chip code and data memory, plus 48 KB of exter-

nal RAM. The 8051 begins execution from internal RAM (the GAL sets EA=0). Although there is
an apparent overlap between the internal 16 KB and the bottom 16 KB of the external RAM,
EZ-USB disables RAM strobes for the bottom 16 KB, so there is no conflict. This EZ-USB decod-
ing allows using a standard 64-KB RAM without requiring external decoding to inhibit access to
the bottom 16 Kb.

■ The second column, “24K gap”, enables the external RAM only for access to its upper 32 KB.
This configuration is useful for systems that add external devices that require memory-mapped
access. As with the default configuration, the 8051 begins execution from internal RAM (the GAL
sets EA=0).

■ The third column, “Ext Flash”, allows a flash memory (or other ROM) to be connected to the 8051
bus. This is the only configuration that starts 8051 execution from external memory (the GAL sets
EA to ‘1’). Because external memory occupies the bottom 16K, the internal EZ-USB RAM is
addressed only as data memory, instead of the combined program/data memory in the other
three configurations.

■ The fourth column, “Single Chip”, disables all external memory. This configuration is useful for
testing the final code to ensure that it does not use external resources present in the develop-
ment environment.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 27

Advanced Development Board

3.9 I2C Expanders
U8 and U10 are Philips PCF8574 I/O expanders. They connect to the I2C bus SCL and SDA pins,
and provide eight GPIO pins. U8 provides eight output bits, connected to the 7-segment readout U9.
U10 provides eight input bits: four connect to push buttons S2–S5 and four are uncommitted.

U8 connects to the 7-segment readout (U9) using the following bit assignments.

Figure 3-2. Bit Assignment

U8 has the group address 0100 and is strapped to the unit address 001. Therefore, to write a value
to the 7-segment readout, 8051 firmware sends a control byte of 01000010 (the least significant bit
(LSB0 indicates a write operation), followed by the data byte.

U10 uses its I/O pins as inputs, connected to S2-S5 according to the following table.

U9 has the group address 0100 and is strapped to unit address 000. Therefore, to read the switch
values, the 8051 firmware sends a control byte of 01000001 (the LSB indicates a read operation),
and then reads the data byte.

3.10 Indicators – Power and Breakpoint
LED D1 is connected to the PCB 5-V power supply, which is normally supplied from the USB cable
(VBUS pin). Alternatively, JP2 can be removed and an external 5-V power can be applied to the JP2
pin 1. In either case, D1 indicates the presence of the 5-V power.

LED D6 is connected to the 3.3-V voltage regulator output.

LED D7 is connected to the EZ-USB breakpoint (BKPT) pin. When using the Keil software develop-
ment tools, this green LED indicates that the EZ-USB development board has enumerated and the
Keil monitor has loaded and started running.

Bit Switch
0 S2
1 S3
2 S4
3 S5

28 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Advanced Development Board

3.11 General-Purpose Indicators
A portion of the GAL (U2) decodes 8051 reads to certain external memory addresses to turn the four
general-purpose indicators D2–D5 on and off. The following figure shows the positions of the four
indicator LEDs and a table of the external 8051 addresses, which are read to turn them on and off.
The four jumpers above the LEDS must be installed to use this feature. These jumpers connect the
LEDS to four GAL outputs.

Notes
■ The CLKOUT signal is used as a clock to latch the LED output signals from the GAL. If CLKOUT

is disabled, the LEDs will not update.
■ To use the LEDS for other purposes, such as wiring to other PC board signals for observation,

first remove the shorting plug to disconnect the LED from the GAL. The LED terminal is the bot-
tom pin of the connector and the GAL I/O pin is the top pin.

Figure 3-3. Indicator LED Positions

The low address byte is “don’t care”. This means you can efficiently add software test points using
the following code:
D5ON: mov MPAGE,#B8h ; turn D5 on
movx a,@r0 ; dummy read
;
D5OFF: mov MPAGE,#B0h ; turn D5 off
movx a,@r0 ; dummy read

This code example uses the 8051 8-bit indirect addressing mode. The MPAGE register (SFR 0x92)
supplies the high address byte and r0 supplies the low address byte. Register r0 does not require ini-
tialization because the low address byte is “don’t care” for the LED decoding.

To turn the LEDs ON and OFF using the C code, declare the external memory locations, and then
read their values into dummy variables:
xdata volatile unsigned char D5ON _at_ 0xB800;
xdata volatile unsigned char D5OFF _at_ 0xB000;
unsigned char dum;
dum = D5ON; // turn D5 on
dum = D5OFF; // turn D5 off

Note Program execution at these addresses do not activate the LEDs.

Indicator Turn ON by Reading Turn OFF by Reading
D2 0x88-- 0x80--
D3 0x98-- 0x90--
D4 0xA8-- 0xA0--
D5 0xB8-- 0xB0--

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 29

4. Development Kit Contents

This section provides a detailed description of the structure and content of the EZ-USB DVK as it
exists on a user PC after installation. The following image shows the root-level tree after DVK instal-
lation. This assumes that all the DVK components are installed (the default installation type is ‘Typi-
cal’). Subsequent sections detail the contents of each sub-directory. The DVK installer installs
several files related to the development board in the Windows directory tree as shown in Figure 4-1.
The default directory for the CY3674 kit is C:\Cypress\USB\CY3674_EZ-USB_FX1_DVK\ and for
the CY3684 kit, it is C:\Cypress\USB\CY3684_EZ-USB_FX2LP_DVK\. In further sections, the
default installation directory is referred to as <Installed_directory>, which refers to the
default directory of the respective EZ-USB kits.

Figure 4-1. CY3684 Development Kit Content Structure

4.1 Bin
 This folder contains the following utilities
■ Cyscript.exe: This utility is used to generate script files for the equivalent firmware(.hex) files
■ Hex2bix.exe: This utility is used to convert a firmware image compatible to the RAM memory

(.hex) to an EEPROM image (.iic).
■ Setenv.bat: This is a batch file to set path variables for the Keil compiler and firmware examples.

Click on this batch file to set the environment variables necessary before compiling the firmware
examples of the kit.

30 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Development Kit Contents

4.2 Documentation
This directory contains documentation, which describes the EZ-USB DVK. The following table lists
the summary of the documents in the CY3674 and CY3684 EZ-USB development kits.

4.3 Drivers
This directory contains Microsoft-certified, signed Cypress USB drivers for different Windows OS
platforms, such as Window 2000 (32-bit) and Windows XP, Vista, and 7 in 32- and 64-bit OS plat-

Table 4-1. Documents Summary for EZ-USB FX1 and FX2LP Development Kits

S.No
Kit Specific/

Common
Documents

Document Description

1 FX1(CY3674)

Migrating From AN21XX TO FX1 -
AN5040.pdf

Application note to assist users to
migrate from Older Anchor IC to
EZ-USB FX1

Silicon Errata For EZ-USB™ FX1 Product
FamilY.pdf

Errata for EZ-USB FX1 IC

EZ-USB FX1 Datasheet.pdf Datasheet for EZ-USB FX1 IC

2 FX2LP(CY3684)

Migrating From EZ-USB FX2™ To EZ-
USB FX2LP™ - AN4078_C.pdf

Application note to assist users to
migrate from EZ-USB FX2 to EZ-
USB FX2LP

EZ-USB® FX2LP Datasheet.pdf Datasheet for EZ-USB FX2LP IC

Errata For The EZUSB-FX2LP.pdf Errata for EZ-USB FX2LP IC

3 Common documents

Release Note EZ-USB FX1-EZ-USB
FX2LP™ Development Kit.pdf

Release notes for both EZ-USB
FX1 and FX2LP development kits

EZ-USB® Technical Reference Man-
ual.pdf

Detailed manual which explains the
in detail about the entire IP blocks
and registers inside EZ-USB
device.

EZ-USB FX1-EZ-USB FX2LP™ Develop-
ment Kit Quick Start Guide.pdf

Quick start guide for EZ-USB FX1
and FX2LP devices.

EZ-USB® Development Kit User
Guide.pdf

This guide provides detailed
instructions on Kit software installa-
tion, Kit hardware, firmware exam-
ples and PC tools functionality.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 31

Development Kit Contents

forms. Table 4-2 has the detailed list of drivers.

4.4 Firmware
The EZ-USB development kit contains several firmware examples to validate different interfaces of
EZ-USB device. Following is the list of firmware examples.

Table 4-2. USB Drivers in EZ-USB Development Kits

S.No Driver Package
Folder Description

1 cyusbfx1_fx2lp

This directory contains the generic cyusb.sys driver information file,
cyusbfx1_fx2lp.inf, and the Microsoft caltalog file (cyusbfx1_fx2lp.cat) files
required to enumerate the EZ-USB devices.They .INF file contains default Fuse
ROM and firmware example VID/PIDs. For more details about this driver, go to
Chapter 6.

2 CyMonfx1_fx2lp

This directory contains the generic cyusb.sys driver information file,
CyMonfx1_fx2lp.inf, and the Microsoft caltalog (CyMonfx1_fx2lp.cat) files
required to debug the EZ-USB firmware examples. The .INF file contains the VID/
PID to automatically download the Keil debug monitor script file (mon.spt) to
assist you in step-by-step debugging of firmware examples. For more details
about this driver, go to Chapter 8.

3 CyLoad

This directory contains the generic cyusb.sys driver information file, CyLoad.inf,
and the Microsoft caltalog (CyLoad.cat) files required to debug the EZ-USB firm-
ware examples. The .INF file contains VID/PID to automatically download the
firmware using the script file (CyLoad.spt). For more details about this driver, go
to Chapter 6.

Table 4-3. List of Firmware Example in EZ-USB Development Kits

S.No Firmware
Example Description

1 hid_kb Example firmware that emulates a HID-class keyboard using the buttons and a
7-segment display on the DVK board

2 Bulkloop Contains a bulk loopback test that exercises the EZ-USB bulk endpoints. It loops
back EP2OUT to EP6IN and EP4OUT to EP8IN.

3 Bulkext

Contains a bulk loopback test that exercises the EZ-USB bulk endpoints. The loop-
back is performed using the external auto pointer. Data is copied from the OUT
endpoint buffer to external RAM and then to the IN endpoint buffer. It loops back
EP2OUT to EP6IN and EP4OUT to EP8IN

4 Bulksrc

Contains bulk endpoint endless source/sink firmware. It can be driven using the
CyConsole or CyBulk. EP2OUT always accepts a bulk OUT; EP4OUT always
accept a bulk OUT; EP6IN always returns a 512-byte packet, 64 bytes at full-speed.
Based on the buffer availability in EP8IN, the most recent packet of EP4OUT is
written to EP8IN.

5 dev_io
Contains the source files to build a simple development board I/O sample. This
software demonstrates how to use the buttons and LEDs on the EZ-USB develop-
ment kit.

6 EP_Interrupts Bulk loopback firmware that demonstrates use of endpoint interrupts using EZ-USB
FX2LP.

7 extr_intr Firmware that demonstrates external interrupt handling INT0, INT1, INT4, INT5,
and INT6.

8 Ibn Contains firmware to perform bulk loopback of EP2OUT to EP6IN and EP4OUT to
EP8IN using the IBN (In Bulk Nak) interrupt to initiate the transfer.

32 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Development Kit Contents

4.5 GPIF_Designer
This directory contains the GPIF designer software, which allows you to create State machine wave-
forms. These waveforms are useful to communicate with external devices, such as SRAM and
FPGA, using an EZ-USB GPIF interface.

4.6 Hardware
This directory contains the EZ-USB hardware schematic, PCB, Layout, gerber, and PCB BOM files.
Following are the files in this directory.

4.7 SuiteUSB
This folder contains the SuiteUSB 3.4.7 installer package and a sample Cypress Software License
agreement document. The software is installed as part of the EZ-USB Kit installer and the contents
are, by default, located at C:\Cypress\Cypress Suite USB 3.4.7.The package contains C++

9 LEDCycle Simple firmware example to demonstrate use of the general-purpose indicator
LEDs (D2, D3, D4, D5) on the development kit board.

10 Pingnak Contains firmware to perform bulk loopback of EP2OUT to EP6IN and EP4OUT to
EP8IN using the PING NAK interrupt to initiate the transfer.

11 iMemtest Memory test firmware example. Tests on-chip RAM.

12 vend_ax Contains the source files to build a vendor-specific command sample. This example
demonstrates how to implement different vendor commands.

Table 4-4. List of Hardware Files in EZ-USB Development Kits

S.No Files Description

1
CY3684_Board_Layout.brd/
CY3674_Board_Layout.brd

This file is EZ-USB development board layout source file.This file
can be opened using the Allegro software

2 CY3684_Board_Layout.pdf/
CY3674_Board_Layout.pdf

These files are non-editable board layout files of EZ-USB devel-
opment board.

2 CY3684_Gerber.zip/
CY3674_Gerber.zip

This .zip files contains PCB images of different layers of the EZ-
USB development board PCB.

3 CY3684_PCBA_BOM.xls/
CY3674_PCBA_BOM.xls

This file contains components, such as resistors, capacitors, and
jumpers, used in designing the EZ-USB development board

4 CY3684_Schematic.pdf/
CY3674_Schematic.pdf This file is a non-editable version of the schematic source file

5 CY3684_Schematic.dsn/
CY3674_Schematic.dsn

This file is an editable schematic source file. It can be opened
using Orcad software.

6

PDC-9022-A-Dimension.PDF,
PDC-9022-REVA.pdf, CY3681-
2_ASSEMBLY.pdf and PDC-9022-
A.zip

These files are part of the PROTO board daughter card,
designed to provide a sample prototype area for validating com-
munication between the GPIF interface and the external device.

7 fx2lp.abl, fx2lp.jed These files contain source logic for the GAL22LV10C device on
the EZ-USB development board

Table 4-3. List of Firmware Example in EZ-USB Development Kits

S.No Firmware
Example Description

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 33

Development Kit Contents

and C# .NET application tools to communicate with the EZ-USB device. In addition, it contains
Cypress generic USB drivers (3.4.7). These are unsigned drivers.

4.8 Target
This directory contains the EZ-USB register definition header files, Keil debug monitor, and so on.
Following are the list of files.

4.9 Utilities
This directory contains the hex2bix utility source code in the VC++6 environment. The project code
can be used as a reference to invoke different command line options supported by this utility.

4.10 uV2_4k
This directory contains the Keil uVision2 Trial version IDE. The IDE has the limitation of compiling
the code limit of 4K. All the firmware examples included with the EZ-USB development kit can be
compiled using this IDE.

Table 4-5. List of Files in Target Directory

S.No Sub-directory File Description

1 FW/Lp Fw.c,periph.c
,dscr.a51,fw.uv2

This directory contains basic framework project source files
used to develop the firmware examples in the EZ-USB devel-
opment kits

2 Monitor

mon-ext-sio0-c0.hex,
mon-ext-sio1-c0.hex,
mon-int-sio0-c0.hex,
mon-int-sio1-c0.hex,
mon-ext-sio0-c0.spt,
mon-ext-sio1-c0.spt,
mon-int-sio0-c0.spt
and
mon-int-sio1-c0.spt

This directory contains Keil debug monitor .hex and script
files that reside in external SRAM memories or EZ-USB inter-
nal RAM. These files are used to debug firmware examples
through UART ports SIO-0 and SIO-1 at 38400 baud rate.

3 Inc

fx2regs.h, lpregs.h
lpregs.inc,
fx2regs.inc
Fx2.h, lp.h
syncdly.h,
fx2sdly.h

These files contain EZ-USB register definitions and basic
structure definitions.Also several delay routines of fixed dura-
tion (syncdly.h/fx2sdly.h)are defined to be used in frame-
works code.

4 Lib/Lp EZUSB.Lib USB-
JmpTb.OBJ

This folder mainly contains I2C read/Write routines
Library(EZUSB.lib) and Interrupt vector definitions for EZ-
USB device(USBJmpTb.OBJ)

34 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Development Kit Contents

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 35

5. EZ-USB Firmware Frameworks

The firmware frameworks simplify and accelerate USB peripheral development using the EZ-USB
chip. The frameworks implement the 8051 code for EZ-USB chip initialization, USB standard device
request handling, and USB suspend power management services. The user provides a USB
descriptor table and code to implement the peripheral function to complete a fully compliant USB
device. The frameworks provide function hooks and example code to help with this process. The
frameworks use the EZ-USB library to carry out common functions and for EZ-USB register defini-
tions. Most of the firmware examples in the EZ-USB DVK are based on the frameworks.

5.1 Frameworks Overview
The frameworks implement the basic functionality required of a USB compliant peripheral device. By
linking a minimal descriptor table, it is possible to build a fully compliant Device Framework (USB
Specification, Chapter 9).

At startup, the frameworks initialize all its internal state variables. It then calls the user initialization
function TD_Init(). Upon return, the frameworks initialize the USB interface to the unconfigured state
and enable interrupts. The firmware then re-enumerates and starts the co-operative task dispatcher.
The task dispatcher repeatedly performs the following tasks in the given order.
1. Calls the user function TD_Poll().
2. Determines if a standard device request is pending. If so, it parses the received command and

responds accordingly. The frameworks automatically handle the standard USB requests, but
allow the user to override the default behavior for all requests.

3. Determines if the USB core has reported a USB suspend event. If so, it calls the user function
TD_Suspend().

EZ-USB interrupts are handled by the frameworks. It provides hooks for user code notification of
USB events.

36 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Firmware Frameworks

Figure 5-1. Firmware Frameworks Flowchart

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 37

EZ-USB Firmware Frameworks

5.2 Building FrameWorks
The framework is written using the Keil uVision2 Compiler. It is tested only with these tools. Because
the source uses several Keil C extensions, compatibility with other compilers is not guaranteed.

For your custom device firmware, you can either start with one of the firmware examples or start with
the "clean" frameworks code. This code is located in the <Installed_directory>\<ver-
sion>\Target\fw directory. The sub-directory is chip dependent. For FX2LP and FX1, the firm-
ware is located in the "LP" sub-directory. Before editing the firmware, create a new directory for your
project and copy the various frameworks source files into it.

After starting the Windows Command Prompt, run setenv.bat (located in the Bin directory) to set up
the build environment. This batch file assumes that you have installed the DVK and Keil tools in the
default directories.

The following table lists and describes the main files in the frameworks:

Table 5-1. Files in Firmware Frameworks

File Name Description

FW.C This is the main frameworks source file. It contains main(), the task dispatcher, and the
SETUP command handler. For most firmware projects, there is no need to modify this file

PERIPH.C

This source file contains initialization and task dispatch functions that are called from fw.c.
This is where you customize the frameworks for your specific device. This file also con-
tains stub interrupt service routine (ISRs) functions for all of the USB (INT2) and GPIF
(INT4) interrupts

DSCR.A51 Assembly file that contains your device's custom descriptors

FX2.H/LP.H Head file containing common EZ-USB constants, macros, data types, and library function
prototypes

FX2REGS.H/
LPREGS.H EZ-USB register declarations and bit mask constants

SYNCDLY.H/
FX2SDLY.H Contains the synchronization delay macro.

EZUSB.LIB EZ-USB Library object code. See EZ-USB Library on page 41 for more details

USBJMPTB.OBJ Object code that contains the ISR jump table for USB and GPIF interrupts

BUILD.BAT Batch file for compiling/linking the firmware using the Keil command line tools

FW.UV2 Keil uVision2 project file for compiling/linking the firmware

38 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Firmware Frameworks

5.3 Function Hooks
The frameworks provides function hooks to simplify the addition of user code. The functions are
divided into three categories: those called by the task dispatcher, the standard device request
parser, and the USB interrupt handler. The following sections contain a complete list of functions and
their descriptions.

5.3.1 Task Dispatcher Functions
The following functions are called by the task dispatcher located in main().

5.3.1.1 TD_Init()
void TD_Init()

This function is called once during the initialization of the frameworks. It is called before ReNumera-
tion and the Task Dispatcher starts. It is intended for the global state variable and device initializa-
tion.

5.3.1.2 TD_Poll()
void TD_Poll()

This function is called repeatedly during device operation. It should contain a state machine that
implements the user's peripheral function. High-priority tasks can be completed before returning
from this function. However, failure to return from this function prevents frameworks from responding
to device requests and USB suspend events. If a large amount of processing time is required, it must
be split up to execute in multiple calls to TD_Poll().

5.3.1.3 TD_Suspend()
BOOL TD_Suspend()

This function is called before the frameworks enter suspend mode. This function contains code that
places the device in a low-power state and returns TRUE. However, the user code can prevent the
frameworks from entering suspend mode by returning FALSE.

5.3.1.4 TD_Resume()
void TD_Resume()

This function is called after the frameworks has resumed the processor in response to an external
resume event. At this point, the device resumes full-power operation.

5.3.2 Device Request Functions
These are helper functions that the device request handler (SetupCommand() in FW.C) calls. These
are mainly used to override or augment the default device request handler.

5.3.2.1 DR_GetDescriptor()
BOOL DR_GetDescriptor()

This function is called before the frameworks decode and implement the GetDescriptor device
request. The register array SETUPDAT contains the current eight byte setup command. It can be
parsed by the user's code to determine which Get Descriptor command is issued. If TRUE is
returned, the frameworks will parse and implement the command. If FALSE is returned, it will do
nothing.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 39

EZ-USB Firmware Frameworks

5.3.2.2 DR_GetInterface()
BOOL DR_GetInterface()

This function is called before the frameworks implement the Get Interface device request. The regis-
ter array SETUPDAT contains the current eight byte setup command. If TRUE is returned, the frame-
works will implement the command. If FALSE is returned, it will do nothing.

5.3.2.3 DR_SetInterface()
BOOL DR_SetInterface()

This function is called before the frameworks implement the Set Interface device request. The regis-
ter array, SETUPDAT, contains the current eight-byte setup command. It is the responsibility of this
routine to save the new interface setting and to do any necessary device configuration. If TRUE is
returned, the frameworks will implement the command. If FALSE is returned, it will do nothing.

5.3.2.4 DR_GetConfiguration()
BOOL DR_GetConfiguration()

This function is called before the frameworks implement the Get Configuration device request. The
register array, SETUPDAT, contains the current eight-byte setup command. If TRUE is returned, the
frameworks will implement the command. If FALSE is returned, it will do nothing.

5.3.2.5 DR_SetConfiguration()
BOOL DR_SetConfiguration()

This function is called before the frameworks implement the Set Configuration device request. The
register array, SETUPDAT, contains the current eight byte setup command. By default, the frame-
works parses the descriptor table to determine the new configuration interface and its endpoints. It
then configures the EZ-USB control registers to reflect these new endpoints. If the configuration is
set to 0 then the frameworks will invalidate all of the endpoints. If TRUE is returned, the frameworks
will implement the command. If FALSE is returned, it will do nothing.

5.3.2.6 DR_GetStatus()
BOOL DR_GetStatus()

This function is called before the frameworks implement the Get Status device request. The register
array, SETUPDAT, contains the current eight-byte setup command. If TRUE is returned, the frame-
works will implement the command. If FALSE is returned, it will do nothing.

5.3.2.7 DR_ClearFeature()
BOOL DR_ClearFeature()

This function is called before the frameworks implement the Clear Feature device request. The reg-
ister array, SETUPDAT, contains the current eight-byte setup command. If TRUE is returned, the
frameworks will implement the command. If FALSE is returned, it will do nothing.

5.3.2.8 DR_SetFeature()
BOOL DR_SetFeature()

This function is called before the frameworks implement the Set Feature device request. The regis-
ter array, SETUPDAT, contains the current eight-byte setup command. If TRUE is returned, the
frameworks will implement the command. If FALSE is returned, it will do nothing.

40 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Firmware Frameworks

5.3.2.9 DR_VendorCmnd()
void DR_VendorCmnd()

This function is called when the frameworks determine a vendor specific command has been issued.
The register array, SETUPDAT, contains the current eight-byte setup command. This function has no
return value. The frameworks does not implement any vendor-specific commands. However, the EZ-
USB serial interface engine (SIE) uses vendor-specific command, 0xA0, to implement software
uploads and downloads. Therefore, command 0xA0 will not be passed to the user's code.

5.3.3 ISR Functions
There are over 40 different USB and GPIF auto-vectored interrupts available. PERIPH.C contains
stub ISR functions for all of these interrupts. This section documents the ISRs that require special
handling by device firmware. For more information, refer to the Interrupts chapter in the EZ-USB
Technical Reference Manual.

5.3.3.1 ISR_Sudav()
void ISR_Sudav(void) interrupt 0

This function is called on receiving the Setup Data Available interrupt. This function needs to set
GotSUD to TRUE so that the device request handler can process the SETUP command.

5.3.3.2 ISR_Sof()
void ISR_Sof(void) interrupt 0

This function is called on receiving the Start of Frame interrupt. It gets called every 1 ms at full-speed
and every 125 uS at high-speed. The only action for this interrupt in the default frameworks code is
to clear the interrupt.

5.3.3.3 ISR_Ures()
void ISR_Ures(void) interrupt 0

This function is called on receiving the USB Reset interrupt. In your custom code, place any house-
keeping that must be done in response to a USB bus reset in this routine. The default frameworks
code updates the configuration descriptor pointers in response to this interrupt. When a USB Reset
occurs, the device is always operating in full-speed (until high-speed chirp completes). Therefore, it
must return its full-speed configuration descriptor in response to a get configuration descriptor
request and must return its high-speed configuration descriptor in response to a get other-speed
descriptor request.

5.3.3.4 ISR_Susp()
void ISR_Susp(void) interrupt 0

This function is called on receiving the USB Suspend interrupt. The default frameworks code sets
the global variable Sleep to TRUE in this routine. This is required for the Task Dispatcher to detect
and handle the suspend event.

5.3.3.5 ISR_Highspeed()
void ISR_Highspeed(void) interrupt 0

This function is called on receiving the USB HISPEED interrupt. In your custom code, place any
housekeeping that must be done in response to a transition to high-speed mode in this routine.

The default frameworks code updates the configuration descriptor pointers in response to this inter-
rupt. When the device switches to high-speed mode, it must return its high-speed configuration

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 41

EZ-USB Firmware Frameworks

descriptor in response to a get configuration descriptor request and must return its full-speed config-
uration descriptor in response to a get other-speed descriptor request.

5.4 EZ-USB Library
The EZ-USB library is an 8051 .LIB file that implements functions that are common to many firmware
projects. These functions need not be modified and are, therefore, provided in library form. However,
the kit includes the source code for the library in the event that you need to modify a function or if you
just want to know how something is done.

In addition to providing common functions, the library also creates register definitions for all EZ-USB
registers. The source code and the compiled .LIB file are located in the
<Installed_directory>\<Version>\Target\Lib\lp directory.

5.4.1 Building the Library
Only the full retail version of the Keil tools can build library files. The evaluation version will not build
this library.

After starting the Windows Command Prompt, run setenv.bat (located in the
<Installed_directory>\<Version>\Bin directory) to set up the build environment. This
batch file assumes that you have installed the DVK and Keil tools in the default directories. To build
the library, run the build.bat file from the command prompt.

Build.bat also assembles the usbjmptb.a51 file to create usbjmptb.obj. This file contains the jump
table for the USB (INT2) and GPIF (INT4) auto-vectored interrupts. See the EZ-USB Technical Ref-
erence Manual (TRM) in the kit documentation for more information on auto-vector interrupts.

5.4.2 Library Functions

5.4.2.1 EZUSB_Delay()
void EZUSB_Delay(WORD ms)

This function performs a busy wait for a given number of milliseconds. The parameter ms deter-
mines the length of the busy wait. Upon completion of the delay the function returns.

5.4.2.2 EZUSB_Discon()
void EZUSB_Discon(BOOL renum)

This function performs a USB disconnect/reconnect. It disconnects the device, delays for 1500 ms,
clears any pending USB interrupts (INT2), reconnects, and then returns. The parameter renum
determines if the EZ-USB renumerate bit is set in the USB control register. If renum is TRUE, the
renumerate bit is set and following a return from this function, the 8051 will be responsible for han-
dling all USB device requests on endpoint 0. If renum is FALSE, the renumerate bit is not modified. If
the renumerate bit is clear, then the EZ-USB serial interface engine handles most of the USB device
requests on endpoint 0.

5.4.2.3 EZUSB_GetStringDscr()
STRINGDSCR xdata * EZUSB_GetStringDscr(BYTE StrIdx)

This function returns a pointer to instance StrIdx of a string descriptor in the descriptor table. The
instance is determined by the StrIdx parameter. If the descriptor table does not contain the given
number of instances, then the function returns a NULL pointer.

42 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Firmware Frameworks

5.4.2.4 EZUSB_Susp()
void EZUSB_Susp(void)

This function suspends the processor in response to a USB suspend event. This function will not
return until the suspend is cleared by a USB bus resume or a wake-up event on the EZUSB wake-up
pin. If a suspend event is not pending, this function will return immediately.

5.4.2.5 EZUSB_Resume()
void EZUSB_Resume(void)

This function generates the K-state on the USB bus required for a USB device remote wake-up. This
function should be called following a USB suspend. It automatically determines if the wake-up is
result of a USB resume or a remote wake-up and generates the K-state accordingly.

5.4.2.6 I2C Routines
void EZUSB_InitI2C(void);
BOOL EZUSB_WriteI2C_(BYTE addr, BYTE length, BYTE xdata *dat);
BOOL EZUSB_ReadI2C_(BYTE addr, BYTE length, BYTE xdata *dat);
BOOL EZUSB_WriteI2C(BYTE addr, BYTE length, BYTE xdata *dat);
BOOL EZUSB_ReadI2C(BYTE addr, BYTE length, BYTE xdata *dat);
void EZUSB_WaitForEEPROMWrite(BYTE addr);

These functions automate access to I2C devices (such as the EEPROM), 7-segment display and
buttons on the DVK board. See the vend_ax and dev_io firmware examples for details on using
these functions.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 43

6. Cypress USB Drivers for EZ-USB Kits

This chapter describes the Cypress USB drivers provided along with the kits. The USB-signed driver
package consists of several files to test different features of the EZ-USB (FX1/FX2LP) kits. It also
includes the SuiteUSB installer, which supports a collection of USB Host application tools designed
in C++ and C# .NET framework. These tools are useful to communicate with any Cypress USB 2.0
device.

6.1 Cypress USB Signed Driver Package for EZ-USB Devices
The EZ-USB (FX1/FX2LP) kits contain Microsoft-certified signed driver packages for different pur-
poses. Following is the snapshot of the Drivers directory of the EZ-USB kits.

Figure 6-1. Driver Packages in EZ-USB Kits

All these drivers support Windows 2000 (32-bit) and Windows XP, Vista, and 7 in both 32-bit as well
as 64-bit configurations. The following figure summarizes the list of folders specific to each OS.

Figure 6-2. Driver Sub-directory Summary

These folders contain signed driver files for relevant Windows OS platforms. Figure 6-3 shows the
snapshot of one of the signed driver package directories.

44 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Cypress USB Drivers for EZ-USB Kits

Figure 6-3. Sample Signed Driver Package

The basic set of files in a signed package is as follows:
■ Cyxxx.cat - These are Windows catalog files, which contain digital signature. This file indicates

that this driver-cyusb.sys passed the Microsoft driver certification process (WHQL).
■ Cyusb.sys - This is the Cypress-provided generic USB driver for all USB 2.0 products.The driver

version 3.4.5 is used in the driver certification process
■ Cyxx.INF - This file contains information about the .cat file and .sys file entries. The correspond-

ing destination directories for driver files or scripts are also defined to allow copying of these files
to Windows system folders. The INF file automates the process of driver loading and registering
the entry in the device manager of Windows.

The .INF files provided in the package should not be modified. These are provided to enable test-
ing different features of the EZ-USB device. If the .INF file is edited, the Microsoft digital signature is
no longer valid. In addition, the default VID/PID mentioned in these INF files should not be used for
any other purpose except for testing the basic features of the device. Attempt to bind the modified
.INF file along with the existing .cat and .sys file results in a Warning window. The signed driver
loading conditions are stringent in Windows Vista and Windows 7 64-bit configurations. To temporar-
ily avoid driver loading problems with the edited .INF file, press F8 during the Windows machine re-
boot, and select “Disable Driver signature Enforcement”. The 64-bit OS will still provide warnings
but allow the edited INF file loading. This setting does not propagate to the next re-boot and must be
performed again during next re-boot.

Note To completely avoid these warnings, users should remove all the instances of the default VID/
PID in the .INF file and replace these with their own VID/PID combination. The modified .INF along
with cyusb.sys needs to be re-submitted to Microsoft for driver certification. For more details on the
WHQL re-submission process for the modified Cypress USB driver package, refer to the application
note, “AN52970 - Windows Hardware Quality Labs (WHQL) Signing Procedure for Customer Modi-
fied Cypress USB Driver Files”. Depending on the functionality of each of these .INF packages, they
are classified into two major categories:
■ Drivers for firmware examples and default EZ-USB configuration
■ Drivers for firmware and Keil monitor automatic download using script files

6.2 Drivers for Firmware Examples and Default EZ-USB Configuration
The EZ-USB FX1 and FX2LP kit uses several VID/PID for tasks, such as default enumeration (Fuse
ROM), firmware example re-enumeration, and so on. In the list of signed driver packages,
cyusbfx1_fx2lp.inf contains all the VIDs and PIDs relevant for these tasks. Table 6-1 gives a sum-
mary of VIDs and PIDs used in this .INF file.

http://www.cypress.com/?rID=36676
http://www.cypress.com/?rID=36676

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 45

Cypress USB Drivers for EZ-USB Kits

6.2.1 Binding Cypress USB Driver to EZ-USB Development Board
The EZ-USB (FX1/FX2LP) development board supplied with the kit is used to bind the signed
Cypress USB driver. Following are the steps to bind the driver:
1. Disconnect the USB A-to-B cable between the J1 connector and the PC USB Host port, if con-

nected previously.
2. Verify the following default jumper settings for the EZ-USB FX1 and FX2LP boards.

FX1: Short on JP1, JP2, JP3, JP5, JP6, JP7, JP8, and JP10.
FX2LP: Short on JP1, JP2, JP3, JP5, JP8, and JP10. Open JP6 and JP7.
The functionality of each of these jumpers is explained in Chapter 3.

3. Verify if SW2 is switched to the side, marked as NO EEPROM.
4. Re-connect the USB A-to-B cable between the J1 connector and the PC USB Host port.
5. The EZ-USB FX1 (0x04B4/0x6473) and FX2LP (0x04B4/8613) boards enumerate with the

default Fuse ROM VID/PID.
6. The Windows hardware wizard window pops up allowing you to update the corresponding driver

path, as shown in Figure 6-4.

Table 6-1. List of VID/PID used in EZ-USB Kits
S.No VID/PID Functional Description

1 0x04B4/0x8613

EZ-USB FX2LP Fuse ROM VID/PID.This is the initial VID/PID when
the board is powered, with the SW2-NO EEPROM setting as the
default combination
MOBL-USB FX2LP18 Connect Mode. Uses LP18_dvk.iic as the
default image in EEPROM to enable the DPTR register and enumer-
ate with this VID/PID

2 0x04B4/0x6473 EZ-USB FX1 Fuse ROM VID/PID

3 0x04B4/0x1004

Firmware examples in the EZ-USB kits use this combination except
for the hid_kb example, which uses 0x04B4/1005.This example
requires the Windows HID-Class driver and does not require a
Cypress USB driver

4 0x04B4/0x1003

This is used by the Cystream firmware example available in Suit-
eUSB 3.4.7 supplied along with this kit. Download CYStream.hex
from C:\Cypress\Cypress Suite USB 3.4.7\Firm-
ware\CyStreamer using Cyconsole or CyControlCenter utility
and test it using Streamer applications available in SuiteUSB.The
procedure to download a firmware .hex file is explained in Chapter-7
of this document.

46 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Cypress USB Drivers for EZ-USB Kits

Figure 6-4. Windows Hardware Wizard for Driver Update

7. Select Yes, This time only and click Next. Select Install from a specific location and click
Next.

8. In the subsequent window, select Don't search. I will choose driver to install and select Next.
In the list of Hardware devices, select Universal Serial Bus Controllers and click on Have Disk
button. A new Window pops up for locating the USB driver. Click the Browse button and point to
the following directories for the corresponding Windows PC Host operating system with respect
to <Installed_directory>\<Version>\Drivers\cyusbfx1_fx2lp
a. Windows2000: w2k\x86
b. Windows XP(32-bit): wxp\x86
c. Windows XP(64-bit): wxp\x64

9. The Hardware wizard Window options differ in Windows Vista and Windows 7 OS platforms. If
the hardware wizard window does not pop up, then type devmgmt.msc directly in the vacant box
in Windows Start. Locate the Unknown Device marked in yellow. Right-click on the Unknown
Device and verify in Details > Hardware ID if the VID/PID match the Fuse ROM VID/PID for the
FX1 and FX2LP devices. Then, right-click again on the Unknown Device and select Update
Driver Software. The Windows OS Hardware wizard window will now pop up. If the hardware
wizard window pops up automatically, then the entire process mentioned in this step can be
avoided.

10.Select Browse my computer for driver Software. In the next window, under Browse for the
driver software on your computer, click Browse and select the following directory paths for
Windows Vista and 7 OS:
a. Windows-Vista(32-bit): wlh-vista\x86
b. Windows-Vista(64-bit): wlh-vista\x64
c. Windows-7(32-bit): wlh-win7\x86
d. Windows-7(64-bit): wlh-win7\x64

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 47

Cypress USB Drivers for EZ-USB Kits

11.Open the device manager, as mentioned in step 9, and expand the list of USB controllers.
12.Observe the EZ-USB device in the list of USB device controllers. Following are the strings for the

default Fuse ROM VID/PID of EZ-USB devices.
a. EZ-USB FX1:“Cypress EZ-USB FX1 No EEPROM(3.4.5.000)”
b. EZ-USB FX2LP:“Cypress EZ-USB FX2LP No EEPROM(3.4.5.000)”

This completes the entire binding process for the EZ-USB device. The process is similar for any
USB device with its own proprietary drivers.

6.3 Drivers for Firmware and Keil Monitor Automatic Download using
Script Files
The firmware examples provided with the EZ-USB kits can be manually downloaded using Cycon-
sole or CyControlcenter. If you need to automate the firmware downloading process, then script
files can be used. Whenever the EZ-USB board with the relevant VID/PID to the script file is
detected, then the Windows OS automatically downloads the actual firmware inside the script and
the EZ-USB device re-enumerates with new VID/PID defined in the firmware. Following are the rele-
vant driver files provided under the \Drivers directory:
■ CyLoad: This directory contains CyLoad.spt, Cyload.cat, CyLoad.inf, and cyusb.sys.These are

basic files required to automate the process of firmware download using script files and .INF files.
For more details, refer to Firmware Download using CyLoad Driver Package on page 49.

■ CyMonfx1_fx2lp: This directory contains mon.spt cymon.cat, CyMonfx1_fx2lp.inf and
cyusb.sys. The script file mon.spt contains the Keil debug monitor. The Keil debug monitor, after
downloading to EZ-USB RAM memory, enables the user to debug EZ-USB firmware examples
using step-by-step debugging using the UART port at 38400 baud rate. The method to debug
firmware examples using this driver package is explained in Debugging Using Keil Monitor Pro-
gram on page 97.

6.3.1 How to Generate and Play Script Files (.spt)
The script files are generated for a specific firmware. Select the Bulkloop firmware example to
experiment for this purpose. Choose Bulkloop.hex under <Installed_directory>\<ver-
sion>\Firmware\Bulkloop in the EZ-USB Kit contents. The script file can be generated using
three tools available with the EZ-USB kits.

6.3.1.1 Script File Generation using the Cyscript Tool

Open this tool located at <Installed_directory>\<Version>\Bin after installing the EZ-USB
kit contents. Click the Browse button, adjacent to the Input HEX file, and select the path where the
.hex file is located. Choose the directory and file name of your choice for the script file and click Cre-
ate Script File button.

48 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Cypress USB Drivers for EZ-USB Kits

Verify if the xx.spt file is located in the destination directory. This tool can only generate a script but
cannot play the script. Using Cyconsole or Controlcenter, the generated script file can be loaded
and played to download the firmware inside the script.

6.3.1.2 Script File Generation and Play using CyConsole

Open the Cyconsole tool located at C:\Cypress\Cypress Suite USB 3.4.7\CyConsole.
Click on C:\Cypress\Cypress Suite USB 3.4.7\CyConsole. Alternately, the tool can be
accessed at Windows Start > All Programs > Cypress > Cypress SuiteUSB 3.4.7. Follow these
steps to generate and play the script.

Figure 6-5. Script Generation and Download Option in Cyconsole

1.Connect a USB A-to-B cable between the Windows PC USB Host port and the EZ-USB FX1/
FX2LP board J1 connector. The board should have switch SW2 with the NO EEPROM option
selected.

2.The EZ-USB FX1/FX2LP enumerates with the default Fuse ROM VID/PID.

3.Select the Record Script button

4.In the options menu, select EZ-USB Interface. Select Download in the new pop-up window and
browse to Bulkloop.hex at <Installed_directory>\<Version>\Firmware\Bulkloop

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 49

Cypress USB Drivers for EZ-USB Kits

5.Observe the Bulkloop.hex file getting downloaded successfully to the EZ-USB RAM memory. After
firmware download, click the Stop recording button and save the .spt file generated in the local
directory of choice.

6.Select the Load script button and choose the xxx.spt file generated in step 5.

7.Click on Play script. The entire firmware gets downloaded and the EZ-USB FX1/FX2LP re-enu-
merates with VID/PID -0x04B4/0x1004 defined in the firmware.

8.Open the device manager by clicking on Windows Start > Run. Type devmgmt.msc in the Run
box. If cyusbfx1_fx2lp.inf was binded to EZ-USB FX1/FX2LP earlier, as mentioned in Binding
Cypress USB Driver to EZ-USB Development Board on page 45, then the EZ-USB device enumer-
ates as Cypress EZ-USB Example Device(3.4.5.000).

6.3.1.3 Script Generation and Play using CyControlCenter

Open this tool located at C:\Cypress\Cypress Suite USB 3.4.7\CyUSB.NET\exam-
ples\Control Center\bin\Release after installing the EZ-USB kit contents. Click on
C:\Cypress\Cypress Suite USB 3.4.7\CyConsole. Alternately, the tool can be accessed at
Windows Start > All Programs > Cypress >Cypress Suite USB 3.4.7 > CyConsole. Follow these
steps to generate and play the script.

Figure 6-6. CyControlCenter Script Button Options

1. Connect a USB A-to-B cable between the Windows PC USB Host port and the EZ-USB FX1/
FX2LP board J1 connector. The board should have SW2 switched to the side, marked as NO
EEPROM.

2. The EZ-USB FX1/FX2LP enumerates with the default Fuse ROM VID/PID.
3. Click the Create Script button and select Bulkloop.hex at <Installed_directory>\<Ver-

sion>\Firmware\Bulkloop. Save the file as Bulkloop.spt to any local directory of choice.
4. Select the Load script button and choose the Bulkloop.spt file generated in step 3.
5. Click on Play script. The entire firmware gets downloaded and the EZ-USB FX1/FX2LP re-enu-

merates with VID/PID -0x04B4/0x1004 defined in the firmware.
6. Open the device manager by clicking on Windows Start > Run. Type devmgmt.msc in the Run

box. In the Windows Vista and 7 OS platforms, type devmgmt.msc directly in the vacant box
near Start button. If cyusbfx1_fx2lp.inf was binded to EZ-USB FX1/FX2LP previously as men-
tioned in section Binding Cypress USB Driver to EZ-USB Development Board chapter on
page 45 then EZ-USB device enumerates as Cypress EZ-USB Example Device(3.4.5.000).

6.3.2 Firmware Download using CyLoad Driver Package
In the previous section, the procedure to generate the script files and play the scripts were
described.The entire process of script-based firmware download can be automated using .INF files.
The CyLoad driver package contains several files to assist the user in auto-download of the firmware
using the script file. Following are the files for CyLoad driver package.

50 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Cypress USB Drivers for EZ-USB Kits

1. CyLoad.cat: These are Windows Catalog files which indicates that the USB driver cyusb.sys
passed Microsoft driver certification (WHQL) process.

2. Cyusb.sys: This is the cypress provided generic USB driver for all USB 2.0
products. The driver version 3.4.5 was used in the driver certification process

3. CyLoad.inf: This driver information file contains details about the CyLoad.spt,
CyLoad.cat and cyusb.sys driver file entries. The corresponding destination directories for driver
file and script file are also mentioned.The .INF file automates the process of firmware loading
using these files.

4. CyLoad.iic: Small EEPROM Image which contains VID/PID -0x04B4/0x0084
matching the VID/PID of Cyload.inf file. After downloading this file to EZ-USB development board
it re-enumerates with this VID/PID and script file is automatically triggered by Windows OS.

5. CyLoad.spt: The script file which automates firmware downloading to a EZ-USB
device.

Following is the snapshot of CyLoad.inf file content located at <Installed_directory>\<Ver-
sion>\Drivers\CyLoad for different Windows PC Host platforms
[Version]
Signature="$Windows NT$"
Class=USB
ClassGUID={36FC9E60-C465-11CF-8056-444553540000}
provider=%CYUSB_Provider%
CatalogFile=CyLoad.cat
DriverVer=01/19/2011,3.04.0005.000

[SourceDisksNames]
1=%Cyload_INSTALL%,,,

[SourceDisksFiles]
CyUsb.sys = 1
CyLoad.spt = 1

[DestinationDirs]
CyLoadFW.Files = 10, System32\CyLoad
CYUSB.Files.Ext = 10, System32\Drivers

[ControlFlags]
ExcludeFromSelect = *

[Manufacturer]
%CYUSB_Provider%=Device, NT, NTx86, NTamd64

;for all platforms
[Device]
;%VID_XXXX&PID_XXXX.DeviceDesc%=CyLoad, USB\VID_XXXX&PID_XXXX
%VID_04B4&PID_0084.DeviceDesc%=CyLoad, USB\VID_04B4&PID_0084

;for windows 2000 non intel platforms
[Device.NT]
;%VID_XXXX&PID_XXXX.DeviceDesc%=CyLoad, USB\VID_XXXX&PID_XXXX
%VID_04B4&PID_0084.DeviceDesc%=CyLoad, USB\VID_04B4&PID_0084

;for x86 platforms

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 51

Cypress USB Drivers for EZ-USB Kits

[Device.NTx86]
;%VID_XXXX&PID_XXXX.DeviceDesc%=CyLoad, USB\VID_XXXX&PID_XXXX
%VID_04B4&PID_0084.DeviceDesc%=CyLoad, USB\VID_04B4&PID_0084

;for x64 platforms
[Device.NTamd64]
;%VID_XXXX&PID_XXXX.DeviceDesc%=CyLoad, USB\VID_XXXX&PID_XXXX
%VID_04B4&PID_0084.DeviceDesc%=CyLoad, USB\VID_04B4&PID_0084
……
[CyLoad]
CopyFiles=CyLoadFW.Files
AddReg=CyLoad.AddReg

[CyLoad.HW]
AddReg=CyLoad.AddReg.Guid

[CYLoad.Services]
Addservice = CyLoad, 2,CyLoad.AddService

[CyLoad.NT]
CopyFiles=CyLoadFW.Files
AddReg=CyLoad.AddReg

[CyLoad.NT.HW]
AddReg=CyLoad.AddReg.Guid

[CyLoad.NT.Services]
Addservice = CyLoad,2,CyLoad.AddService
......

[CyLoadFW.Files]
CyLoad.spt

[CyLoad.AddReg.Guid]
HKR,,DriverGUID,,%CyLoad.GUID%
HKR,DriverEXECSCRIPT,,%CyLoad.EXECSCRIPT%

[CYUSB]
CopyFiles=CYUSB.Files.Ext
AddReg=CyUsb.AddReg

[CYUSB.HW]
AddReg=CYUSB.AddReg.Guid

[CYUSB.Services]
Addservice = CYUSB, 2,CYUSB.AddService

[CYUSB.Files.Ext]
CYUSB.sys

[CYUSB.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB.GUID%

52 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Cypress USB Drivers for EZ-USB Kits

;------------Modify these strings to match your device--------------------
-----------;
CyLoad_INSTALL = "Cypress USB Fwload Installation Disk(3.4.5.000)"
VID_04B4&PID_0084.DeviceDesc="Cypress EZ-USB Example Device Firmware Down-
load(3.4.5.000)"
CyLoad.SvcDesc = "Cypress EZ-USB Fwload(3.4.5.000)"

The important sections in this .INF file are
■ [SourceDisksFiles] section contains the necessary source files to download the firmware -

cyusb.sys and CyLoad.spt
■ [DestinationDirs] refer to Windows system folder where the source files are copied-cyusb.sys

copied to C:\Windows\system32\Drivers and CyLoad.spt to C:\Win-
dows\system32\CyLoad. For a Windows PC with multiple OS on different partitions the rele-
vant partition for active OS is used to copy the files.

■ The INF file is supported on different Windows OS platforms - 2000, XP, Vista and 7 using stan-
dard OS identifiers NT, NTx86 and NTamd64.

■ ‘CopyFiles=CyLoadFW.Files’ refers to another section CyLoadFW.files, which is in turn are
defined as:
❐ [CyLoadFW.Files]
❐ CyLoad.spt
The script file is the actual file defined by this section to be copied into the destination directory
defined in the [DestinationDirs] section.

■ The Cypress generic USB driver (ver 3.4.5) is also copied in a similar manner to Windows OS
System folders defined under [DestinationDirs] section.

■ The VID/PID-0x04B4/0x0084, which is part of the .INF file is linked to Cyload.spt The windows
OS automatically triggers the script using the below statement

HKR, DriverEXECSCRIPT,,%CyLoad.EXECSCRIPT

■ The corresponding strings for VID/PID-0x04B4/0x0084 are defined at the bottom of the
CyLoad.INF file.

6.3.2.1 How to Test CyLoad Driver Package

To verify the script loading features, follow these steps:
1. The EZ-USB FX1 and FX2LP device enumerates by default with Fuse ROM VID/PID 0x04B4/

8613 and 0x04B4/0x6473 respectively. Follow the process explained in Binding Cypress USB
Driver to EZ-USB Development Board on page 45 to bind the cyusbfx1_fx2lp.inf to EZ-USB
device.

2. After completing the binding process for default fuse ROM VID/PID switch SW2 should be used
to select the side marked as EEPROM and SW1 to the side marked as SMALL EEPROM

3. Open CyConsole from Windows start->All programs->Cypress->Cypress Suite USB 3.4.7.
Select Options->EZ-USB interface from the menu. The EZ-USB interface windows pops up.
Click on S EEPROM button and browse to Cyload.iic located at
<Installed_directory>\<version>\CyLoad.

4. The CyLoad.iic contains VID/PID-0x04B4/0x0084 matching the VID/PID mentioned in the
CyLoad.inf file

5. Press RESET button after programming the CyLoad.iic file. The EZ-USB development board
enumerates with the new VID/PID-0x04B4/0x0084

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 53

Cypress USB Drivers for EZ-USB Kits

6. The Windows hardware wizard pops up prompting user to locate the relevant driver. Follow the
steps 6 through10 explained in section 5.2.1 and point to the following Cyload driver for the rele-
vant CyLoad drivers directory, <Installed_directory>\<Version>\Drivers\CyLoad
a. Windows2000w2k\x86
b. Windows XP(32-bit): \wxp\x86
c. Windows XP(64-bit): wxp\x64
d. Windows-Vista(32-bit): wlh-vista\x86
e. Windows-Vista(64-bit): wlh-vista\x64
f. Windows-7(32-bit): wlh-win7\x86
g. Windows-7(64-bit): wlh-win7\x64\

7. The following files are copied to C:\Windows during binding process
a. CyLoad.spt copied to C:\Windows\system32\Cyload
b. Cyusb.sys copied to C:\Windows\system32\drivers

8. Open the device manager by clicking Start >Run. Type devmgmt.msc in the Run box. In Win-
dows Vista and Windows 7 machines, type the option directly in the vacant box. Expand the list of
USB controllers and observe the following:
a. During script file firmware download the EZ-USB device enumerates as “Cypress EZ-USB

Example Device Firmware Download (3.4.5.000)” due to VID/PID-0x04B4/0x0084 men-
tioned in CyLoad.inf

b. After completely downloading the firmware the EZ-USB device re-enumerates again with
downloaded firmware VID/PID-0x04B4/0x1004.The EZ-USB device updates itself in the
device manager as “Cypress EZ-USB Example Device (3.4.5.000)”. This string confirms
that auto firmware download using CyLoad.spt was successful.

Note The EEPROM image can also be downloaded using CyControlCenter.

6.3.3 Keil Debug Monitor Download using Script and CyMonfx1_fx2lp Driver Package
The Keil debug monitor is used to debug the firmware examples based on the EZ-USB kit.The Keil
monitor program is embedded in script file (mon.spt). The procedure to generate the script file for a
.hex file was explained in section. Using the sample Keil monitor .hex programs located at
<Installed_directory>\<Version>\Target\Monitor, the relevant script file can be gen-
erated. Alternatively, the current script file mon.spt can be used to debug the firmware example. The
detailed list of steps to debug a sample firmware example dev_io is explained in Debugging Using
Keil Monitor Program on page 97.

6.4 SuiteUSB Driver Packages
Along with the EZ-USB Kit contents, the SuiteUSB package is also provided. After the EZ-USB Kit
installation, the SuiteUSB package contents are automatically installed at C:\Cypress\Cypress
Suite USB 3.4.7. The Cypress generic USB drivers are located in the Driver\bin folder. The
Cypress generic USB drivers (ver 3.4.7) are located in this directory for different Windows OS plat-
forms. These are unsigned drivers. For testing the applications provided with SuiteUSB, the Signed
driver package provided under <Installed_directory>\<Version>\“Driv-
ers”\cyusbfx1_fx2lp can be used. The relevant VID/PID necessary to verify the functionality of
each of these SuiteUSB applications is mentioned in Table 6-1 on page 45.

54 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Cypress USB Drivers for EZ-USB Kits

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 55

7. USB PC Host Utilities and SuiteUSB Applications

This chapter describes the USB PC Host utilities provided with the EZ-USB (FX1/FX2LP) kits. Addi-
tionally, the SuiteUSB installer is provided, which supports a collection of USB Host application tools
designed using C++ and C# .NET software design tools. These host applications are used to com-
municate with Cypress USB 2.0 devices, such as EZ-USB FX1 and FX2LP.

7.1 USB Applications in EZ-USB Development Kit
The EZ-USB development kit contains the following two utilities under the \Bin directory:
1. CyScript.exe: This utlity is used to generate script file (.spt) for the corresponding RAM image

file (.hex).The procedure to generate the script file is explained in the section, Script File Genera-
tion using the Cyscript Tool on page 47.

2. hex2bix.exe: The utlity is used to convert the RAM image (.hex) files to the equivalent EEPROM
images(.iic). For detailed options of hex2bix utlity, refer to the application note, “AN45197 - Using
the Hex2bix Conversion Utility”.

7.2 SuiteUSB Applications
SuiteUSB tools can be used to communicate with any Cypress USB 2.0 device. The USB driver
packages provided are generic Cypress USB drivers (cyusb.sys and cyusbinf). The Suite USB 3.4.7
installer executable is provided in the CD/DVD under the SuiteUSB folder with respect to the CD/
DVD root directory. The kit installer automatically triggers the SuiteUSB package installation. The
default directory of installation is C:\Cypress\Cypress Suite USB 3.4.7. Following are the
list of C++ tools and their equivalent C# .NET application tools provided in SuiteUSB. If there are no
relevant tools in C# .NET, the corresponding column is marked as NA (not applicable).

http://www.cypress.com/?rID=17627
http://www.cypress.com/?rID=17627

56 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

USB PC Host Utilities and SuiteUSB Applications

.

The C++ applications use CyAPI.lib to communicate with the Cypress USB device.The C# .NET
framework applications use CyUSB.dll to communicate with the hardware.

7.2.1 Cyconsole Utility
The Cyconsole performs tasks, such as firmware download to EZ-USB RAM, Small EEPROM
(16 bytes, and Large EEPROM (32 KB). In addition, it can be used to perform script generation,
loading, and so on.

Table 7-1. List of SuiteUSB C++ and C# Applications

S.No C++
Application

C#.NET
Application Description

1 Cyconsole CyControlCenter

Both these applications are used for general-purpose tasks,
such as firmware download to EZ-USB RAM, small
EEPROM (16 bytes) and large EEPROM (32 KB). In addi-
tion, script recording and download options are available.

2 Streamer Streamer

Both these applications continuously stream Bulk and Iso-
chronous data in the OUT and IN directions. The OUT and
IN endpoints act as sink and source of data; that is, the
received data on the OUT endpoint is discarded and the rel-
evant endpoint re-armed and a constant size of data is sent
over the IN endpoint. Using the Cystream firmware located
at C:\Cypress\Cypress Suite USB 3.4.7\Firm-
ware\CyStreamer, these applications can be verified.

3 cybulk Bulkloop

Both these utilities perform the same functionality of looping
back the USB packet data received on the Bulk OUT end-
point to a Bulk IN endpoint. Using the Bulkloop firmware
example provided with the kit, these applications can be
tested.

4 cydesc -NA- The utlity provides the USB descriptor information of
Cypress USB 2.0 devices connected to Windows PC.

5 FxEEPROM -NA-

This utility is used to program small and Large EEPROM on
EZ-USB FX1/FX2LP development boards. Alternatively the
programming can also be done using CyConsole or
CyControlCenter

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 57

USB PC Host Utilities and SuiteUSB Applications

Figure 7-1. CyConsole Main Window Snapshot

Figure 7-1 displays the connected Cypress USB 2.0 device (FX2LP, in this case) and its attributes,
such as USB class, and the list of endpoints it supports.

Prior to firmware download, the Record Script button on the top left corner is used to record the
entire download process, including the firmware binary embedded inside it. After firmware download
is complete, click the Stop Recording button to save the entire download into a script file - xxx.spt.
To verify the script, load it using the Load Script button and play using Play Script. Due to the firm-
ware embedded inside the script getting downloaded, the EZ-USB development board will re-enu-
merate with the new VID/PID defined in the firmware. The process of script download is mentioned
in the section Script File Generation and Play using CyConsole on page 48. Click on Options > EZ-
USB Interface and the window shown in Figure 7-2 pops up.

58 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

USB PC Host Utilities and SuiteUSB Applications

Figure 7-2. EZ-USB Interface Window

The functionality of the most frequently used buttons are as follows:
■ Download: This button is used to download the firmware(.hex format) file to the EZ-USB RAM

memory
■ Lg EEPROM: This button is used to store the entire firmware (.iic) in Large EEPROM U5 -

24LC128. The EEPROM needs to be selected before firmware download using the SW1 and
SW2 switches.

■ S EEPROM: This button is used to store the entire firmware (.iic) in small EEPROM U6 -
24L0C0(16 bytes).The image contains a new VID/PID used to replace default Fuse ROM VID/
PID.The EEPROM needs to be selected before firmware download using the SW1 and SW2
switches.

■ Select Mon: This is the Keil Monitor program provided with the EZ-USB kits to help you debug
the firmware through the UART port. After the kit software installation, the Keil monitor programs
are located at <Installed_directory>\<Version>\Target\Monitor.

■ Load Mon: This button is used to download Keil monitor program to either internal or external
RAM memory. After the monitor download, the EZ-USB firmware is debugged through the UART
port. A sample demonstration of Keil monitor usage is provided in the section Debugging Using
Keil Monitor Program on page 97As mentioned in table this command is used to read and write
contents to small EEPROM.

■ Vend Req: This button is used to send different vendor commands to the EZ-USB device. The
use of this button is explained in the section Vend_ax Example on page 91

■ Iso Trans: This button is used to transfer data over Isochronous IN/OUT endpoints. After the
Cystream firmware example is downloaded (CYStream.hex) from C:\Cypress\Cypress
Suite USB 3.4.7\Firmware\CyStreamer, this button is used to send data over Isochro-
nous IN/OUT endpoints

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 59

USB PC Host Utilities and SuiteUSB Applications

■ BulkTrans: This button is used transfer data over Bulk IN/OUT endpoints. After the Bulkloop
firmware example is downloaded (Bulkloop.hex), this button is used to send data over Bulk IN/
OUT endpoints using the Bulk Trans button. A sample demonstration is provided in the section
Bulkloop Example on page 77. For more details on Cyconsole, refer to CyConsole.chm and
CyConsole.pdf at C:\Cypress\Cypress Suite USB 3.4.7\CyConsole. A sample demon-
stration of this utility, while using firmware examples, is provided in the section EZ-USB Develop-
ment Kit Firmware Examples chapter on page 65.

■ FileTrans: This button is used to download raw packet data to the EZ-USB device.The sample
files that can be used to transfer are available at <Installed_directory>\<Ver-
sion>\Target\File_Transfer.

7.2.2 CyControlCenter Utility
The CyControlCenter performs functions similar to the CyConsole application. Following are the
major functions of CyControlCenter.

Figure 7-3. CyControlCenter Snapshot for the EZ-USB Device

60 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

USB PC Host Utilities and SuiteUSB Applications

■ Firmware Download: After connecting the EZ-USB development board in the NO EEPROM
mode (switch SW2 on board to NO EEPROM), the firmware can be download to RAM, small
EEPROM or the large EEPROM.The procedure to download is explained in EZ-USB Develop-
ment Kit Firmware Examples chapter on page 65 for each of the firmware examples provided
with the kit.

■ Script file generation and automatic firmware download: This utility can be used to generate
the script file for a relevant firmware .hex file and later use the script file to automatically down-
load the firmware using the script. The process of automatic firmware download using scripts is
explained in the section Script Generation and Play using CyControlCenter on page 49.

■ Data transfers: Using the tool, the USB packet data can be transferred over an endpoint. The
procedure is explained in the CyControlCenter.pdf file located at C:\Cypress\Cypress Suite
USB 3.4.7\CyUSB.NET\.

7.2.3 Streamer Utility
The Streamer utilities are available in both C++ and C#.NET framework versions. These utilities are
used to test the Bulk and Isochronous data transfer throughput in both IN and OUT directions.
■ Download the cystream.hex file located at C:\Cypress\Cypress Suite USB

3.4.7\Firmware\CyStreamer using CyConsole or CyControlCenter. The procedure to down-
load the firmware to RAM memory is explained in Method to Download Firmware Image to EZ-
USB Internal RAM Memory on page 69

■ Open anyone of the Streamer applications at the following locations:
1. Streamer using C++ CYAPI.lib: For 32-bit Windows OS platforms, the utility is located at

C:\Cypress\Cypress Suite USB 3.4.7\CyAPI\examples\Streamer\x86\Release. For 64-bit OS
platforms, refer to C:\Cypress\Cypress Suite USB 3.4.7\CyAPI\exam-
ples\Streamer\x64\Release

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 61

USB PC Host Utilities and SuiteUSB Applications

Figure 7-4. Streamer(C++) throughput on Bulk OUT Endpoint

Select the relevant Bulk or Isochronous In/OUT endpoint. Vary the Packets per Xfer and Xfers to
Queue parameters and verify the throughput for different Bulk and Isochronous endpoints across dif-
ferent alternate interfaces.

2.Streamer using C# .NET CYUSB.dll: The throughput can also be measured using this utility
available at C:\Cypress\Cypress Suite USB 3.4.7\CyUSB.NET\examples\Streamer\bin\Release.

62 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

USB PC Host Utilities and SuiteUSB Applications

Figure 7-5. Streamer Throughput on ISO IN Endpoint

Select the relevant Bulk or Isochronous In and OUT endpoints. Vary the Packets per Xfer and Xfers
to Queue parameters and verify the throughput for different Bulk and Isochronous endpoints across
different alternate interfaces.

 Note The maximum data allowed per transfer is 64 KB for Bulk and Isochronous transfers.

7.2.4 Cydesc Utility
The utlity is used to view the USB device descriptor of Cypress USB 2.0 devices. The following fig-
ure shows the EZ-USB FX2LP device’s default device descriptor.

Figure 7-6. Cydesc Display of EZ-USB FX2LP Device Descriptor

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 63

USB PC Host Utilities and SuiteUSB Applications

7.2.5 FxEEPROM Utility
The utlity is used to program the .iic file to either small EEPROM-U6 or Large4 EEPROM-U5 on the
EZ-USB development board.

Figure 7-7. FXEEPROM Utility Display

The EZ-USB development board is connected to the Windows PC Host in the NO EEPROM mode
(SW2 to NO EEPROM side). The utility then detects the board and the relevant buttons on the .exe
are enabled. To program small EEPROM images, such as FX1_C0.iic, FX2LP_CO.iic, and
CyLoad.iic, select the SW2-EEPROM and SW1-SMALL EEPROM settings on board. Press the Pro-
gram Small EEPROM button, and browse and select the relevant image and program the .iic file. To
download bulk firmware images (0xC2 load), select the SW2-EEPROM and SW1-LARGE EEPROM
settings. Press the Program Large EEPROM button, browse to the location of the image, and finally
select the image. The image is automatically downloaded to the external EEPROM connected to the
EZ-USB device.

64 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

USB PC Host Utilities and SuiteUSB Applications

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 65

8. EZ-USB Development Kit Firmware Examples

This chapter explains in detail about firmware example and how to test each firmware example pro-
vided with the kit. The EZ-USB FX1 and FX2LP kits contain a common set of firmware examples to
demonstrate the EZ-USB (FX1 and FX2LP) capabilities along with the various components on-board
(seven-segment LED, push button, RAM memory, EEPROM, and so on). It also explains how to
debug a firmware example using the Keil uVision2 IDE. Table 8-1 lists the firmware examples pro-
vided with the kit, along with their brief description.

Note All the above firmware examples, except hid_kb, use the common VID/PID, 0x04B4/0x1004.
The hid_kb project uses the VID/PID, 0x04B4/0x1005.

Table 8-1. List of Firmware Example in EZ-USB Development Kits (CY3674/CY3684)

S.No Firmware Example Description

1 hid_kb Example firmware that emulates a HID-class keyboard using the buttons and
7-segment display on the DVK board

2 Bulkloop Contains a bulk loopback test that exercises the EZ-USB bulk endpoints. It
loops back EP2OUT to EP6IN and EP4OUT to EP8IN.

3 Bulkext

Contains a bulk loopback test that exercises the EZ-USB bulk endpoints. The
loopback is performed using the external auto pointer. Data is copied from the
OUT endpoint buffer to external RAM and then to the IN endpoint buffer. It
loops back EP2OUT to EP6IN and EP4OUT to EP8IN

4 Bulksrc

Contains bulk endpoint endless source/sink firmware. It can be driven using
the CyConsole or CyBulk. EP2OUT always accepts a bulk OUT; EP4OUT
always accept a bulk OUT; EP6IN always returns a 512-byte packet, 64 bytes
at full-speed. Based on buffer availability in EP8IN, the most recent packet of
EP4OUT is written to EP8IN.

5 dev_io
Contains the source files to build simple development board I/O sample. This
software demonstrates how to use the buttons and LED on the EZ-USB
development kit.

6 EP_Interrupts Bulk loopback firmware that demonstrates use of endpoint interrupts using
EZ-USB FX2LP.

7 extr_intr Firmware that demonstrates external interrupt handling INT0, INT1, INT4,
INT5, and INT6.

8 Ibn Contains firmware to perform bulk loopback of EP2OUT to EP6IN and
EP4OUT to EP8IN using the IBN (In Bulk Nak) interrupt to initiate the transfer.

9 LEDCycle Simple firmware example to demonstrate use of the general-purpose indicator
LEDs (D2, D3, D4, and D5) on the DVK board.

10 Pingnak Contains firmware to perform bulk loopback of EP2OUT to EP6IN and
EP4OUT to EP8IN using the PING NAK interrupt to initiate the transfer.

11 iMemtest Memory test firmware example. Tests on-chip RAM.

12 vend_ax Contains the source files to build a vendor-specific command sample. This
example demonstrates how to implement different vendor commands.

66 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

8.1 Method to Verify the Firmware Example Functionality
The firmware examples provided with the kit can be verified using the EZ-USB development board
provided with the kit. There are different types of firmware download mechanisms for the EZ-USB
devices. After the firmware is successfully downloaded, the EZ-USB device re-enumerates and
prompts for a relevant windows USB driver. You must bind to the appropriate cyusbxxx.inf and
cyusb.sys files provided with the kit. Finally, when the driver binding is complete, use the relevant PC
tools to test the firmware functionality. To demonstrate each of these firmware examples, the entire
process is divided into various stages for each example.

8.2 hid_kb Firmware Example
This example describes the implementation of a 4-button virtual HID-Class keyboard using the EZ-
USB DVK board. Open the hid_kb.Uv2 project file in Keil µVision2 IDE. Figure 8-1 provides the proj-
ect snapshot in the IDE.

Figure 8-1. hid_kb Project View in keil uVision2 IDE

The firmware example detects if any of the four push buttons are pressed (on the development
board) and sends the relevant fixed data to the Host PC. For the HID-class devices, such as key-
board and mouse, the USB bandwidth requirements is typically 64 KB/sec. Most of the HID devices
are either low-speed or full-speed devices. Due to this low data rate requirement of the device, only
the endpoint EP1 (64-byte buffer) is selected for both IN and OUT interrupt transfers. The high-
speed data endpoints EP2, EP4, EP6, and EP8 are disabled, as shown in the following code snip-
pet:
EP1OUTCFG = 0xB0; // valid, interrupt OUT, 64 bytes, Single buffered
EP1INCFG = 0XB0; // valid, interrupt IN, 64 bytes, Single buffered
EP2CFG = EP4CFG = EP6CFG = EP8CFG = 0; // disable unused endpoints

For a typical HID device, the data related to events, such as button press, key strokes, and mouse
clicks, are transferred to the Host in the form of Input Reports using an Interrupt IN endpoint. Simi-
larly, the Reports can be requested by the Host PC using the control endpoint or an Interrupt OUT
endpoint. The firmware sets EP1IN and EP1OUT as Interrupt endpoints for data transfers. The fol-

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 67

EZ-USB Development Kit Firmware Examples

lowing table summarizes the mapping of Push buttons on the FX2LP development board to key-
board buttons.

The function TD_poll () in the firmware (periph.c) is where the periodic checking of a new push but-
ton event is done. Following is the code snippet of this function.
if(!(EP1INCS & bmEPBUSY)) // Is the EP1INBUF
 //available,
{
EZUSB_ReadI2C(BTN_ADDR,0x01,&buttons); // Read button states
buttons &= 0x0F;
if ((oldbuttons - buttons) != 0) //Change in button state
{
if (buttons & 1) //Shift
EP1INBUF[0] = 0;
else
EP1INBUF[0] = 2;
if (buttons & 2) //a
EP1INBUF[2] = 0;
else
EP1INBUF[2] = 4;
if (buttons & 4) //b
EP1INBUF[3] = 0;
else
EP1INBUF[3] = 5;
if (buttons & 8) //c
EP1INBUF[4] = 0;
else
EP1INBUF[4] = 6;
EP1INBUF[1] = 0;
EP1INBC = 5;
}
oldbuttons = buttons;
}

8.2.1 Building Firmware Example Code for EZ-USB Internal RAM and External
EEPROM.
■ Click on Build Target button at the top right corner of the IDE. Figure 8-2 of the Build window of

the Keil IDE shows the successful compilation of the entire project.

Table 8-2. Function Mapping of Development Board Buttons

EZ-USB Development Board
Push Button Function

f1 Shift

f2 Send ‘a’

f3 Send ‘b’

f4 Send ‘c’

68 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-2. Build Window Snapshot of hid_kb Project

Note Observe that the total Code bytes of the hid_kb project is less than the 4-k code limit of Keil
uVision2 IDE provided along with the kit.

■ Firmware for EZ-USB RAM memory: The output of the Build Target is hid_kb.hex. It is the rel-
evant file for downloading to EZ-USB RAM memory.

■ Firmware for external I2C EEPROM: To generate EEPROM compatible firmware image, the
Keil IDE invokes the hex2bix.exe utility to convert the output file hid_kb.hex into hid_kb.iic.
Right-click on Target1 in the Project Window and select Options for Target 'Target1'. This will
pop-up the Keil settings for this project. Select the Output tab and observe at the bottom of the
IDE, the hex2bix utility is invoked as shown in Figure 8-3.

Figure 8-3. hid_kb Project Output Image Settings

Under Run User program#1 section observe the hex2bix utility is invoked in the following manner:
..\..\Bin\hex2bix -i -c 0x00 -f 0xC2 -o hid_kb.iic hid_kb.hex

Refer to the application note, “Using the hex2bix Conversion Utility - AN45197, to know more
details on the hex2bix utility.

http://www.cypress.com/?rID=17627

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 69

EZ-USB Development Kit Firmware Examples

8.2.2 Method to Download Firmware Image to EZ-USB Internal RAM Memory
1. On the EZ-USB(FX2LP/FX1) board, select switch SW2 to the NO EEPROM side.
2. Connect the USB A-to-B cable from the J1 connector on board to a Windows PC USB Host con-

troller port.
3. The EZ-USB development board should, by default, bind to cyusbfx1_fx2lp.inf in the /Drivers

folder at <Installed_directory>\<version>\ for the corresponding OS. Refer to the sec-
tion, Binding Cypress USB Driver to EZ-USB Development Board on page 45, on how to bind this
driver to the EZ-USB development board. If the binding process is already performed, ignore this
step.

4. Open the Cyconsole PC application from Windows Start >All programs > Cypress > Cypress
Suite USB 3.4.7 > CyConsole.Observe EZ-USB FX2LP listed as Cypress EZ-USB FX2LP No
EEPROM(3.4.5.000) and EZ-USB FX1 listed as Cypress EZ-USB FX1 No EEPROM(3.4.5.000).

5. Click on Options > EZ-USB Interface. The EZ-USB Interface window pops up on top of the
CyConsole Window. To download hid_kb.hex to EZ-USB internal RAM memory, click the Down-
load button and browse to the image path at <Installed_directory>\<Version>\Firm-
ware\hid_kb

6. After download, the image does not require a Cypress USB driver for testing the 4-button virtual
keyboard functionality. The complete functionality is handled by the Microsoft Windows OS native
HID drivers.

8.2.3 Method to Download Firmware Image to External I2C EEPROM
1. On the EZ-USB(FX2LP/FX1) board select SW2-NO EEPROM and connect the USB A-to-B cable
from the J1 connector on board to a Windows PC USB Host controller port. The EZ-USB device enu-
merates with the default VID/PID.

2. Before programming the EEPROM image file (.iic), select SW2-EEPROM and SW1-LARGE
EEPROM as switch settings to select large EEPROM U5 on board.

3. Open the Cyconsole PC application from Start > All programs > Cypress > Cypress Suite USB
3.4.7 > CyConsole as shown in Figure 8-13. Observe EZ-USB FX2LP listed as Cypress EZ-USB
FX2LP No EEPROM(3.4.5.000) and EZ-USB FX1 listed as Cypress EZ-USB FX1 No
EEPROM(3.4.5.000).

4. Click the Lg EEPROM button on the EZ-USB Interface window and browse to the project folder
and select the image hid_kb.iic at <Installed_directory>\<Version>\Firm-
ware\hid_kb.The EZ-USB interface window shows successful completion of image download to
large EEPROM U5-24LC128

5. Press the RESET button, S1, again and this eventually prompts the EZ-USB device to boot from
the Large EEPROM Image-hid_kd.iic.

6. After download, the image does not require a Cypress USB driver for testing the 4-button virtual
keyboard functionality. The complete functionality is handled by the Microsoft Windows OS native
HID drivers.

7. The firmware image can also be downloaded using CyControlCenter. Open the CyControlCenter
PC application from Start > All programs > Cypress > Cypress Suite USB 3.4.7 > CyConsole as
shown in Figure 8-13 on page 93. Switch SW2 on board to NO EEPROM and press the RESET but-
ton. Observe EZ-USB FX2LP listed as Cypress EZ-USB FX2LP No EEPROM(3.4.5.000) and EZ-
USB FX1 listed as Cypress EZ-USB FX1 No EEPROM(3.4.5.000). Before the hid_kb.iic file down-
load, select SW1-LARGE EEPROM and SW2-EEPROM options on board. Select Program FX2 >
64KB EEPROM as shown in Figure 8-4. Browse and select the hid_kb.iic file. The application auto-
matically downloads the entire image to the Large EEPROM-U5 on board.

70 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-4. CyControlCenter Display to Download Image to Large EEPROM

Note To download the image to the small EEPROM, follow the instructions in steps 1 to 7. The only
changes are the on-board EEPROM settings in step 2 (SW1-SMALL EEPROM, SW2-EEPROM).
Additionally, the Cyconsole EZ-USB Interface Window selects S EEPROM instead of Lg EEPROM
before download and in CyControlCenter menu, select Program FX2 > small EEPROM instead of
64KB EEPROM.

8.2.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The hib_kb project contains firmware for a HID-class keyboard device (Interface class: HID = 03
and subclass = 00) and uses the Microsoft native HID driver, instead of Cypress generic USB driver.

8.2.5 Testing the hid_kb Firmware Example Functionality
The EZ-USB development board enumerates as a human interface device (HID). Open the Device
Manager Window by typing devmgmt.msc in Start > Run. In Windows Vista and Windows 7 OS
platforms, type devmgmt.msc directly in the vacant box near the Start button. The device will be
shown as part of the HID devices list. Open a new notepad in Windows and point the mouse to the
text area of the notepad. Press buttons F2, F3, and F4 sequentially and observe the letters 'a', 'b', 'c'
getting printed in the notepad. Press them simultaneously with F1 and observe the alphabets 'A', 'B',
and 'C' on the notepad.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 71

EZ-USB Development Kit Firmware Examples

8.3 IBN Firmware Example

8.3.1 Description
This example illustrates the configuration of EZ-USB to accept bulk data from the host and loop it
back to the host using an IN-BULK-NAK interrupt. Click on the ibn.Uv2 project file at
<Installed_directory>\<Version>\Firmware\ibn. In the TD_init() function of the ibn.c file
four endpoints are configured to handle bulk transfer: two OUT endpoints and two IN endpoints. The
four endpoints defined in the descriptor file have to be configured in this function. This is done by the
following statements:
EP2CFG = 0xA2;
SYNCDELAY;
EP4CFG = 0xA0;
SYNCDELAY;
EP6CFG = 0xE2;
SYNCDELAY;
EP8CFG = 0xE0

The key characteristics of each endpoint are as follows:
■ Endpoint 2 - OUT, Bulk, double-buffered
■ Endpoint 4 - OUT, Bulk, double-buffered
■ Endpoint 6 - IN, Bulk, double-buffered
■ Endpoint 8 - IN, Bulk, double-buffered

Writing to these registers typically takes more than two clock cycles needed for a MOVX instruction.
Therefore, the SYNCDELAY, already defined, is added. The TRM provides the list of registers that
need this delay function when writing to them. The OUT endpoints, after they are configured, need to
be armed to accept packets from the host. Because the endpoints are double-buffered, you must
arm the endpoint twice. Arming is essentially freeing up the buffers and making them available to the
host to receive packets.

By writing a 1 to bit7 of the byte count register the endpoint is ARMed.
EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip.
SYNCDELAY;
EP2BCL = 0x80;
SYNCDELAY;
EP4BCL = 0x80; // arm EP4OUT by writing byte count w/skip.
SYNCDELAY;
EP4BCL = 0x80;

The lines above arm the two OUT endpoints by skipping two packets of data making the buffers
available to receive OUT data:
NAKIRQ = bmBIT0; // clear the global IBN IRQ
NAKIE |= bmBIT0; // enable the global IBN IRQ
IbnFlag = 0x00; // clear our IBN flag
IBNIRQ = 0xFF; // clear any pending IBN IRQ
IBNIE |= bmEP6IBN | bmEP8IBN; // enable the IBN interrupt
 for EP6 and EP8

The firmware clears the In-Bulk-NAK flags of all endpoints and any pending In-Bulk-NAK interrupts
and enables the In-Bulk-NAK interrupt for EP6 and EP8.
AUTOPTRSETUP |= 0x01;

This enables the AUTO pointer used for data transfer in the TD_Poll() function. The loopback is
implemented in the TD_Poll function, which is called repeatedly when the device is idle. Endpoints 2

72 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

and 4 are armed to accept data from the host. This data is transferred to endpoint 6 and endpoint 8
respectively. To implement this, endpoint 2 is first checked to see if it has data. This is done by read-
ing the endpoint 2 empty bit in the endpoint status register (EP2468STAT). If endpoint 2 has data
(that is sent from the host), then check if the host has requested data on EP6. This is done by read-
ing the EP6 In-Bulk-Flag bit in the IbnFlag variable. If the host has requested for data on EP6, then
the data is transferred.

This decision is executed by the following statement:
if (!(EP2468STAT & bmEP2EMPTY) && (IbnFlag & bmEP6IBN))
// if there is new data in EP2FIFOBUF and the IBN flag for EP6 has been
set, //then copy the data from EP2 to EP6

The data transfer is carried out by the execution of the following loop:
for(i = 0x0000; i < count; i++)
{
// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)
EXTAUTODAT2 = EXTAUTODAT1;
}

As auto pointers are enabled, the pointers increment automatically.
EXTAUTODAT2 = EXTAUTODAT1;

After this statement transfers the data, endpoint 2 has to be "rearmed" to accept a new packet from
the host. Endpoint 6 has to be “committed”, that is, make the FIFO buffers available to the host for
reading data from the Endpoint 6.

This is accomplished by the following statements:
EP6BCH = EP2BCH;
SYNCDELAY;
EP6BCL = EP2BCL; // commit EP6IN by specifying the number of bytes the
host can read //from EP6
SYNCDELAY;
EP2BCL = 0x80; // re (arm) EP2OUT

The EP6 In-Bulk-NAK Flag bit in the IbnFlag variable is cleared. The EP6 In-Bulk-NAK interrupt
request is cleared by setting the corresponding bit in the IBNIRQ register. Finally, the EP6 In-Bulk-
NAK interrupt is enabled by setting the corresponding bit in the IBNIE register.
IbnFlag &= ~bmEP6IBN; // clear the IBN flag
IBNIRQ = bmEP6IBN; // clear the IBN IRQ
IBNIE |= bmEP6IBN; // enable the IBN IRQ

The same operation is carried out to implement a data loop with endpoints 4 and 8.

When the host requests an IN packet from an EZ-USB BULK endpoint, the endpoint NAKs (returns
the NAK PID) until the endpoint buffer is filled with data and armed for transfer, at which point the EZ-
USB answers the IN request with data. Until the endpoint is armed, a flood of IN-NAKs can tie up
bus bandwidth. Therefore, if the IN endpoints are not always kept full and armed, it may be useful to
know when the host is "knocking at the door, requesting IN data”. The IN-BULK-NAK (IBN) interrupt
provides this notification. The IBN interrupt fires whenever a Bulk endpoint NAKs an IN request. The
IBNIE/IBNIRQ registers contain individual enable and request bits for each endpoint, and the NAKIE/
NAKIRQ registers each contain a single-bit, IBN, that is the ORd combination of the individual bits in
IBNIE/IBNIRQ, respectively. The EZ-USB firmware framework provides hooks for all the interrupts
that it implements. The example project uses the ISR_Ibn interrupt service routine to handle In-Bulk-
NAK(IBN) interrupt for EP6 and EP8.
void ISR_Ibn(void) interrupt 0
{
int i;

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 73

EZ-USB Development Kit Firmware Examples

// disable IBN for all endpoints
IBNIE = 0x00;
EZUSB_IRQ_CLEAR(); // clear the global USB IRQ
// Find the EP with its IBN bit set
for (i=0;i<8;i++)
{
if (IBNIRQ & (1 << i))
{
IbnFlag |= (1 << i); // set the appropriate IBN flag bit
IBNIRQ |= (1 << i); // clear the IBN IRQ for this endpoint
}
}
NAKIRQ |= bmBIT0; // clear the global IBN IRQ
// re-enable IBN interrupt for any endpoints that don't already have
// an IBN pending in IbnFlag
IBNIE = (bmEP6IBN | bmEP8IBN) & ~IbnFlag;
}

8.3.2 Building Firmware Example Code for EZ-USB RAM and EEPROM
Click on Build Target at the top right corner of the IDE. The firmware example builds successfully
since the total code bytes of IBN firmware example is less than the 4-k code limit Keil µVision2 IDE
provided along with the kit. The output of the Build Target is ibn.hex and ibn.iic files.

8.3.3 Method to Download Firmware Image to EZ-USB Internal RAM and External
EEPROM
Refer to the sections Method to Download Firmware Image to EZ-USB Internal RAM Memory on
page 69 and Method to Download Firmware Image to External I2C EEPROM on page 69 and follow
a similar procedure to download ibn.hex to either the RAM memory or ibn.iic to large EEPROM
using Cyconsole/CyControlCenter. After download, the firmware re-enumerates with the PC using its
internal VID/PID-0x04B4/0x1004.

8.3.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The IBN project uses vendor-class (0xFF) with VID/PID-0x04B4/1004.This example should bind with
the Cypress generic USB driver, cyusb.sys, and the driver information file, cyusbfx1_fx2lp.inf, which
contains the relevant VID/PID of this example. Follow the procedure outlined in Binding Cypress
USB Driver to EZ-USB Development Board on page 45 to manually bind the driver using the Win-
dows Hardware Wizard.

8.3.5 Testing the IBN Firmware Functionality
Following are the detailed steps to test the functionality
1. After the board enumerates, use CyConsole to send 512 bytes from EP2 to EP6. The data

received should be the same as the data sent. 512 bytes of user-defined data can be sent from
the host to Endpoint 2 using CyConsole. For example, select Endpoint 2 OUT in the pipe window
near the Bulk Trans button of the EZ-USB interface window, enter the length as 512 and Hex-
Bytes as 5, and then press the Bulk Trans button.

2. This data can be read back from Endpoint 6 using CyConsole. For example, select Endpoint 6 IN
in the pipe, enter the length as 512, and then press the Bulk Trans button. Similarly, loopback
using endpoints 4 and 8 can also be tested. Since EP2 and EP4 are double-buffered, they can
only contain two packets of data.

74 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

3. On sending a packet to these endpoints when both the buffers are full, the endpoints NAK the
transfer because there is no space available. If an IN transfer is requested on either EP6 or EP8,
the corresponding In-Bulk-NAK interrupt is asserted and data is transferred from EP2 to EP6 or
from EP4 to EP8. This data appears on the EZ-USB Interface Window.

4. The above can be tested by trying to send data to EP2 and EP4 without reading the data out of
EP6 or EP8. After the first two transfers, all the successive OUT transfers fail. This persists until
an IN transfer is made on EP6 or EP8.

5. For the EZ-USB FX1 device, the endpoint size is 64 bytes instead of 512 bytes.

8.4 Pingnak Firmware Example

8.4.1 Description
This project illustrates the configuration of the EZ-USB device to accept bulk data from the host and
loop it back to the host and the use of the PING-NAK interrupt. Click on pingnak.Uv2 located at
<Installed_directory>\<Version>\Firmware\pingnak and observe the code. Four end-
points are configured in the TD_init() function of pingnak.c to handle bulk transfer: two OUT end-
points and two IN endpoints. The four endpoints defined in the descriptor file have to be configured
in this function. This is done by the following statements:
EP2CFG = 0xA2;
SYNCDELAY;
EP4CFG = 0xA0;
SYNCDELAY;
EP6CFG = 0xE2;
SYNCDELAY;
EP8CFG = 0xE0

The key characteristics of each endpoint are as follows:
■ Endpoint 2 - OUT, Bulk, double-buffered
■ Endpoint 4 - OUT, Bulk, double-buffered
■ Endpoint 6 - IN, Bulk, double-buffered
■ Endpoint 8 - IN, Bulk, double-buffered

Writing to these registers typically takes more than two clock cycles needed for a MOVX instruction.
Therefore, the SYNCDELAY, already defined, is added. The EZ-USB Technical Reference Manual at
<Installed_directory>\<Version>\Documentation provides the list of registers that need
this delay function when writing to them. The OUT endpoints, after they are configured, need to be
armed to accept packets from the host. Because the endpoints are double-buffered, you must arm
the endpoint twice. Arming is essentially freeing up the buffers and making them available to the host
to receive packets. By writing a 1 to bit7 of the byte count register, the endpoint is armed.
EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip.
SYNCDELAY;
EP2BCL = 0x80;
SYNCDELAY;
EP4BCL = 0x80; // arm EP4OUT by writing byte count
 //w/skip.
SYNCDELAY;
EP4BCL = 0x80;

 After configuration, the OUT endpoints are 'armed' to accept data from the host. An OUT endpoint is
said to be armed if it is ready to accept data from the host. Each endpoint is configured as double-
buffered. The OUT endpoints are armed by setting the skip bit in the byte count registers. This
leaves them empty to receive a new packet from the host. It also clears any pending PING-NAK

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 75

EZ-USB Development Kit Firmware Examples

interrupts and enables the PING-NAK interrupt for EP2 and EP4. The loopback is implemented in
the TD_Poll() function that is called repeatedly when the device is idle. Endpoints 2 and 4 are armed
to accept data from the host. This data is transferred to endpoint 6 and endpoint 8 respectively. To
implement this, endpoint 2 is first checked to see if it has data. This is done by reading the endpoint
2 empty bit in the endpoint status register (EP2468STAT). If endpoint 2 has data (that is sent from
the host), the capability of endpoint 6 to receive the data is checked. This is done by reading the end-
point 6 Full bit in the endpoint status register. If endpoint 6 is not full, then the data is transferred.
This decision is executed by the following statements:
if (!(EP2468STAT & bmEP2EMPTY))
{// check EP2 EMPTY (busy) bit in EP2468STAT (SFR), core set's this bit
when
// FIFO is empty
if (!(EP2468STAT & bmEP6FULL))
{// check EP6 FULL (busy) bit in EP2468STAT (SFR), core set's this bit
// when FIFO is full

The data pointers are initialized to the corresponding buffers. The first auto pointer is initialized to the
first byte of the endpoint 2 FIFO buffer. The second auto-pointer is initialized to the first byte of the
endpoint 6 FIFO buffer. The number of bytes to be transferred is read from the byte count registers
of Endpoint 2. The registers EP2BCL, EP2BCH contain the number of bytes written into the FIFO
buffer by the host. These two registers give the byte count of the data transferred to the FIFO in an
OUT transaction as long as the data is not committed to the peripheral side. This data pointer initial-
ization and loading of the count is done in the following statements:
APTR1H = MSB(&EP2FIFOBUF); // Initializing the first data pointer
APTR1L = LSB(&EP2FIFOBUF);
AUTOPTRH2 = MSB(&EP6FIFOBUF); // Initializing the second data pointer
AUTOPTRL2 = LSB(&EP6FIFOBUF);
count = (EP2BCH << 8) + EP2BCL; // The count value is loaded from the byte
// count registers

The data transfer is carried out by the execution of the following loop:
for(i = 0x0000; i < count; i++)
{
// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)
EXTAUTODAT2 = EXTAUTODAT1;
}

Because auto pointers have been enabled, the pointers increment automatically, and the statement
EXTAUTODAT2 = EXTAUTODAT1;

transfers data from endpoint 2 to endpoint 6. Each time the above statement is executed, the auto
pointer is incremented. The above statement is executed repeatedly to transfer each byte from end-
point 2 to 6. After the data is transferred, endpoint 2 has to be 'rearmed' to accept a new packet from
the host. Endpoint 6 has to be 'committed', that is, make the FIFO buffers available to the host for
reading data from endpoint 6. This is accomplished by the following statements:
EP6BCH = EP2BCH;
SYNCDELAY;
EP6BCL = EP2BCL; // commit EP6IN by specifying the number of bytes the
host can read //from EP6
SYNCDELAY;
EP2BCL = 0x80; // re (arm) EP2OUT

The same operation is carried out to implement a data loop with endpoints 4 and 8.

High-speed USB implements a PING-NAK mechanism for (Bulk and Control) OUT transfers. When
the host wishes to send an OUT data to an endpoint, and the previous data transfer was responded

76 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

by a NYET, it first sends a PING token to see if the endpoint is ready (for example, if it has an empty
buffer). If a buffer is not available, the FX2LP returns a NAK handshake. PING-NAK transactions
continue to occur until an OUT buffer is available, at which time the FX2LP answers a PING with an
ACK handshake and the host sends the OUT data to the endpoint. EZ-USB implements PING-NAK
interrupt as EP0PING, EP1PING, and so on, one for each endpoint. The EPxPING interrupt is
asserted when the host PINGs an endpoint and the FX2LP responds with a NAK because the partic-
ular endpoint buffer memory is not available. The FX2LP firmware framework provides hooks for all
the interrupts that it implements. The example project uses ISR_Ep2pingnak and ISR_Ep4pingnak
interrupt service routines to handle EP2PING and EP4PING interrupts respectively.
void ISR_Ep2pingnak(void) interrupt 0
{
SYNCDELAY; // Re-arm endpoint 2
EP2BCL = 0x80;
EZUSB_IRQ_CLEAR(); // clear the EP2PING interrupt
NAKIRQ = bmEP2PING;
}

The ISR_Ep2pingnak discards the previous data that is stored in one of the buffers of Endpoint 2 by
re-arming the endpoint (that is, EP2BCL = 0x80). Therefore, EP2 can now receive the data that is
currently being sent by the host because there is space available in one of its buffers. It then clears
the interrupt by setting a particular bit in NAKIRQ because it has been serviced. The same operation
is carried to service the EP4PING interrupt in ISR_Ep4pingnak.

8.4.2 Building Firmware Example Code for EZ-USB RAM and EEPROM
Click on Build Target button at the top right corner of the IDE. The total code bytes of the pingnak
firmware example is less than the 4-k code limit Keil µVision2 IDE provided along with the kit. The
output of the Build Target is pingnak.hex and pingnak.iic files.

8.4.3 Method to Download Firmware Image to EZ-USB Internal RAM and External
EEPROM
Refer to Method to Download Firmware Image to EZ-USB Internal RAM Memory on page 69 and
Method to Download Firmware Image to External I2C EEPROM on page 69 and follow a similar pro-
cedure to download pingnak.hex to RAM memory or pingnak.iic to Large EEPROM using the
CyConsole or CyControlCenter. Both images are located at <Installed_directory>\<Ver-
sion>\Firmware\pingnak. After downloading, the firmware re-enumerates with the PC using its
internal VID/PID-0x04B4/0x1004.

8.4.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The pingnak project uses vendor-class (0xFF) with VID/PID-0x04B4/1004. This example should
bind with the Cypress generic USB driver, cyusb.sys, and the driver information file,
cyusbfx1_fx2lp.inf, which contains the relevant VID/PID of this example. Follow the procedure out-
lined in Binding Cypress USB Driver to EZ-USB Development Board on page 45 to manually bind
the driver using Windows Hardware Wizard. If the binding process is performed for anyone of the
firmware example the process can be skipped for this example.

8.4.5 Testing the pingnak Firmware Functionality
Follow these steps to test the pingnak firmware:
1. After the board re-enumerates, use CyConsole to send 512 bytes from EP2 to EP6. The data

received should be the same as the data sent. 512 bytes of user-defined data can be sent from
the host to Endpoint 2 using CyConsole. For example, select Endpoint 2 OUT in the pipe window

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 77

EZ-USB Development Kit Firmware Examples

near Bulk Trans button of EZ-USB interface window, enter the length as 512 and HexBytes as
5, and then press the Bulk Trans button.

2. This data can be read back from Endpoint 6 using CyConsole. For example, select Endpoint 6 IN
in the pipe, enter the length as 512, and then press the Bulk Trans button. Similarly, loopback
using endpoint 4 and 8 can also be tested. Because EP2 and EP4 are double-buffered, they can
contain only two packets of data. After sending a packet to these endpoints when both the buffers
are full, the endpoints NAK the transfer because there is no space available. This asserts the
PING-NAK interrupt of the NAKing endpoint.

3. The ISRs that handle the PING-NAK interrupt. (ISR_Ep2pingnak and ISR_Ep4pingnak) discards
the previous data that is stored in one of the endpoint buffers by rearming the endpoint. There-
fore, the endpoints can receive the data that is currently sent by the host because there is space
in one of its buffers.

4. The above can be tested by continuously sending data to EP2 and EP4 without reading the data
out of EP6 or EP8. Because the PING-NAK ISR rearms the endpoints, you can continuously
transmit data to EP2 and EP4 and the transfer always succeeds. The data present in the buffers
of EP2 and EP4 at any point of time will be the latest two packets of data sent from the host.
Note: For EZ-USB FX1 the above steps can be repeated with data transfer length of 64 bytes
instead of 512 bytes.

8.5 Bulkloop Example

8.5.1 Description
This project illustrates the configuration of FX2LP to accept bulk data from the host and loop it back
to the host. Click on bulkloop.Uv2 at <Installed_directory>\<Version>\Firm-
ware\Bulkloop and observe the source code. Four endpoints are configured in the TD_init() func-
tion of bulkloop.c to handle bulk transfer: two OUT endpoints and two IN endpoints. The four
endpoints defined in the descriptor file have to be configured in this function. This is done by the fol-
lowing statements
EP2CFG = 0xA2;
SYNCDELAY;
EP4CFG = 0xA0;
SYNCDELAY;
EP6CFG = 0xE2;
SYNCDELAY;
EP8CFG = 0xE0

The key characteristics of each endpoint are as follows:
■ Endpoint 2 - OUT, Bulk, double-buffered
■ Endpoint 4 - OUT, Bulk, double-buffered
■ Endpoint 6 - IN, Bulk, double-buffered
■ Endpoint 8 - IN, Bulk, double-buffered

After configuration, the OUT endpoints are 'armed' to accept data from the host. An OUT endpoint is
said to be armed if it is ready to accept data from the host. Each endpoint is configured as double-
buffered.
 SYNCDELAY;
 EP2BCL = 0x80;// arm EP2OUT by writing byte count
 w/skip.
 SYNCDELAY;
 EP2BCL = 0x80;
 SYNCDELAY;

78 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

 EP4BCL = 0x80;// arm EP4OUT by writing byte count
 w/skip.
 SYNCDELAY;
 EP4BCL = 0x80;

The above lines arm the two OUT endpoints by skipping two packets of data making the buffers
available to receive OUT data.
AUTOPTRSETUP |= 0x01;

This enables the AUTO pointer used for data transfer in the TD_Poll function.The data loopback is
implemented in the TD_Poll function that is called repeatedly when the device is idle. Endpoints 2
and 4 are armed to accept data from the host. This data is transferred to endpoint 6 and endpoint 8
respectively. To implement this, endpoint 2 is first checked to see if it has data. This is done by read-
ing the endpoint 2 empty bit in the endpoint status register (EP2468STAT). If endpoint 2 has data
(that is sent from the host), the capability of endpoint 6 to receive the data is checked. This is done
by reading the endpoint 6 Full bit in the endpoint status register. If endpoint 6 is not full, then the data
is transferred. This decision is executed by the following statements:
if (!(EP2468STAT & bmEP2EMPTY))
{// check EP2 EMPTY (busy) bit in EP2468STAT (SFR), core set's this bit
when
// FIFO is empty
if (!(EP2468STAT & bmEP6FULL))
{// check EP6 FULL (busy) bit in EP2468STAT (SFR), core set's this bit
// when FIFO is full

The data pointers are initialized to the corresponding buffers. The first auto pointer is initialized to the
first byte of the endpoint 2 FIFO buffer. The second auto-pointer is initialized to the first byte of the
endpoint 6 FIFO buffer. The number of bytes to be transferred is read from the byte count registers
of Endpoint 2. The registers EP2BCL, EP2BCH contain the number of bytes written into the FIFO
buffer by the host. These two registers give the byte count of the data transferred to the FIFO in an
OUT transaction as long as the data is not committed to the peripheral side. This data pointer initial-
ization and loading of the count is done in the following statements:
APTR1H = MSB(&EP2FIFOBUF); // Initializing the first data pointer
APTR1L = LSB(&EP2FIFOBUF);
AUTOPTRH2 = MSB(&EP6FIFOBUF); // Initializing the second data pointer
AUTOPTRL2 = LSB(&EP6FIFOBUF);
count = (EP2BCH << 8) + EP2BCL; // The count value is loaded from the byte
// count registers

The data transfer is carried out by the execution of the following loop:
for(i = 0x0000; i < count; i++)
{
// setup to transfer EP2OUT buffer to EP6IN buffer using AUTOPOINTER(s)
EXTAUTODAT2 = EXTAUTODAT1;
}

Because auto pointers have been enabled, the pointers increment automatically, and the statement
EXTAUTODAT2 = EXTAUTODAT1;

transfers data from endpoint 2 to endpoint 6. Each time the above statement is executed, the auto
pointer is incremented. The above statement is executed repeatedly to transfer each byte from end-
point 2 to 6. After the data is transferred, endpoint 2 has to be 'rearmed' to accept a new packet from
the host. Endpoint 6 has to be 'committed', that is, make the FIFO buffers available to the host for
reading data from endpoint 6.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 79

EZ-USB Development Kit Firmware Examples

After the data is transferred, endpoint 2 has to be 'rearmed' to accept a new packet from the host.
Endpoint 6 has to be 'committed', that is, make the FIFO buffers available to the host for reading
data from endpoint 6.

This is accomplished by the following statements:
EP6BCH = EP2BCH;
SYNCDELAY;
EP6BCL = EP2BCL; // commit EP6IN by specifying the number of bytes the
host can read //from EP6
SYNCDELAY;
EP2BCL = 0x80; // re (arm) EP2OUT

The same operation is carried out to implement a data loop with endpoints 4 and 8.

8.5.2 Building Bulkloop Firmware Example Code for EZ-USB RAM and EEPROM
■ Click on Build Target button at the top right corner of the IDE. Following snapshot of the Build

window of the Keil IDE shows the successful compilation of the entire project.

Figure 8-5. Output Window Snapshot of Bulkloop Project Build

Note Observe in Figure 8-5 the total code bytes of the Bulkloop project is less than the 4-k code
limit Keil µVision2 IDE provided along with the kit.

■ Firmware output for EZ-USB RAM memory: The output of the Build Target is bulkloop.hex
relevant for downloading to EZ-USB RAM memory.

■ Firmware output for external EEPROM: To generate EEPROM compatible firmware Image the
Keil IDE invokes hex2bix.exe utility to convert the output file bulkloop.hex into bulkloop.iic.
Right click on Target1 in Project Window and select Options for Target 'Target1'.This will pop-up
keil settings for this project. Select Output tab and observe at the bottom of IDE the hex2bix utility
is invoked under Run User program#1 section and observe the hex2bix utility is invoked in the
following manner
..\..\Bin\hex2bix -i -c 0x00 -f 0xC2 -o bulkloop.iic bulkloop.hex

Refer to the application note, “Using the hex2bix Conversion Utility - AN45197, to know more about
the hex2bix utility.

8.5.3 Method to Download Bulkloop Firmware Image to Internal RAM or EEPROM
Refer to Method to Download Firmware Image to EZ-USB Internal RAM Memory on page 69 and
Method to Download Firmware Image to External I2C EEPROM on page 69 and follow similar proce-
dure to download bulkloop.hex to RAM memory and bulkloop.iic to the Large EEPROM using
Cyconsole/CyControlCenter. The bulkloop.hex and bulkloop.iic files located at
<Installed_directory>\<Version>\Firmware\Bulkloop must be chosen accordingly for

http://www.cypress.com/?rID=17627

80 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

EZ-USB FX1 and FX2LP. After downloading, the firmware re-enumerates with PC using its internal
VID/PID-0x04B4/0x1004.

8.5.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The Bulkloop firmware uses vendor class (0xFF) with VID/PID-0x04B4/1004. This example should
bind with Cypress generic USB driver cyusb.sys and driver information file cyusbfx1_fx2lp.inf, which
contains the relevant VID/PID of this example. Follow the procedure outlined in section Binding
Cypress USB Driver to EZ-USB Development Board on page 45 to manually bind the driver using
Windows Hardware Wizard. If the binding process is performed for anyone of the previous firmware
examples the process can be skipped for this example.

8.5.5 Testing the Bulkloop Firmware Functionality
The Bulkloop firmware functionality can be tested using the following applications available in Suit-
eUSB package.
■ Cyconsole
■ CyBulk
■ Bulkloop

8.5.5.1 Test using Cyconsole PC Application
1. Open Cyconsole PC application from Windows Start->All programs->Cypress->Cypress

Suite USB 3.4.7 -->CyConsole. Click on Options->EZ-USB Interface.This will pop-up EZ-USB
Interface Window. Select EP2 OUT as Bulk OUT data transfer pipe adjacent to BulkTrans button
and enter length as 512 byte with 0x5 as the actual data. Click on BulkTrans button. The follow-
ing Figure 8-6 summarizes the entire operation.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 81

EZ-USB Development Kit Firmware Examples

Figure 8-6. EP2 OUT Data Transfer using CyConsole

2. Select EP6 IN as pipe near BulkTrans button and enter length as 512 byte. Click on BulkTrans
button. The data sent on EP2 is loopbacked through EP6. The following figure summarizes the
entire operation. The same sequence can be repeated for EP4-OUT and EP8-IN pair.
Note Step 2-3 can be repeated for EZ-USB FX1 with data transfer length of 64 Bytes

8.5.5.2 Test using Cybulk Application

The Bulkloop firmware can be tested using this C++ application. For 32-bit Windows OS the CyBulk
can be accessed at C:\Cypress\Cypress Suite USB 3.4.7\CyAPI\examples\cybulk\x86\Release.
The 64-bit version of Cybulk application is located at C:\Cypress\Cypress Suite USB
3.4.7\CyAPI\examples\cybulk\x64\Release. Select EZ-USB device in the drop down menu and
also select anyone the Bulk Endpoint pairs- EP2/EP6 or EP4/EP8. The following Figure 8-7 summa-
rizes the entire operation. Different data patterns of Bulk USB packets can be chosen under Send
Data pattern and maximum transfer size upto 2048 bytes.

82 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-7. Bulkloop using CyBulk Application

8.5.5.3 Testing Bulkloop Example using Bulkloop C# .NET Application

The Bulkloop firmware can be tested using the Bulkloop C# .NET application, which is located at
Start > All Programs > Cypress > Cypress SuiteUSB 3.4.7 > Bulkloop. Select the Bulkloop OUT
and Bulkloop IN endpoint pairs EP2 and EP6, or EP4 or EP8. Click Start and observe the number of
successful Bulk IN and Bulk OUT Transfers

Figure 8-8. Bulkloop using Bulkloop C# Application

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 83

EZ-USB Development Kit Firmware Examples

8.6 Bulksrc Firmware Example

8.6.1 Description
This project illustrates the configuration of EZ-USB device to accept bulk data from the host and loop
it back to the host. Click on bulksrc.Uv2 located at <Installed_directory>\<Ver-
sion>\Firmware\Bulksrc and observe the code. Five endpoints are configured in the TD_init()
function of bulksrc.c to handle bulk transfer: Two OUT (EP2/EP4) endpoints and two IN (EP6/EP8)
endpoints are double-buffered pairs. The fifth endpoint is EP1, which acts as both the Bulk IN and
Bulk OUT endpoint with a 64-byte buffer. These are defined in the descriptor file (dscr.a51). The
endpoints are configured in this TD_init function. This is done by the following statements:
 EP1OUTCFG = 0xA0;
 EP1INCFG = 0xA0;
 SYNCDELAY; // see TRM section 15.14
 EP2CFG = 0xA2;
 SYNCDELAY; //
 EP4CFG = 0xA0;
 SYNCDELAY; //
 EP6CFG = 0xE2;
 SYNCDELAY; //
 EP8CFG = 0xE0;

After configuration, the OUT endpoints are 'armed' to accept data from the host. An OUT endpoint is
said to be armed if it is ready to accept data from the host. Each endpoint is configured as double-
buffered.
// since the defaults are double buffered we must write dummy byte counts
twice
SYNCDELAY; //
EP2BCL = 0x80; // arm EP2OUT by writing byte count w/skip.
SYNCDELAY; //
EP4BCL = 0x80;
SYNCDELAY; //
EP2BCL = 0x80; // arm EP4OUT by
 //writing byte count w/skip.
SYNCDELAY; //
EP4BCL = 0x80;

The above lines arm the two OUT endpoints by skipping two packets of data making the buffers
available to receive OUT data.

The IN endpoint, EP6, is armed with a fixed pattern of data starting with 0x2, irrespective of the data
sent on the EP2 Bulk OUT endpoint, as shown in the following code.
 for (i=0;i<512;i++)
 EP6FIFOBUF[i] = i+2;
 SYNCDELAY; //
 EP6BCH = 0x02;
 SYNCDELAY; //
 EP6BCL = 0x00;
}

In the TD_poll() function, if there is packet content in EP2, then it is re-armed discarding the current
data.
// if there is some data in EP2 OUT, re-arm it
 if(!(EP2468STAT & bmEP2EMPTY))
 {

84 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

 SYNCDELAY; //
 EP2BCL = 0x80;
 }

Endpoint EP6 is re-armed with an incremental pattern of data starting with 0x2.
// if EP6 IN is available, re-arm it
If(!(EP2468STAT & bmEP6FULL))
 {
 SYNCDELAY;
 EP6BCH = 0x02;
 SYNCDELAY;
 EP6BCL = 0x00;
 }

The contents received from the EP4 OUT endpoint are copied to a temporary buffer, myBuffer[], and
re-armed.
// if there is new data in EP4FIFOBUF, then copy it to a temporary buffer
 if(!(EP2468STAT & bmEP4EMPTY))
 {
 APTR1H = MSB(&EP4FIFOBUF);
 APTR1L = LSB(&EP4FIFOBUF);

 AUTOPTRH2 = MSB(&myBuffer);
 AUTOPTRL2 = LSB(&myBuffer);

 myBufferCount = (EP4BCH << 8) + EP4BCL;

 for(i = 0x0000; i < myBufferCount; i++)
 {
 EXTAUTODAT2 = EXTAUTODAT1;
 }

 SYNCDELAY; //
 EP4BCL = 0x80; // re(arm) EP4OUT
 }

If the EP8 Bulk IN endpoint is empty, then the contents of temporary buffer are transferred to an
AUTO pointer and finally copied to the EP8 IN buffer as shown in the following code.
 // if there is room in EP8IN, then copy the contents of the temporary buf-
fer to it
 if(!(EP2468STAT & bmEP8FULL) && myBufferCount)
 {
 APTR1H = MSB(&myBuffer);
 APTR1L = LSB(&myBuffer);

 AUTOPTRH2 = MSB(&EP8FIFOBUF);
 AUTOPTRL2 = LSB(&EP8FIFOBUF);

 for(i = 0x0000; i < myBufferCount; i++)
 {
 // setup to transfer EP4OUT buffer to EP8IN buffer using AUTO-
POINTER(s) in SFR space
 EXTAUTODAT2 = EXTAUTODAT1;
 }

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 85

EZ-USB Development Kit Firmware Examples

 SYNCDELAY; //
 EP8BCH = MSB(myBufferCount);
 SYNCDELAY; //
 EP8BCL = LSB(myBufferCount); // arm EP8IN
 }

8.6.2 Building Bulksrc Firmware Example Code for EZ-USB RAM Memory and EEPROM
Click on the Build Target button at the top right corner of the IDE. The total code bytes of the Bulk-
src firmware example is less than the 4-k code limit Keil µVision2 IDE provided along with the kit.
The output of the Build Target is the bulksrc.hex and bulksrc.iic files

8.6.3 Method to Download Bulksrc Firmware Image to EZ-USB Internal RAM and
EEPROM
Refer to Method to Download Firmware Image to EZ-USB Internal RAM Memory on page 69 and fol-
low a similar procedure to download bulksrc.hex to the RAM memory and bulksrc.iic to Large
EEPROM using Cyconsole/CyControlCenter. The bulksrc.hex and bulksrc.iic files are located
at <Installed_directory>\<Version>\Firmware\Bulksrc. After downloading, the firm-
ware re-enumerates with the PC using its internal VID/PID-0x04B4/0x1004.

8.6.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The Bulksrc firmware uses vendor class (0xFF) with VID/PID-0x04B4/1004. This example should
bind with the Cypress-generic USB driver, cyusb.sys, and the driver information file,
cyusbfx1_fx2lp.inf, which contains the relevant VID/PID of this example. Follow the procedure out-
lined in Binding Cypress USB Driver to EZ-USB Development Board on page 45 to manually bind
the driver using the Windows Hardware Wizard. If the binding process is performed for any one of
the previous firmware examples, you can skip the process for this example.

8.6.5 Testing the Bulksrc Firmware Functionality
The Bulksrc firmware functionality can be tested using the CyConsole utility. Following are the steps
■ Open the CyConsole PC application from Start > All Programs > Cypress > Cypress Suit-

eUSB 3.4.7 > CyConsole.
■ Next, go to Options > EZ-USB Interface. The EZ-USB Interface Window pops up. Select EP2

OUT as the pipe and enter the length as 512 bytes. Enter the sample data as 0x5. Observe the
constant pattern, 0x5, displayed on the EZ-USB window. Select the EP6 IN endpoint with a 512-
byte length and click on the BulkTrans button and observe the data with incremental pattern
starting with 0x2.

86 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-9. Bulk IN Data Transfer on EP6 Endpoint

■ Select the EP4 and EP8 pairs and repeat the same procedure as mentioned above. Observe that
the data transferred on EP4 is exactly looped back to EP8. Internally, the loopback is performed
through a temporary buffer (myBuffer [512]).
Note For EZ-USB FX1, the above steps can be repeated with a data transfer length of 64 bytes
instead of 512 bytes.

8.7 Bulkext Firwmare Example

8.7.1 Description
This example is exactly similar to Bulkloop example. Click on the Bulkext.uv2 project located at
<Installed_directory>\<Version>\Firmware\Bulkext and open bulkext.c in the Keil
IDE Project window. The only difference between the Bulkloop and Bulkext examples is the source
and destination buffer memory address of the Bulk endpoint pairs – EP2/EP6 and EP4/EP8. In Bulk-
loop, the endpoint FIFOs are directly used as source and destination buffers. These are internal
RAM buffers residing in the EZ-USB device. In the TD_poll() function, the endpoint EP2 data buffer
destination is defined as an external RAM memory address, 0x2800, which is in turn defined as a
source buffer to the EP6 IN endpoint. The data is copied through the AUTOPTR mechanism as
shown in the following code.
if(!(EP2468STAT & bmEP2EMPTY))
 { // check EP2 EMPTY(busy) bit in EP2468STAT (SFR), core set's this bit
when FIFO is empty
 if(!(EP2468STAT & bmEP6FULL))
 { // check EP6 FULL(busy) bit in EP2468STAT (SFR), core set's this
bit when FIFO is full
 // Source is EP2OUT
 APTR1H = MSB(&EP2FIFOBUF);
 APTR1L = LSB(&EP2FIFOBUF);
 // Destination is external RAM (at 0x2800)
 AUTOPTRH2 = 0x28;

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 87

EZ-USB Development Kit Firmware Examples

 AUTOPTRL2 = 0x00;

 count = (EP2BCH << 8) + EP2BCL;

 for(i = 0x0000; i < count; i++)
 {
 EXTAUTODAT2 = EXTAUTODAT1;
 }

 // Source is external RAM
 APTR1H = 0x28;
 APTR1L = 0x00;

 // Destination is EP6IN
 AUTOPTRH2 = MSB(&EP6FIFOBUF);
 AUTOPTRL2 = LSB(&EP6FIFOBUF);

 count = (EP2BCH << 8) + EP2BCL;

 for(i = 0x0000; i < count; i++)
 {
 EXTAUTODAT2 = EXTAUTODAT1;
 }

 EP6BCH = EP2BCH;
 SYNCDELAY;
 EP6BCL = EP2BCL; // arm EP6IN
 SYNCDELAY;
 EP2BCL = 0x80; // re(arm) EP2OUT
 }
 }

Similarly, endpoint EP4 destination and the EP8 source buffer is commonly defined as the external
RAM memory-0x2A00.

Note For EZ-USB FX1, the above steps can be repeated with a data transfer length of 64 bytes
instead of 512 bytes.

8.7.2 Building Bulkext fIrmware Example Code for EZ-USB RAM Memory and EEPROM
Click on the Build Target button at the top right corner of the IDE. The total code bytes of the
Bulkext firmware example is less than the 4-k code limit Keil µVision2 IDE, provided along with the
kit. The output of the Build Target is the bulkext.hex and bulkext.iic files.

8.7.3 Method to Download Firmware Image to EZ-USB Internal RAM and EEPROM
Refer to Method to Download Firmware Image to EZ-USB Internal RAM Memory on page 69 and fol-
low a similar procedure to download bulkext.hex to the RAM memory and bulkext.iic to Large
EEPROM using Cyconsole/CyControlCenter. The bulkext.hex and bulkext.iic files are located
at <Installed_directory>\<Version>\Firmware\Bulkext. After downloading, the firm-
ware re-enumerates with the PC using its internal VID/PID-0x04B4/0x1004.

88 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

8.7.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The Bulkext firmware uses vendor-class (0xFF) with VID/PID-0x04B4/1004. This example should
bind with the Cypress-generic USB driver, cyusb.sys, and driver information file, cyusbfx1_fx2lp.inf
which contains the relevant VID/PID of this example. Follow the procedure outlined in Binding
Cypress USB Driver to EZ-USB Development Board on page 45 to manually bind the driver using
the Windows Hardware Wizard. If the binding process is performed for any one of the previous firm-
ware examples, the process can be skipped for this example.

8.7.5 Testing the Bulkext Firmware Functionality
The example firmware should be tested in a similar manner as Bulkloop example using Cyconsole
or CyControlCenter.

8.8 EP_Interrupts Example

8.8.1 Description
The EP_interrupts example works in a similar manner as Bulkloop on EZ-USB FX2LP.The major
differences include addition of a 64-byte EP1 as Bulk OUT/IN endpoint to the existing list of 4 end-
points- EP2, EP4, EP6, and EP8.The endpoints are re-armed using their respective interrupt service
routines. Following are the interrupts for each of these endpoints which are used to schedule the
data transfers.
■ EP1-64 byte Bulk OUT/IN - ISR_Ep1in() and ISR_Ep1out()
■ EP2-512 byte Bulk OUT - ISR_Ep2inout()
■ EP4-512 byte Bulk IN - ISR_Ep4inout()
■ EP6-512 byte Bulk OUT - ISR_Ep6inout()
■ EP8-512 byte Bulk OUT - ISR_Ep8inout()

8.8.2 Building EP_Interrupts Firmware Example Code for EZ-USB RAM and EEPROM
Click on Build Target button at the top right corner of the IDE. The total Code bytes of
EP_Interrupts firmware example is less than 4k code limit Keil uVision2 IDE provided along with the
kit. The output of the Build Target is EP_Interrupts.hex and EP_Interrupts.iic files

8.8.3 Method to Program EP_Interrupts Firmware Image to EZ-USB Internal RAM and
EEPROM
Refer to section Method to Download Firmware Image to EZ-USB Internal RAM Memory on page 69
and Method to Download Firmware Image to External I2C EEPROM on page 69 and follow similar
procedure to download EP_Interrupts.hex to RAM memory and EP_Interrupts.iic to Large
EEPROM using Cyconsole/CyControlCenter.The EP_Interrupts.hex and EP_Interrupts.iic files
are located at <Installed_directory>\<Version>\Firmware\EP_Interrupts. After downloading, the firm-
ware re-enumerates with PC using its internal VID/PID-0x04B4/0x1004.

8.8.4 Binding Cypress USB Driver for the Downloaded Firmware Image
The EP_Interrupts firmware uses vendor class (0xFF) with VID/PID-0x04B4/1004.This example
should bind with Cypress generic USB driver cyusb.sys and driver information file
cyusbfx1_fx2lp.inf, which contains the relevant VID/PID of this example. Follow the procedure out-
lined in section Binding Cypress USB Driver to EZ-USB Development Board on page 45 to manually
bind the driver using Windows Hardware Wizard. If the binding process is performed for anyone of
the previous firmware examples the process can be skipped for this example.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 89

EZ-USB Development Kit Firmware Examples

8.8.5 Testing the EP_Interrupts Firmware Functionality
The example firmware should be tested in a similar manner as the Bulkloop example.The Bulk data
transfers on EP1 are tested with a length of 64 bytes and 512 bytes for the EP2, EP4, EP6, and EP8.
The process is similar to the one outlined in Testing the Bulkloop Firmware Functionality on page 80.

8.9 iMemtest Firmware Example
This example does a data integrity check by writing and reading back the data on different memories
inside EZ-USB device such as GPIF waveform memory(0xE400), Endpoint buffer memo-
ries(0xE740, 0xF000, and so on) and avoid the range where the firmware is located. If the written
data and read data match then “GOOD” is displayed on the seven-segment display-U9 and if there
are errors at any specific memory location, the corresponding location is displayed. The example is
compiled using the Keil IDE similar to previous examples and corresponding images for RAM
(imemtest.hex) and EEPROM (imemtest.iic) can be generated. Both the images are located at
<Installed_directory>\<version\iMemtest. After downloading the images for RAM
(iMemtest.hex) or EEPROM (iMemtest.iic), using the process outlined in Method to Download Firm-
ware Image to EZ-USB Internal RAM Memory on page 69, observe the seven-segment display for
either a “GOOD” string displayed or the exact location of memory write/read failure.

8.10 LEDcycle Firmware Example
This example is used to test the connectivity between EZ-USB IC and general-purpose LED D2-D5.
Ensure all four jumpers on JP3 are shorted to observe the LED glowing ON and OFF before down-
loading the example. The example is compiled using the Keil IDE similar to previous examples and
corresponding images for RAM (LEDcycle.hex) and EEPROM (LEDcycle.iic) can be generated.
Both the images are located at <Installed_directory>\<version\LEDCycle. After down-
loading the images using the process outlined in section Method to Download Firmware Image to
EZ-USB Internal RAM Memory on page 69 and Method to Download Firmware Image to External
I2C EEPROM on page 69 observe the LED's D2-D5 are turned ON and OFF in a periodic manner.

8.11 Dev_IO Firmware Example
This example is used to test the connectivity of seven segment display and the Push button switches
(f2,f3) w.r.t EZ-USB device. The seven-segment display (U9) and push buttons are connected to
Philips PCF8574 I/O expanders (U8 and U10). The example is compiled using the Keil IDE similar to
previous examples and corresponding images for RAM (Dev_IO.hex) and EEPROM (Dev_IO.iic)
can be generated. Both the images are located at <Installed_directory>\<ver-
sion\dev_io. After downloading the images using the process outlined in Method to Download
Firmware Image to EZ-USB Internal RAM Memory on page 69 and Method to Download Firmware
Image to External I2C EEPROM on page 69, press the F2 push button and observe the decrement
values in the range 0xF-0x0. Similarly, pressing F3 increments the values in the range 0x0-0xF, start-
ing from the current value. Observe the seven segments displaying the values for each button press.

90 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

8.12 extr_intr Firmware Example
This example is used to demonstrate the use of external interrupts INT0, INT1, INT4, INT5, and
INT6. The relevant interrupt service routines (ISR) for each of these external interrupts were pro-
vided in isr.c. Table 8-3 lists the registers and associated pins for each of these interrupts.

Refer to the Chapter 4, 'Interrupts', in the EZ-USB technical reference manual.

Notes
1. The INT4 and INT5 have dedicated pins only in the 100 and 128 package. The pin for INT4 is

shared between the GPIF, FIFO, and INT4 interrupts; setting INTSETUP.1 to “0” enables the
INT4 operation. The default USBJmpTb.a51 has an auto-vectoring option for INT4. To disable
this, the following lines are commented in the USBJmpTb.a51:

■ CSEG AT 53H
■ USB_Int4AutoVector equ $ + 2
■ ljmp USB_Jump_Table
2. IE, EIE, IP, EIP, TCON, EXIF, and EICON are all SFRs. For a description of these SFRs,

refer to the EZ-USB technical reference manual
3. Active low interrupts are falling edge triggered and active high interrupts are rising edge trig-

gered. In the example, the following register configurations are done in ‘extr_int.c’ for setting up
the interrupts:

//INT0 and INT1
PORTACFG = 0x03; // PA0 and PA1 are pins for INT0 and INT1 respectively.
TCON |= 0x05; // INT0 and INT1 are configured as Edge triggered inter-
rupts.
//INT4
INTSETUP &= ~0x02; // If INTSETUP.1=0, then INT4 is supplied by the pin.
Else, the
// interrupt is supplied internally by FIFO/GPIF sources.
//INT5 is a dedicated pin, available in the 100 and 128 pin packages.
//INT6
PORTECFG = 0x20; // PE5 is INT6
OEE &= ~0x20;
//Enable External Interrupts
EIE |= 0x1C; // Enable External Interrupts 4, 5 and 6
IE |= 0x05; // Enable External Interrupts 0 and 1

Table 8-3. External Interrupts and Register Definitions in EZ-USB Device

Interrupt Interrupt
Enable

Interrupt
Pin

Priority
Control

Natural
Priority

Interrupt
Request

Flag
Interrupt Type Interrupt type

Controlling Bit

INT0 IE.0 PA.0 IP.0 1 TCON.1 Level or Edge sen-
sitive, active low [TCON.0]

INT1 IE.2 PA.1 IP.2 3 TCON.3 Level or Edge,
sensitive active low [TCON.2]

INT4 EIE.2 See note 1 EIP.2 10 EXIF.4 Edge sensitive,
active high --

INT5 EIE.4 See note 1 EIP.3 11 EXIF.5 Edge sensitive,
active low --

INT6 EIE.6 PE.5 EIP.4 12 EICON.3 Edge sensitive,
active high --

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 91

EZ-USB Development Kit Firmware Examples

//Clear Flags
EXIF &= 0xBF; // Clear INT4 EXIF.6 Flag
EXIF &= 0x7F; // Clear INT5 EXIF.7 Flag
EICON &= 0xF7; // Clear INT6 EICON.3 Flag
EA = 1; // Enable Global Interrupt

The Interrupt service routines for each of these external interrupts are defined in "isr.c". These rou-
tines clear the interrupt and toggle the relevant port pin and any one of the LEDs from D2 to D5.
void ISR_EXTR4(void) interrupt 10
{
EXIF &= 0xBF; // Clear INT4 EXIF.6 Flag
IOC ^= 0x10; // Toggle pin 4 of PortC
}

The example is compiled using the Keil IDE similar to previous examples and corresponding images
for RAM (extr_intr.hex) and EEPROM (extr_intr.iic) can be generated. Both the images are located
at <Installed_directory>\<version\extr_intr. Download the images using the process
outlined in Method to Download Firmware Image to EZ-USB Internal RAM Memory on page 69 and
Method to Download Firmware Image to External I2C EEPROM on page 69.

8.12.1 Testing the Example
The function generator can be set to generate a square wave of a known frequency (use a low fre-
quency - for example, a 100-Hz signal to view LED toggling). When the respective interrupts are trig-
gered, the LED toggle appears. When an INT0 interrupt occurs, PC.0 and D2 are toggled. Similarly,
on INT1/ INT4/ INT5/ INT6, PC.1 and D3/ PC.4 and D4/ PC.5 and D5/ PC.6 are toggled. Port C pin
toggling can be checked by connecting those pins to the DSO.

8.13 Vend_ax Example
This example demonstrates the use of different vendor commands. Vendor commands are used to
accomplish unique tasks, such as EZ-USB reset, RAM download, setting different frequency for the
I2C interface of EZ-USB, communicate with an external SRAM memory, and so on. The vendor
commands are defined in the vend_ax.c source file of the example. Open the project by clicking on
vend_ax.uv2.

Table 8-4. Port Pins and External Interrupt Mapping

Pin Name Port/Jumper name on
CY3684/CY3674

Port C P3

LEDs JP3

INT0 P2.19

INT1 P2.18

INT4 P6.5

INT5 P6.4

INT6 PE.5

92 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Located at <Installed_directory>\<version\Firmware/vend_ax and observe the vendor
commands implemented in the C routine - DR_VendorCmnd (void). Following are the vendor com-
mands defined in the vend_ax.c file:

The example is compiled using the Keil IDE similar to previous examples and corresponding images
for RAM (vend_ax.hex) and EEPROM (vend_ax.iic) can be generated. Both the images are located
at <Installed_directory>\<version>\vend_ax. Using CyConsole/CyControlCenter
the images can be downloaded as outlined in Method to Download Firmware Image to EZ-USB
Internal RAM Memory on page 69 and Method to Download Firmware Image to External I2C
EEPROM on page 69.

8.13.1 Testing the vend_ax Example
1. 0xA2 command-Read/Write to EEPROM

As mentioned in Table 8-5, this command is used to read and write contents to small EEPROM.
a. Test using CyConsole
To read the contents of small EEPROM, select Req = 0xA2, wValue = 0, wIndex = 0, Length = 8
bytes (data to read), and direction IN for reading the data on the control endpoint. Click on Vend
Req. The following figure summarizes the entire operation.

Figure 8-10. A2 Vendor Command Read Operation using Cyconsole

Observe the contents read from the small EEPROM
To write the contents to small EEPROM, select Req = 0xA2, wValue = 0, wIndex = 0, Length = 8
bytes (data to read), and direction OUT for sending data on control endpoint. The small EEPROM
content’s first valid byte is always 0xC0 and additional bytes contain new VID/PID information.
Type the data C0 B4 04 84 00 01 00 00 in the Hex Bytes box. Click on Vend Req. The following
figure summarizes the entire operation.

Table 8-5. Vendor Command Definitions in vend_ax Example

S.No Vendor Command/Macro
Definition Function

1 0xA2/VR_EEPROM Downloads data to a small EEPROM
2 0xA3/ VR_RAM Downloads data to internal or external RAM memory

3 0xA6/
VR_GET_CHIP_REV

The command retrieves the current revision of EZ-USB(FX1/FX2LP)/
MOBL-USB FX2LP18 IC

4 0xA8/VR_RENUM The EZ-USB device disconnects and re-connect again.

5 0xA9/VR_DB_FX The Commands selects double byte addressed large EEPROM-U5 and
the contents can be uploaded or downloaded to EEPROM

6 0xAA/VR_I2C_100 Sets the I2C interface to 100 kHz
7 0xAB/VR_I2C_400 Sets the I2C interface to 400 kHz

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 93

EZ-USB Development Kit Firmware Examples

Figure 8-11. A2 Vendor Command Write Operation using Cyconsole

b. Test using CyControlCenter
To read the contents of small EEPROM, select Direction = In, Req Type = vendor, Target =
Device, Bytes to Transfer = 8 bytes (data to read), and Req Code = 0xA2 for reading the data on
control endpoint. Click on Transfer Data button. Figure 8-12 summarizes the entire operation.

Figure 8-12. A2 Vendor Command Read Operation using CyControlCenter

To write the contents to small EEPROM, select Direction = OUT, Req Type = vendor, Target =
Device, Bytes to Transfer = 8 bytes (data to read), and Req Code = 0xA2, and enter data to send
as C0 B4 04 85 00 01 00 00 in the Data to send box. Click on the Transfer Data button and
observe the EEPROM getting programmed. Figure 8-13 summarizes the entire operation.

Figure 8-13. A2 Vendor Command Write Operation using CyControlCenter

94 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

2. 0xA3 command-Download data to RAM memory
This command is used to download data to either the EZ-USB internal (0x0000-0x3FFFF) RAM
or the external RAM memory.
a. Test using CyControlCenter
To write the contents to RAM memory, select Direction = OUT, Req Type = vendor, Target =
Device, Bytes to Transfer = 8 bytes (data to read), and Req Code = 0xA3, and enter data to send
as C2 B4 04 84 00 01 00 11 in the Data to send box. Click on the Transfer Data button and
observe the RAM memory getting programmed. Figure 8-14 summarizes the entire operation.

Figure 8-14. A3 Vendor Command Read Operation using CyControlCenter

To read the contents from RAM memory, select Direction = IN, Req Type = vendor, Target =
Device, Bytes to Transfer = 8 bytes (data to read), and Req Code = 0xA3. Click on the Transfer
Data button and observe that the RAM memory written previously matches with the read data.
Figure 8-15 summarizes the entire operation.

Figure 8-15. A3 Vendor Command Read Operation using CyControlCenter

3. 0xA6 command-Get Chip Revision
To retrieve the current revision of the EZ-USB(FX1/FX2LP) or MOBL-USB(FX2LP18) device, this
command is used. Figure 8-16 of CyControlCenter summarizes the entire operation.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 95

EZ-USB Development Kit Firmware Examples

Figure 8-16. A6 Vendor Command using CyControlCenter

4. 0xA8 command-EZ-USB
This command is used to disconnect and re-connect the EZ-USB IC using the CPUCS register.
The EZ-USB re-enumerates. Observe the Cypress device disappearing from the CyControlCen-
ter window and re-appearing in the same window. Figure 8-17 summarizes the command trigger
using CyControlCenter.

Figure 8-17. A8 Vendor Command Operation using CyControlCenter

5. 0xA9 command- Read/Write Large EEPROM
To read/write the contents of Large EEPROM-U5, select Direction = In/OUT, Req Type = vendor,
Target = Device. Bytes to Transfer automatically gets updated if there is pre-defined data. In the
following figure, the data of the LEDCycle.iic file is programmed in the OUT direction and read
back in the IN direction bytes (data to read). Figure 8-18 summarizes the entire operation. Press
the RESET button after programming and observe LED D2-D5 glowing in a periodic manner.

96 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-18. A9 Vendor Command Operation using CyControlCenter

6. 0xAA/0xAB-Setting I2C interface frequency
Using this command, the I2C interface frequency can be set to 100 kHz or 400 kHz. Figure 8-19
summarizes the command trigger using CyControlCenter.

Figure 8-19. AA/AB Vendor Command Operation using CyControlCenter

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 97

EZ-USB Development Kit Firmware Examples

8.14 Debugging Using Keil Monitor Program
The Keil µVision2 IDE supplied with the kit enables you to debug the firmware example. Using the
Keil debug monitor program and UART ports (SIO-0 and SIO-1) on the EZ-USB development board,
the firmware examples are debugged. Following is the procedure to debug the firmware using Keil
IDE:
1. The EZ-USB small EEPROM is by default programmed with the 0xC0 image with relevant VID/

PID for the Keil debug monitor download. If the image does not exist due to programming any of
the images defined in previous sections, follow the process outlined in Method to Download Firm-
ware Image to EZ-USB Internal RAM Memory on page 69 and Method to Download Firmware
Image to External I2C EEPROM on page 69 to download the FX2LP_C0.iic for EZ-USB FX2LP
and the FX1_C0.iic image for EZ-USB FX1 located at <Installed_directory>\<Ver-
sion>\Firmware\EEPROM Images to small EEPROM.

2. Switch the SW1-SMALL EEPROM and SW2-EEPROM sides on the board.
3. Connect the USB A-to-B cable between the J1 connector and Windows PC Host controller. Con-

nect a UART cable between SIO-1 and Windows PC.
4. Follow the process outlined in Binding Cypress USB Driver to EZ-USB Development Board on

page 45 to bind the CyMonfx1_fx2lp driver package at <Installed_directory>\<Ver-
sion>\Drivers\CyMonfx1_fx2lp.The driver files for the relevant Windows OS can be cho-
sen with respect to this path as follows:
a. Windows2000: w2k\x86
b. Windows XP(32-bit): wxp\x86
c. Windows XP(64-bit): wxp\x64
d. Windows-Vista(32-bit): wlh-vista\x86
e. Windows-Vista(64-bit): wlh-vista\x64
f. Windows-7(32-bit): wlh-win7\x86
g. Windows-7(64-bit): wlh-win7\x64

5. Observe the green BKPT/monitor light up on the development board. Note that in the device
manager, the EZ-USB devices are listed as:
a. EZ-USB FX1: Cypress EZ-USB FX1 Board Keil monitor(3.4.5.000)
b. EZ-USB FX2LP: Cypress EZ-USB FX2LP Board Keil monitor(3.4.5.000)

6. The EZ-USB device re-enumerates with VID/PID - 0x04B4/0x0082(FX2LP) and 0x04B4/
0x0083(FX1).

7. The Keil debug monitor (.hex) is previously recorded in a script file - mon.spt. The procedure to
generate a script file for the corresponding .hex file is explained in How to Generate and Play
Script Files (.spt) on page 47. The sample monitor .hex files are located at
<Installed_directory>\<Version>\Target\Monitor. Following are the sample moni-
tor files in the EZ-USB kit:
a. mon-ext-sio0-c0.hex: This Keil monitor file resides in the external memory of EZ-USB devel-

opment board. The Keil debug monitor communicates with Keil IDE through the SIO-0 UART
port at 38400 baud rate

b. mon-ext-sio1-c0.hex: The Keil monitor file resides in the external memory of EZ-USB devel-
opment board. The Keil debug monitor communicates with Keil IDE through SIO-1 UART port
at 38400 baud rate

c. mon-ext-sio0-c0.spt: This is script file equivalent of Keil debug monitor file mon-ext-sio0-
c0.hex.

d. mon-ext-sio1-c0.spt: This is script file equivalent of Keil debug monitor file mon-ext-sio1-
c0.hex.

98 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

e. mon-int-sio0.hex/ mon-int-sio1.hex: This Keil debug monitor file resides in internal EZ-USB
RAM memory for corresponding SIO-0 and SIO-1 UART ports.

f. mon-int-sio0.spt/mon-int-sio1.spt: This Keil debug monitor script file resides in internal EZ-
USB RAM memory for corresponding SIO-0 and SIO-1 UART ports.

The debug monitor script file mon-ext-sio1-c0.spt is renamed as mon.spt and used as the default
debug monitor script file.

8. Open Keil µVision2 IDE by selecting Start > Programs > Keil µVision2. Open the dev_io project
file at <Installed_directory>\<Version>\Firmware\dev_io, as shown in Figure 8-20
and Figure 8-21.

Figure 8-20. Opening Project File using Keil uVision2 IDE

Figure 8-21. Selecting Project File using Keil uVision2 IDE

9. Make sure you use the correct serial port and the baud rate is set correctly. To do this, select
Project > Options for Target 'Target 1' > Debug > Settings.
Note Your PC may have a single serial port. In this case, use the relevant COM port by checking
under Ports (COM and LPT) in the Device Manager (type devmgmt.msc in Windows Start >
Run) as shown in Figure 8-22. Check the box labeled Serial Interrupt.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 99

EZ-USB Development Kit Firmware Examples

Figure 8-22. Serial Ports List in Device Manager Window

10.Click on Project > Options for Target 'Target1’ in Keil µVision2 IDE and select the Debug Tab
in the new pop-up window as shown in Figure 8-23 and Figure 8-24.

Figure 8-23. Project Options in Keil uVision2 IDE

100 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-24. Fig 7-24: Debug Tab window in Project options

11. Select the settings under Keil Monitor-51 Driver and select the relevant COM port for the UART
cable connected to SIO-1 port as shown in Figure 8-25 and Figure 8-26.

Figure 8-25. Settings Button for Keil Debug Monitor

Figure 8-26. UART Settings for Keil Debug Monitor

12.Click OK to close Target set up Window and then close the Options for Target "Target 1" win-
dow.

13.Select the Start/Stop Debug Session button on the Keil IDE as shown in the Figure 8-27.

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 101

EZ-USB Development Kit Firmware Examples

Figure 8-27. Debug Session Trigger in Keil uVision2 IDE

14.The IDE switches to the Debug mode; a yellow arrow indicates the Program Counter location in
the Disassembly window of dev_io project.

Figure 8-28. Disassembly View of dev_io.c file in Keil uVision2 IDE

15.Use the Step Over button to step through the code by selecting View > Debug Toolbar.

Figure 8-29. Enabling Debug Toolbar View in Keil

16.View the output window to verify that you are connected to the monitor and that your program
loaded (it displays a message such as Connected to Monitor-51 V3.0).

17.In the Project Window > Files Tab, click on dev_io.c. Observe the arrow marked in yellow in
Figure 8-30. The yellow arrow in the main indicates that the code execution stopped at that point.

102 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

Figure 8-30. Enabling Debug Toolbar View in Keil

18.Set a breakpoint by selecting the first line in the "case KEY_F2" section (which is in file
dev_io.c). To set or remove a breakpoint, double-click the line or right-click on the line as and
select Insert/Remove Breakpoint shown in Figure 8-31.

Figure 8-31. Setting Breakpoint in Keil uVision2 IDE

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 103

EZ-USB Development Kit Firmware Examples

19.A red breakpoint indication is seen in the margin next to the new breakpoint as shown in
Figure 8-32. Press the RUN button as shown in Figure 8-33.

Figure 8-32. Breakpoint Indicator in Keil uVision2 IDE

Figure 8-33. Run button in Keil

20.Now press F3 on the development board (the KEY_F2 label equates to the F3 button). Program
execution halts in the Keil IDE and the LED does not increment.

21.Press Step Over as shown in Figure 8-34. Then press Run key again on the debugger.

Figure 8-34. Step Over Debug Button in Keil uVision2 IDE

22.Execution proceeds normally until F3 key is pressed on the development board again. When fin-
ished, press the Stop Debugging key and exit the Keil debugger.

104 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

EZ-USB Development Kit Firmware Examples

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 105

9. Resources

9.1 Hardware Resources
The CY3674/CY3684 development kit has several hardware resources that guide you in designing
your own custom board. The documents in the hardware directory of the DVK kit software are:
■ CY3674_PCBA_BOM.xls/CY3684_PCBA_BOM.xls: This document lists all the vendor hard-

ware components used in designing both the development boards. The components used in both
the development boards are identical. The only change between them is the component U1
replacement. EZ-USB FX1 128-pin package (CY7C64713-128AXC) is pin-to-pin compatible with
EZ-USB FX2LP IC(CY7C68013A-128AXC) and replacing the IC is the only change required.

■ CY3684_Schematic.dsn/CY3674_Schematic.dsn: These documents show the schematic
design of the EZ-USB development board. The CY3684 and CY3674 schematics are identical.
The only change is the replacement of EZ-USB FX2LP IC with EZ-USB FX1 part.

■ CY3674_Gerber.zip/CY3674_Gerber.zip: This file can be used to understand the via, trace
lengths, electrical connections, and so on, of the EZ_USB development board. Both .zip files
contain identical source files since the development board is identical for both the kits.

■ CY3674_Board_Layout.pdf/CY3684_Board_Layout.pdf: This is a non-editable layout file for
EZ-USB development boards.

■ CY3674_Board_Layout.brd/CY3684_Board_Layout.brd: This is an editable layout file for EZ-
USB development boards. The file can be viewed using the Allegro PCB software.

■ Proto Board: This directory contains the daughter card design files. The board is stacked on top
of the EZ-USB development board and contains prototype area to validate the interface between
EZ-USB GPIF and external devices like SRAM, Sensors, etc.

■ PAL Code: This directory contains logic source inside the GAL22LV10C device on the EZ-USB
development board. This PLD enables access to external SRAM memory. The relevant source
code is provided in the Appendix.

9.2 Reference Designs

9.2.1 CY4611B - USB 2.0 to ATA Reference Design
You can test a variety of storage devices using the CY4615 DVK board by changing only the
EEPROM configuration (.iic) files, but storage device related features cannot be updated. The
CY4611B reference design kit can be used to add or update features. The board that comes along
with CY4611B is based on the EZ-USB FX2LP™ chip, a general-purpose USB 2.0 high-speed
device. After programming the ATA/ATAPI command processing firmware and the configuration files
(.iic) combined, the board emulates AT2LP (similar to CY4615B DVK board). Here, you can modify
the firmware by adding new features or modifying the existing firmware logic. The reference design
kit contains documents related to hardware, firmware, and application software useful while working
with the board available in this kit.

http://www.cypress.com/?rID=14406

106 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Resources

9.2.2 CY4651 v1.3 - Cypress and AuthenTec Reference Design for Biometric Security in
External USB Hard Disk Drives
The CY4651 is a third-party reference design from AuthenTec. The design uses the AuthenTec
EntrePad 2510, biometric fingerprint slide sensor, and Cypress's EZ-USB FX2LP microcontroller, the
industry's most popular high-speed USB 2.0 microcontroller, which interfaces with AuthenTec's sen-
sor and delivers data from the HDD to the host computer.

9.2.3 CY3686 NX2LP-FLEX USB 2.0-to-NAND Reference Design Kit
The CY3686 EZ-USB NX2LP-Flex™ USB 2.0 Development Kit is designed to accelerate develop-
ment of a NAND flash-based USB 2.0 application featuring the USB 2.0 NAND controller
(CY7C68033 and CY7C68034). Design a feature-rich thumbdrive with fingerprint sensor or GPS or
add NAND storage to your DVB card. NX2LP-Flex eliminates the need of EEPROMs in your firm-
ware based designs.

9.3 Application Notes
■ AN65209 - Getting Started with FX2LP

This application note presents the features and resources available to speed up the EZ-USB®
FX2LP™-based design from concept to production. This document serves as a starting point for
the new user to get familiar with FX2LP. It also gives an overview of the design resources avail-
able

■ AN1168 - High-speed USB PCB Layout Recommendations
This application note details guidelines for designing, controlled-impedance; high-speed USB
printed circuit boards to comply with the USB specification. This note is applicable to all Cypress
high-speed USB solutions. Some Cypress high-speed USB chips have separate application
notes that address chip-specific PCB design guidelines

■ AN45197 - Using the Hex2bix Conversion Utility
Hex2bix is a program used to convert a .hex file to a raw binary, A51, or IIC format. This applica-
tion note describes how to use the Hex2bix conversion utility for successful file conversion.

■ AN15456 - Guide to Successful EZ-USB(R) FX2LP(TM) and EZ-USB FX1(TM) Hardware Design
and Debug
This application note outlines a process that isolates many of the most likely causes of EZ-USB®
FX2LP™ and EZ-USB FX1™ hardware problems. It also facilitates the process of catching
potential problems before building a board and assists in the debugging when getting a board up
and running.

■ AN5078 - EZ-USB Hardware - Design considerations for EEPROM usage

EZ-USB® downloads firmware automatically into the on-chip RAM from the EEPROM connected
to it. The purpose of this application note is to present recommended design guidelines for assur-
ing the data integrity of serial EEPROM devices when used in EZ-USB designs.

■ AN064 - EZ-USB FX2LP™/AT2LP™ Reset and Power Considerations
The Cypress EZ-USB FX2LP(TM) is a USB 2.0 high-speed device. It contains an 8051, 16K of
program/data memory, 4K of endpoint buffers and a General Programmable Interface (GPIF)
block. The EZ-USB AT2LP(TM) is a USB 2.0 high-speed ATA/ATAPI bridge chip. Both these
chips have similar power and reset needs. This application note refers to the FX2LP, but is also
applicable to AT2LP.

http://www.cypress.com/?rID=14402
http://www.cypress.com/?rID=48371
http://www.cypress.com/?rID=12982
http://www.cypress.com/?rID=17627
http://www.cypress.com/?rID=12956
http://www.cypress.com/?rID=12948
http://www.cypress.com/?rID=12959

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 107

Resources

■ AN15813 - Monitoring the EZ-USB FX2LP™ VBUS
This application note explains the purpose and methods of monitoring VBUS from the upstream
connector using the EZ-USB FX2LP.

■ AN43841 - EZ-USB® FX2LPTM/FX2LP18 56-Ball BGA PCB Layout Guidelines
The 56-ball VFBGA version of the FX2LP(CY7C68013A) or FX2LP18(CY7C68053) USB micro-
controller chips is a smaller package version of the QFN package. The 56-ball package meets the
needs of space sensitive printed circuit board (PCB) designs. This application note provides
guidelines for designing a PCB with either FX2LP(CY7C68013A) or FX2LP18(CY7C68053).

■ AN4067 - Endpoint FIFO Architecture of EZ-USB FX1/FX2LP™
This application note describes the FIFO architecture of the EZ-USB FX1, the full-speed USB
microcontroller and the EZ-USB FX2LP"·, the high-speed USB microcontroller. The purpose of
this application note is to help the user understand the basics of FX1/FX2LP and get familiar with
the terminologies used while describing the data flow in FX1/FX2LP. The application note
addresses three modes of operation of the FX1/FX2LP, Endpoint Configuration and Multiple Buff-
ering, Three Domains that form the basic component of the FIFO architecture, Arming and com-
mitting endpoint buffers Endpoint operation in manual vs. auto mode.

■ AN4053 - Streaming Data Through Isochronous/Bulk Endpoints on EZ-USB® FX2™ and EZ-
USB FX2LP™
This application note provides brief background information on what is involved while designing
for a streaming application using the EZ-USB FX2(TM) or the EZ-USB FX2LP(TM) part. It pro-
vides information on streaming data through bulk endpoints, isochronous endpoints, and high-
bandwidth isochronous endpoints along with pitfalls to consider and avoid while using the FX2/
FX2LP for designing high-bandwidth applications.

■ AN67442 - SPI Implementation Using Serial Mode-0 of EZ-USB FX2LP™
This application note describes the implementation of serial peripheral interface (SPI) protocol
using the FX2LP UART port in serial mode 0. This demonstration uses FX2LP as the SPI master
for transferring data to and from an AT25080A EEPROM device. The example code includes
functions to the Write/Read byte to and from AT25080A EEPROM.

■ AN58069 - Implementing an 8-Bit Parallel MPEG2-TS Interface Using Slave FIFO Mode in
FX2LP
This application note explains how to implement an 8-bit parallel MPEG2-TS interface using the
Slave FIFO mode. The example code uses the EZ-USB FX2LP™ at the receiver end and a data
generator as the source for the data stream. The hardware connections and example code are
included along with this application note.

■ AN58170 - Code/Memory Banking Using EZ-USB®

The EZ-USB® family of chips has an 8051 core. The 8051 core has a 16-bit address line and is
only able to access 64 KB of memory. However, the firmware size sometimes exceeds 64 KB
This application note describes methods of overcoming this 64 KB limitation and also demon-
strates the implementation of one such method.

■ AN57322 - Interfacing SRAM with FX2LP over GPIF
This application note discusses how to connect Cypress SRAM CY7C1399B to FX2LP over the
General Programmable Interface (GPIF). It describes how to create read and write waveforms
using the GPIF Designer. This application note is also useful as a reference to connect FX2LP to
other SRAMs.

■ AN14558 - Implementing a SPI Interface with EZ-USB FX2LP™
This application note demonstrates how to implement a SPI interface. It uses the EZ-USB FX2LP
as a SPI Master and a SPI Serial EEPROM (25AA256) as a SPI slave. This example comes with
a host application with which the user can access the EEPROM. The EZ-USB FX2LP firmware

http://www.cypress.com/?rID=12961
http://www.cypress.com/?rID=12719
http://www.cypress.com/?rID=12926
http://www.cypress.com/?rID=12967
http://www.cypress.com/?rID=49176
http://www.cypress.com/?rID=39714
http://www.cypress.com/?rID=40118
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=39392
http://www.cypress.com/?rID=49544
http://www.cypress.com/?rID=12719

108 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Resources

uses the ports mode and bit-bangs the General Purpose IOs to create the SPI interface. The
hardware connection diagram and code listing is included.

■ AN1193 - Using Timer Interrupt in Cypress EZ-USB® FX2LP™ Based Applications

This application note is aimed at helping EZ-USB® FX2LP™ based firmware developers use
timer interrupts in their applications, by providing a framework based timer interrupt program writ-
ten in C. The assumption is made that one has a general understanding of how interrupts work
within the 8051 concept. When this program is run, you should be able to light the seven-seg-
ment LED on the FX2LP Development Board (CY3684) with a 0-9 count, and control the step
rate (1s - 5s) using BULK OUT endpoint transfers from the EZ-USB Control Panel.

■ AN63787 - EZ-USB FX2LP™ GPIF and Slave FIFO Configuration Examples using FX2LP Back-
to-Back Setup
AN63787 discusses how to configure the general programmable interface (GPIF) and slave
FIFO's of EZ-USB FX2LP™ in both manual mode and auto mode, to implement an 8-bit asyn-
chronous parallel interface. This Application Note is tested with two FX2LP development kits con-
nected in back-to-back setup; the first one acting in master mode and the second in slave mode.

■ AN61244 - Firmware Optimization in EZ-USB®

The EZ-USB® family of chips has an 8051 core and uses the standard 8051 instruction set. How-
ever, it has a few enhancements compared to the standard 8051. This application note describes
firmware optimization methods in EZ-USB. Some of these methods are common for any proces-
sor and some specific to the 8051 core of EZ-USB.

■ AN70983 - EZ-USB FX2LP™ Bulk Transfer Application in C# Using SuiteUSB C# Library
(CyUSB.dll)
AN70983 demonstrates how to build an application on Visual C# to send bulk data out and
receive it back over a bulk endpoint of FX2LP, which is developed using Cypress SuiteUSB C#
library (CyUSB.dll) for creating Windows applications using Microsoft Visual Studio. This docu-
ment also explains associated firmware used in FX2LP to implement loopback transfers on bulk
endpoints, and the application is tested with FX2LP Development kit.

■ AN70486 - EZ-USB® FX2LP™ Host Application in VC++ 2008 Using Suite USB Library
(CYUSB.dll)
This application note demonstrates how to build a host application on Microsoft Visual C++ plat-
form, using the Cypress SuiteUSB C# library, CyUSB.dll, to perform USB BULK IN and OUT
transfers with FX2LP and the associated project is tested with FX2LP Development kit.

■ AN74505 - EZ-USB® FX2LP™ - Developing USB Application on MAC OS X using LIBUSB
AN74505 describes a host application built on the MAC OS platform that uses libusb. The host
application (Cocoa Application) communicates with the BULK IN and BULK OUT endpoints of
FX2LP, using the interfaces provided by the APIs of libusb. This host application implements the
transfer only with devices that pass the particular VID/PID(=0x04B4/0x1004) identification.

■ AN6077 - Implementing an 8-Bit Asynchronous Interface with FX2LP™
AN6077 discusses how to configure the general programmable interface (GPIF) and slave FIFOs
of the EZ-USB FX2LP™ to implement an 8-bit asynchronous interface. The GPIF is a program-
mable 8- or 16-bit parallel interface that reduces system costs by providing a glueless interface
between the EZ-USB FX2LP and different types of external peripherals. The GPIF allows the EZ-
USB FX2LP to perform local bus mastering to external peripherals implementing a wide variety of
protocols. For example, EIDE/ATAPI, printer parallel port (IEEE P1284), Utopia, and other inter-
faces are supported using the GPIF block of the EZ-USB FX2LP. In this example, it masters the
slave FIFO interface of another EZ-USB FX2LP.

http://www.cypress.com/?rID=12919
http://www.cypress.com/?rID=45850
http://www.cypress.com/?rID=43047
http://www.cypress.com/?rID=53165
http://www.cypress.com/?rID=53167
http://www.cypress.com/?rID=53167
http://www.cypress.com/?rID=12946
http://www.cypress.com/?rID=59674
http://www.cypress.com/?rID=59674
http://www.cypress.com/?rID=53167

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 109

Resources

■ AN58764 - Implementing a Virtual COM Port in FX2LP
This application note explains how to implement a virtual COM port device using the standard
Windows driver in FX2LP. This information helps in easy migration from UART to USB. The
example code is provided with the application note, along with the required descriptors, class
specific request handling, and the INF file required for enumeration.

■ AN50963 - Firmware Download Methods to FX1/FX2LP
This is an advanced document on firmware download techniques and readers expected to be
familiar with VC++ programming, USB 2.0 protocol, FX1/FX2LP architecture and device configu-
ration options. Refer FX1/FX2LP datasheet and Technical Reference Manual available in
Cypress website for more details on FX1/FX2LP product architecture and configuration details.

■ AN45471 - Vendor Command Design Guide for the FX2LP
Vendor commands are used to issue commands to a device, by which tasks unique to an applica-
tion are accomplished. This application note demonstrates how you can quickly design USB ven-
dor commands to perform specific features of products. In addition, using the Cypress
CyConsole utility to issue vendor commands is also explained.

■ AN58009 - Serial (UART) Port Debugging of FX1/FX2LP Firmware
This application note describes the code needed in the FX2LP firmware for serial debugging.
This code enables the developer to print debug messages and real time values of the required
variables in the HyperTerminal of the PC or capture it in a file using the UART engine in FX2LP.

■ AN42499 - Setting Up, Using, and Troubleshooting the Keil(TM) Debugger Environment
This application note is a step-by-step beginner's guide to using the Keil Debugger. This guide
covers the serial cable connection from PC to SIO-1/0, the monitor code download, and required
project settings. Additionally, the guidelines to start and stop a debug session, set breakpoints,
step through code, and solve potential problems are considered.

■ AN023 - USB Compliance Testing Overview
This program verifies that your USB device meets the specification and works well with other
USB devices.

http://www.cypress.com/?rID=40248
http://www.cypress.com/?rID=34253
http://www.cypress.com/?rID=34485
http://www.cypress.com/?rID=39786
http://www.cypress.com/?rID=12960
http://www.cypress.com/?rID=12995

110 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Resources

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 111

A. Appendix

A.1 U2 (GAL) code (file is 'FX2LP.ABL')
MODULE fx2lp
" Swapped dipswitch settings 00 and 10 on 4-3-98 to allow the all-switchon
default
x,c,z = .X.,.C.,.Z.;
"Inputs
A12,A13,A14,A15 pin 11,12,13,16;
A11 pin 4;
nRD,nPSEN,CLKOUT pin 6,5,2;
mm1,mm0 pin 9,7;
"Outputs
EA,nRAMOE,nRAMCE pin 21,25,27;
PF0,PF1,PF2,PF3 pin 17,18,19,20 istype 'reg_sr';
modesw = [mm1,mm0]; " two dipswitches
addr = [A15,A14,A13,A12,A11,nRD];" high nibble of the address bus + RD
equations
" The 3681 board turns PF0 on at 0x80xx reads and off at 0x81xx reads.
" This board turns PF0 on at 0x8xxx reads and off at 0x88xx reads.
PF0.S = (addr == ^b100000);
PF0.R = (addr == ^b100010);
PF0.CLK = CLKOUT;
PF1.S = (addr == ^b100100);
PF1.R = (addr == ^b100110);
PF1.CLK = CLKOUT;
PF2.S = (addr == ^b101000);
PF2.R = (addr == ^b101010);
PF2.CLK = CLKOUT;
PF3.S = (addr == ^b101100);
PF3.R = (addr == ^b101110);
PF3.CLK = CLKOUT;
WHEN (modesw == 00) THEN" No external memory
{
nRAMCE = 1;
nRAMOE= 1;
EA = 0;
}
ELSE WHEN(modesw == 01) THEN" Ext P&D mem at 8000 (can add mem to 0-8K)
{
!nRAMCE= A15;
!nRAMOE= !nRD # !nPSEN;" Combine program & data memory
EA = 0;
}

112 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

ELSE WHEN(modesw == 11) THEN" Ext P&D mem at 0000 and 8000
{
!nRAMCE = 1;
!nRAMOE= !nRD # !nPSEN;
EA = 0;
}
ELSE WHEN(modesw == 10) THEN" All program mem external
{
!nRAMCE = 1;
!nRAMOE =!nRD # !nPSEN;
EA = 1;
}
test_vectors
([mm1,mm0,A15,nRD,nPSEN] -> [nRAMCE, nRAMOE, EA])
[0 , 0 , x , x , x] -> [1 , 1 , 0];" 10: all mem selects and
strobes OFF
[0 , 1 , 0 , 1 , 1] -> [1 , 1 , 0];" 01: top of mem for rd or
psen
[0 , 1 , 1 , 1 , 0] -> [0 , 0 , 0];" PSEN only
[0 , 1 , 1 , 0 , 1] -> [0 , 0 , 0];" RD only
[0 , 1 , 1 , 1 , 1] -> [0 , 1 , 0];" Neither RD or PSEN
[1 , 1 , 0 , 1 , 0] -> [0 , 0 , 0];" 11: top and bot mem for rd
or psen
[1 , 1 , 0 , 0 , 1] -> [0 , 0 , 0];
[1 , 1 , 0 , 1 , 1] -> [0 , 1 , 0];
[1 , 1 , 1 , 1 , 0] -> [1 , 0 , 0];" PSEN
[1 , 1 , 1 , 0 , 1] -> [1 , 0 , 0];" RD
[1 , 1 , 1 , 1 , 1] -> [1 , 1 , 0];" neither
[1 , 0 , 1 , 1 , 0] -> [1 , 0 , 1];" PSEN
[1 , 0 , 1 , 0 , 1] -> [1 , 0 , 1];" RD
[1 , 0 , 1 , 1 , 1] -> [1 , 1 , 1];" neither
test_vectors
([nRD,nPSEN] -> [nRAMOE])
[0 , 0] -> [0];
[0 , 1] -> [0];
[1 , 0] -> [0];
[1 , 1] -> [1];
test_vectors
(addr -> [PF0, PF1, PF2, PF3])
[1,0,0,0,0,0] -> [0, 0, 0, 0];
[1,0,0,0,1,0] -> [1, 0, 0, 0];
END

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 113

A.2 Board Layout

114 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

A.3 Schematic

The only difference between the CY3674 and CY3684 kits is the Cypress EZ-USB part. While the
development board of the CY3674 kit includes FX1 (128-pin package), the CY3684 kit has FX2LP.
All other components and layout are similar to the CY3684 kit board.

5 5

4 4

3 3

2 2

1 1

D
D

C
C

B
B

A
A

1
2
8
K

x

8

S
R
A
M

P
L
A
C
E

O
N
E

C
A
P

P
E
R

E
A
C
H

V
C
C

P
I
N

O
N

U
1

R
E
D

Br
id

ge
 S

P1
-S

P3
 f

or
 A
ta
pi
 u
se
.

RE
D

8-
PI

N
DI

P
SO
CK
ET

SM
AL

L
EE

PR
OM

LA
RG

E
EE

PR
OM

NO
 E

EP
RO
M

EE
PR

OM

8-
PI

N
DI

P
SO
CK
ET

GR
EE
N

PC
A:

 1
21

-0
86

00
PC

B:
 P

DC
-9

08
6

CY
7C

68
01

3A
-1

28
AX

C
(C

Y3
68

4
FX

2L
P

DV
K)

 o
r

CY
7C

64
71

3-
12

8A
XC

(C
Y3

67
4

FX
1

DV
K)

R
E

F-
11

63
7

*B

C
Y

36
84

 U
S

B
 2

.0
 D

E
V

E
LO

P
M

E
N

T
B

O
A

R
D

C

1
1

Tu
es

da
y,

 S
ep

te
m

be
r 2

0,
 2

00
5

Ti
tle

Si
ze

D
oc

um
en

t N
um

be
r

R
ev

D
at

e:
S

he
et

of

C
YP

R
ES

S
SE

M
IC

O
N

D
U

C
TO

R
 ©

 2
00

3

R
D

Y
0

C
TL

4

P
A

6
P

A
4

P
A

2
P

A
0

P
S

E
N

#
P

D
6

P
D

4
P

D
2

P
D

0
P

B
6

P
B

4
P

B
2

P
B

0

W
R

#
R

D
Y

4
R

D
Y

2
R

E
S

E
T#

P
C

4
P

C
2

P
C

0

C
LK

O
U

T
O

E
#

D
4

D
2

D
0

R
D

#
IN

T4
T1 W

A
K

E
U

P
#

S
C

L
P

E
6

P
E

4
P

E
2

P
E

0

P
E

7
P

E
5

P
E

3

S
D

A

IN
T5

#

D
5

D
1

5V D
3

C
S

#

P
B

7
P

B
5

P
B

1

P
D

3

P
B

3

P
D

1

P
D

7
P

D
5

P
A

7
P

A
5

P
A

1

C
TL

3

P
A

3

C
TL

1

R
D

Y
1

P
C

7

P
C

1

BK
PT

R
D

Y
5

R
D

Y
3

b c d e f g de
c

a f e

b g c de
c

d

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

R
A

M
C

E
#

R
A

M
O

E
#

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

a

V
B

U
S

E
A

C
LK

O
U

T
W

A
K

E
U

P
#

R
E

S
E

T#

A
7

A
14

A
8

A
5

A
1

A
11

A
6

A
10

A
0

A
13

A
12

A
3

A
9

A
15

A
4

A
2

IN
T4

IN
T5

#
C

S
#

P
S

E
N

#
O

E
#

A
2

A
7

A
0

A
4

A
6

A
3

A
1

A
5

A
10

A
15

A
8

A
12

A
14

A
11

A
9

A
13

D
2

D
7

D
0

D
4

D
6

D
3

D
1

D
5

TX
D

0

T2R
X

D
0

R
D

#

T1TX
D

1

R
X

D
1

T0 W
R

#

D
M

D
P S
C

L

C
TL

0
C

TL
2

P
C

3
P

C
5

C
TL

5

P
C

6

D
6

P
F0

P
F1

P
F2

P
F3

P
E

1

T2 T0

5V

IF
C

LK

P
B

6
P

B
5

P
B

4
P

B
3

P
B

0

P
B

7

P
B

2
P

B
1

P
D

0
P

D
1

P
D

2

P
D

4

P
D

6

P
D

3

P
D

5

P
D

7

R
D

Y
1

C
TL

0
C

TL
1

R
D

Y
0

C
TL

2

P
A

2
P

A
1

P
A

4
P

A
5

P
A

3

P
A

0

P
A

7

R
X

D
1

TX
D

1

R
X

D
0

TX
D

0

S
D

A

S
C

L
S

D
A

S
C

L
S

D
A

W
R

#

A
14

O
E

#

A
11

E
A

P
S

E
N

#

P
F0

P
F2

P
F1

A
15

A
13

R
A

M
O

E
#

IF
C

LK

C
S

#
R

A
M

C
E

#

R
D

#

A
12

P
F3

P
A

5

P
E

3

P
B

4

P
D

3

P
C

1

C
TL

1

P
D

2

P
B

1

C
TL

5

R
D

Y
4

P
A

4

P
E

6

R
D

Y
2

P
B

3

P
D

6

C
TL

0

P
C

0

P
C

7

P
B

0

C
TL

4

P
A

2

P
E

4

P
B

2

P
B

7

R
D

Y
5

P
A

3

P
C

6

P
E

5

C
TL

3

P
D

4

P
E

0

P
D

5

P
A

1

P
C

3

P
A

7

P
B

6

R
D

Y
1

P
C

5

P
E

1

P
D

0

P
E

7

P
D

1

P
A

0

P
C

2

P
A

6

P
C

4

R
D

Y
3

P
B

5

C
TL

2

R
D

Y
0

P
D

7

P
E

2

S
C

L
W

P

S
C

L

S
D

A

D
7

R
A

M
A

16

W
A

K
E

U
P

#

BK
PT

W
P

5V

P
A

7
W

P

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

5V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

5V
3.

3V
5V

3.
3V

3.
3V

5V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

C

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

3.
3V

C

5V

5V

0
8
0
5

R
39

39
0

0
8
0
5

C
3

0.
1

uF
d

0
8
0
5

C
18

0.
1

uF
d

P
9

S
IO

-0

5 9 4 8 3 7 2 6 1

10 11

0805

R
47

10
K

J1

U
S

B
 B

 R
A

1 2 3 4 5 6

V
B

U
S

D
M D
P

G
N

D S
1

S
2

U
1

C
Y7
C
68
01
3A
-1
28
A
XC

33

10
1

83

36

48

37

84

43

85

64

89 90

10

91

58

92

65

44

125

3

116

13

12

11

82 45 46 47 54 55 56 57 72 73 74 75 76 77 78 79

1819 94 95 96 97 11
7

11
8

11
9

12
0

12
6

12
7

12
8 21 22 23 24 25 59 60 61 62 63 86 87 88 35 139

80

3499

100

2

68

107

49

4 5 6 69 70 71

32

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

10
2

10
3

10
4

10
5

12
1

12
2

12
3

12
4

7 8 9

14
15

384240 41

16

29 30 31 28 10
651 5053 52

66 67 98

26
81

27
93

20

17

RESERVED

W
A

K
E

U
P

#

P
A

1/
IN

T1
#

S
C

L

VCC5

S
D

A

P
A

2/
S

LO
E

VCC4

P
A

3/
W

U
2

VCC6

P
A

4/
FI

FO
A

D
R

0
P

A
5/

FI
FO

A
D

R
1

A
V

C
C

1

P
A

6/
P

K
TE

N
D

GND5

P
A

7/
FL

A
G

D

GND6

P
B

0/
FD

0

GND9

GND3

GND8

AGND1

XTALIN

XTALOUT

P
A

0/
IN

T0
#

P
B

1/
FD

1
P

B
2/

FD
2

P
B

3/
FD

3
P

B
4/

FD
4

P
B

5/
FD

5
P

B
6/

FD
6

P
B

7/
FD

7

P
C

0/
G

P
IF

A
D

R
0

P
C

1/
G

P
IF

A
D

R
1

P
C

2/
G

P
IF

A
D

R
2

P
C

3/
G

P
IF

A
D

R
3

P
C

4/
G

P
IF

A
D

R
4

P
C

5/
G

P
IF

A
D

R
5

P
C

6/
G

P
IF

A
D

R
6

P
C

7/
G

P
IF

A
D

R
7

D
P

LU
S

D
M

IN
U

S

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
10

A
11

A
12

A
13

A
14

A
15

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

E
A

C
LK

O
U

T

P
S

E
N

#

GND7

B
K

P
T

R
E

S
E

T#

VCC8

VCC3

VCC7

VCC9

GND4

R
D

Y
0/

S
LR

D
R

D
Y

1/
S

LW
R

R
D

Y
2

C
TL

0/
FL

A
G

A
C

TL
1/

FL
A

G
B

C
TL

2/
FL

A
G

C

IF
C

LK

P
E

0/
T0

O
U

T
P

E
1/

T1
O

U
T

P
E

2/
T2

O
U

T
P

E
3/

R
X

D
0O

U
T

P
E

4/
R

X
D

1O
U

T
P

E
5/

IN
T6

P
E

6/
T2

E
X

P
E

7/
G

P
IF

A
D

R
8

P
D

0/
FD

8
P

D
1/

FD
9

P
D

2/
FD

10
P

D
3/

FD
11

P
D

4/
FD

12
P

D
5/

FD
13

P
D

6/
FD

14
P

D
7/

FD
15

R
D

Y
3

R
D

Y
4

R
D

Y
5

NC1
NC2

O
E

#

C
S

#

R
D

#
W

R
#

NC3

T0 T1 T2 IN
T4

IN
T5

#

R
X

D
0

TX
D

0
R

X
D

1

TX
D

1

C
TL

3
C

TL
4

C
TL

5

VCC1
VCC2

GND1
GND2

AGND2

A
V

C
C

2

0805

R
77

4.
7K

U
2

G
A

L2
2L

V
10

C
-7

LJ

1718192021232425262722

2
15

3 4 5 6 7 9 10 11 12 13 16

28 14

1 8

F0F1F2F3F4F5F6F7F8F9

N
C

4

I0
/c

lk
N

C
3

I1 I2 I3 I4 I5 I6 I7 I8 I9 I1
0

I1
1

Vcc Vss

N
C

1
N

C
2

0805

R
1

10
0K

08
05

R
23

2.
2K

08
05

R
15

10
K

0
8
0
5

R
34

39
0

JP
1

A
V

C
C

1 2

0
8
0
5

C
29

0.
1

uF
d

0805

R
78

10
K

TP
5

G
N

D

0
8
0
5

C
6

0.
1

uF
d

0
8
0
5

R
74

39
0

0
8
0
5

C
40

0.
1

uF
d

08
05

R
16

22

0805

R
28

10
0K

a
b

f
g

e
d

c

U
9

H
D

S
P

-E
10

1

1 2 3

910
6 7

8111314
a f an

1

de
cc

nc e
dgb

an
2

0805

C
20

0.
1

uF
d

+
32
16

C
25

10
 u

Fd
 1

6v

0
8
0
5

R
25

39
0

08
05

R
24

22

P
5

LO
G

IC
 A

N
A

LY
ZE

R
 H

D
R

1 3 5 7 9

2 4 6 8 10
11

12
13

14
15

16
17

18
19

20

+5
V

C
LK

1
D

14
D

12
D

10

C
LK

2
D

15
D

13
D

11 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

G
N

D

0805

R
27

10
K

TV
5

P
F2

0
8
0
5

R
35

39
0

08
05
R

3

56
0

0
8
0
5

R
4

39
0

Y
1

24
 M

H
z

FR
AM

E

S
1

R
ES

ET
#1A 2A

1B 2B
3

0
8
0
5

C
15

0.
1

uF
d

U
5

24
LC

12
8-

I/P

1 2 3 4
5678

A
0

A
1

A
2

V
ss

S
D

A
S

C
L

W
P

V
cc

0
8
0
5

C
14

12
 p

Fd

0805

R
80

10
0K

+
32
16

C
43

2.
2

uF
d

10
v

0
8
0
5

R
40

39
0

0805

C
34

0.
1

uF
d

0
8
0
5

C
4

0.
1

uF
d

0805

C
12

0.
1

uF
d

P
10

S
IO

-1

5 9 4 8 3 7 2 6 1

10 11

FR
AM

E

S
3 f2

1A 2A
1B 2B

3

08
05

R
20

22

0805

R
14

22
K

0805

R
29

10
K

JP
5

3.
3V

 IN 1
2

0
8
0
5

C
7

0.
1

uF
d

0
8
0
5

C
41

0.
1

uF
d

0805

R
45

4.
7K

+
32
16

C
23

10
 u

Fd
 1

6v

TP
6

G
N

D

JP
9

i2
c

co
m

pa
tib

le

1234

1
2
0
6

D
8

D
R

IV
E

 R
D

Y

1
2
0
6

D
2

LE
D

 R
ed

0
8
0
5

C
36

0.
1

uF
d

1
2
0
6

D
7

B
K

P
T/

M
O

N
IT

O
R

0
8
0
5

R
36

39
0

TP
1

G
N

D

1
2
0
6

D
1

B
U

S
 P

W
R

TV
6

P
F1

08
05

R
17

22

+
32
16

C
17

2.
2

uF
d

10
v

0
8
0
5

R
5

39
0

0805

R
10

10
K

TV
1

S
P

A
R

E
3

TV
9

S
P

A
R

E
4

P
2

LO
G

IC
 A

N
A

LY
ZE

R
 H

D
R

1 3 5 7 9

2 4 6 8 10
11

12
13

14
15

16
17

18
19

20

+5
V

C
LK

1
D

14
D

12
D

10

C
LK

2
D

15
D

13
D

11 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

G
N

D

0805

R
13

10
K

0
8
0
5

C
19

0.
1

uF
d

P
6

LO
G

IC
 A

N
A

LY
ZE

R
 H

D
R

1 3 5 7 9

2 4 6 8 10
11

12
13

14
15

16
17

18
19

20

+5
V

C
LK

1
D

14
D

12
D

10

C
LK

2
D

15
D

13
D

11 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

G
N

D

U
3

C
Y

7C
10

19
B

V
33

-1
2V

C

153 164 1713 182 19

6

2014 21 29 301
7 10 11 22 23 26 27 5 2812

8 9

31 32

2524

A
6

A
2

A
7

A
3

A
8

A
4

A
9

A
1

A
10

D
0

A
11

A
5

A
12

A
13

A
14

A
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

C
E

O
E

W
E

VDD Vss

A
15

A
16

VssVDD

S
O
1
6

U
8

P
C

F8
57

4T

1514

16

1 2 3

8

13

4 5 6 7 9 10 11 12

S
D

A
S

C
L

VCC

A
0

A
1

A
2

GND

IN
T

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

08
05

R
18

22

FR
AM
E

S
6

W
A

K
EU

P#

1A 2A
1B 2B

3

0
8
0
5

R
41

39
0

1206

D
6

P
W

R
 3

.3
V

0805

R
30

ze
ro

JP
11

E
E

P
R

O
M

 W
P

 J
U

M
P

E
R

1 2 3

JP
8

W
U

2 1
2

0805

R
26

22
K

S
W

1
E

E
P

R
O

M
 S

E
LE

C
T

2
1 3

0805

R
9

39
0

0
8
0
5

C
8

0.
1

uF
d

7163

C
21

47
00

 p
Fd

 2
50

v

TP
2

G
N

D

0
8
0
5

C
42

0.
1

uF
d

TV
2

S
P

A
R

E
2

JP
3

LE
D

 S
E

LE
C

T

1 3 5 7

2 4 6 8

1
2
0
6

D
3

LE
D

 R
ed

0
8
0
5

C
31

0.
1

uF
d

0
8
0
5

R
37

39
0

0805

R
46

ze
ro

+
32
16

C
16

1
uF

d
16

v

JP
7

M
M

1

1
2

0
8
0
5

C
1

0.
1

uF
d

TV
7

P
F0

0
8
0
5

R
6

39
0

0805

R
11

10
K

FR
AM

E

S
2 f1

1A 2A
1B 2B

3

0805

C
38

0.
1

uF
d

0
8
0
5

C
22

0.
1

uF
d

FR
AM

E

S
4 f3

1A 2A
1B 2B

3

0
8
0
5

C
9

0.
1

uF
d

P
3

LO
G

IC
 A

N
A

LY
ZE

R
 H

D
R

1 3 5 7 9

2 4 6 8 10
11

12
13

14
15

16
17

18
19

20

+5
V

C
LK

1
D

14
D

12
D

10

C
LK

2
D

15
D

13
D

11 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

G
N

D

P
1

LO
G

IC
 A

N
A

LY
ZE

R
 H

D
R

1 3 5 7 9

2 4 6 8 10
11

12
13

14
15

16
17

18
19

20

+5
V

C
LK

1
D

14
D

12
D

10

C
LK

2
D

15
D

13
D

11 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

G
N

D

0805

R
69

1K

U
7

LT
C

13
86

C
S

1

2

3

4 5

6

7 8

16 15

14 13
1211 10 9

C
1+

V
+

C
1-

C
2+

C
2-

V
-

TR
2O

U
T

R
X

2I
N

VCC GND

TR
1O

U
T

R
X

1I
N

R
X

1O
U

T
TR

1I
N

TR
2I

N
R

X
2O

U
T

0
8
0
5

C
39

0.
1

uF
d

TP
3

G
N

D

SOT23

D
9

1N
41

48

21

TV
3

S
P

A
R

E
1

0805

R
42

10
0K

JP
10

3.
3V1 2

0805

C
28

0.
1

uF
d

TP
8

V
B

U
S

0805

R
79

10
K

08
05

R
22

22

P
8

A
TA

 C
O

N
N

E
C

TO
R

1
2

171513119753
4 6 8 10 12 14 16 18 20

19 21 23 25 29 3127 33 35 37 39

2422 26 28 30 32 34 36 38 40

R
E

S
E

T#
G

N
D

D
D

0
D

D
1

D
D

2
D

D
3

D
D

4
D

D
5

D
D

6
D

D
7

D
D

8
D

D
9

D
D

10
D

D
11

D
D

12
D

D
13

D
D

14
D

D
15

K
E

Y
P

IN
G

N
D

D
M

A
R

Q
D

IO
W

#
D

IO
R

#

D
M

A
C

K
#

IN
TR

Q

IO
R

D
Y

D
A

1
D

A
0

C
S

0#
D

A
S

P
#

G
N

D
G

N
D

G
N

D
C

S
E

L
G

N
D

IO
C

S
16

P
D

IA
G

#
D

A
2

C
S

1#
G

N
D

0805

R
12

10
0K

0805

R
2

ze
ro

S
W

2
E

E
P

R
O

M
 E

N
A

B
LE

2
1 3

0805 C
24

0.
01

 u
Fd

JP
2

B
U

S
 P

W
R

1 2

08
05

R
33

33

P
4

LO
G

IC
 A

N
A

LY
ZE

R
 H

D
R

1 3 5 7 9

2 4 6 8 10
11

12
13

14
15

16
17

18
19

20

+5
V

C
LK

1
D

14
D

12
D

10

C
LK

2
D

15
D

13
D

11 D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

G
N

D

1
2
0
6

D
4

LE
D

 R
ed

0805

R
31

N
O

 L
O

A
D

0
8
0
5

R
38

39
0

08
05

R
19

22

0
8
0
5

C
2

0.
1

uF
d

0805

R
44

4.
7K

0805

R
32

N
O

 L
O

A
D

0
8
0
5

R
8

39
0

08
05

R
21

2.
2K

0
8
0
5

C
26

0.
1

uF
d

S
O
1
6

U
10

P
C

F8
57

4T

1514

16

1 2 3

8

13

4 5 6 7 9 10 11 12

S
D

A
S

C
L

VCC

A
0

A
1

A
2

GND

IN
T

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

0
8
0
5

C
5

0.
1

uF
d

JP
6

M
M

0

1
2

0
8
0
5

C
10

0.
1

uF
d

0805

C
37

0.
1

uF
d

U
4

LT
17

63
C

S
8-

3.
3

1 2

3

4
5

6
7

8
O

U
TP

U
T

S
E

N
S

E

GND

B
Y

P
nS

H
D

N

GND
GND

INTP
4

G
N

D

08
05
R

7

1M

TP
7

3.
3V

TV
4

P
F3

TV
8

W
A

K
E

U
P

#

S
P

3
S

O
LD

E
R

 P
A

D

08
05

R
43

22

0805

C
27

0.
1

uF
d

S
P

1
S

O
LD

E
R

 P
A

D

U
6

24
LC

00
/P

1 2 3 4
5678

A
0

A
1

A
2

V
ss

S
D

A
S

C
L

W
P

V
cc

0
8
0
5

C
11

0.
1

uF
d

S
P

2
S

O
LD

E
R

 P
A

D

FR
AM

E

S
5 f4

1A 2A
1B 2B

3

0
8
0
5

C
13

12
 p

Fd

+
32
16

C
32

10
 u

Fd
 1

6v

0805

C
35

0.
1

uF
d

1
2
0
6

D
5

LE
D

 R
ed

EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D 115

A.4 Frequently Asked Questions
Q1: What is the first step, after viewing the printed material from the box?

A1: Make sure the hardware works well enough to run the tutorial. After software installation, plug in
a development board; go through the DVK tutorial. The tutorial is located in the EZ-USB DVK User
Guide, which is found in the Start menu under Cypress > USB > Help. The tutorial is short and
worthwhile.

Q2: What is the first example to try?

A2: While following the tutorial, you will read the Device ID from the development board, and then
load the dev_io example. This turns on the LED so you know that firmware has been loaded and
runs correctly.

Q3: Where do I find the soft copy of the EZ-USB Getting Started?

A3: See <Installed_directory>\<Version>\Documentation\EZ-USB (R) DEVELOP-
MENT KIT USER GUIDE.pdf.

Q4: Where do I find the soft copy of the EZ-USB Technical Reference Manual (TRM)?

A4: See <Installed_directory>\<Version>\Documentation\EZ-USB(R) Technical
Reference Manual.pdf. This is the key reference to use. You can search for the material you are
most interested in quickly.

Q5: Where is the EZ-USB data sheet?

A5: See <Installed_directory>\<Version>\Documentation\EZ-USB FX1 Data-
sheet.pdf for the CY3674 and <Installed_directory>\<Version>\Documentation\EZ-
USB(R) FX2LP Datasheet.pdf for the CY3684.

Q6: Where is the EZ-USB Development Board schematic (pdf and Orcad files)?

A6: See <Installed_directory>\<Version>\Hardware for EZ-USB Kits .

Q7: Where can I find the errata?

A7: See <Installed_directory>\<Version>\Documentation\SILICON ERRATA FOR
EZ-USB(TM) FX1 PRODUCT FAMILY.pdf for the CY3674 and
<Installed_directory>\<Version>\Documentation\ERRATA FOR THE EZUSB-
FX2LP.pdf for the CY3684.

Q8: How do I to generate "myapp" from (frameworks)?

A8: Create a (frameworks based) project folder by copying the ‘fw’ example folder
<Installed_directory>\<Version>\Target\Fw\LP a new location (under ‘Examples’).
Then rename the folder to the new project name. Remove the .hex file, and .Uv2 file. Rename
periph.c to <NewPrj>.c, and then create a new uV2 project file. See EZ-USB Firmware
Frameworks chapter on page 35 for more information.

Q9: How do I build an EEPROM image to burn my code?

A9: See the tutorial for information about generating EEPROMs.

Q10: Where can I get a summary of the registers?

A10: See the register summary in the TRM.

Q11: Are there any examples?

A11: Yes, see the examples and readme files in the Examples folder.

116 EZ-USB Development Kit User Guide, Doc. # 001-66390 Rev. *D

Q12: Please provide details about the environment setup.

A12: If you install into the default directory, <Installed_directory>\<Version> then you can
build and debug examples with the Keil uV2 project files provided. The project files have hard-coded
paths in them; installing to a different, non-default directory location breaks these project files. Also,
there are build.bat files for the projects in the Example folders. To run the build.bat files from the
command line, you need to set some paths and environment variables, which can be done by run-
ning the batch file <Installed_directory>\<Version>\Bin\setenv.bat before typing
‘build’. Again, if the kit software or Keil tools are installed to a non-default location, you need to mod-
ify the setenv.bat file. The setenv.bat also has directions on how to create a Start menu option to
open an MS-DOS window with the correct environment set up.

Q13: Which DB-9 do I plug my mon-51 cable into?

A13: Use SIO-1 by default. There are other versions of the monitor in
<Installed_directory>\<Version>\Target\\Monitor. They can be loaded using the Con-
trol Panel. There are different versions that load to Internal or external RAM memory as defined in
section “Debugging Using Keil Monitor Program” on page 97, and use SIO-0 or SIO-1, as indicated
by the name.

