# Evaluates: MAX96707/MAX96709 with Coax or STP Cable ### **General Description** The MAX96707/MAX96709 coax evaluation kit (EV kit) provides a proven design to evaluate the MAX96707 and MAX96709 high-bandwidth gigabit multimedia serial link (GMSL) serializers with spread spectrum and full-duplex control channel, through the use of a standard FAKRA coax or STP cable. The EV kit also includes Windows Vista®- and Windows® 7-compatible software that provides a simple graphical user interface (GUI) for exercising features of the device. The EV kit comes with either a MAX96707GTG+ or MAX96709GTG+ IC installed. For complete GMSL evaluation using a standard FAKRA coax cable, order the MAX96707 or MAX96709 EV kit and a companion deserializer board (the MAX96706 EV kit is referenced in this document). For testing with STP cable, also order the MAXCOAX2STP-HSD adapter kit and refer to its data sheet. Only one adapter kit is required per link (connecting the serializer and deserializer boards). **Note:** In the following sections, MAX96707/709 and the term "serializer" refer to the MAX96707 or MAX96709 ICs and MAX96706/708 and the term "deserializer" refer to the MAX96706 or MAX96708 ICs. **Note:** This document applies to both coax and STP EV kits. This document covers coax cable links, but the information provided applies equally to STP cable links. Ordering Information appears at end of data sheet. #### **Features** - Accepts 14-Bit Parallel Input Data and Outputs GMSL Serial Data through FAKRA Connectors - Power-over-Coax Capable - Windows Vista- and Windows 7-Compatible Software - USB-Controlled Interface (Cable Included) - USB Powered - Proven PCB Layout - Fully Assembled and Tested ## Items Included in the EV Kit Package | DECRIPTION | QTY | |----------------------------------------|-----| | MAX96707 or MAX96709 coax EV kit board | 1 | | USB cable | 1 | ## MAX96707/MAX96709 EV Kit Files | FILE | DECRIPTION | |-------------------------------------|--------------------------------------------| | MAXSerDesEV-N_Vxxxx_<br>Install.EXE | Installs the EV kit files on your computer | | MAXSerDesEV-N.EXE | Graphical user interface (GUI) program | | CDM20600.EXE | Installs the USB device driver | | USB_Driver_Help_200.PDF | USB driver installation help file | Windows and Windows Vista are registered trademarks and registered service marks of Microsoft Corporation. # Evaluates: MAX96707/MAX96709 with Coax or STP Cable #### **Quick Start** #### **Required Equipment** - MAX96707 or MAX96709 serializer EV kit - MAX96706 or MAX96708 deserializer EV kit - 2m FAKRA cable assembly (included with the deserializer EV kit) - > 20MHz function generator - PC with Windows Vista or Windows 7 and a spare USB port (direct 500mA connection required; do not use a bus-powered hub) - 5V DC, 500mA power supply **Note:** In the following sections, software-related items are identified by bolding. Text in **bold** refers to items from the EV kit software. Text in **bold and underlined** refers to items from the Windows operating system. #### **Procedure** The EV kit is fully assembled and tested. Follow the steps below to verify board operation: - Visit www.maximintegrated.com\EVKitsoftware to download and install the latest version of the EV kit software: - Double-click on GMSL SerDes Evaluation Kit Software-Nuvoton. - Download the MAXSerDesEV-N\_Vx\_x\_x\_x\_ Install.ZIP file (8MB). - Extract and install the MAXSerDesEV-N\_ Vx\_x\_x\_x\_Install.EXE file. The installation application installs the USB driver. If the USB driver installation is not successful, install the appropriate USB driver for your computer by visiting www.ftdichip.com/Drivers/VCP.htm. - 2) Verify that jumpers on the serializer board are in their default positions, as shown in Figure 15. - 3) Verify that jumpers on the deserializer board are in their default positions, as shown in Figure 16. - 4) Set up the system, as shown in Figure 1. - Connect the FAKRA cable from the OUT+ terminal on the serializer board to the IN0+ terminal on the deserializer board. - 6) Connect the USB cable between the PC and USB port on the Nuvoton microcontroller daughter board on the serializer board. - Verify that LED\_PWR on the deserializer board lights up, indicating that the deserializer board has power. - 8) Verify that LED\_PWR on the serializer board lights up, indicating that the serializer board has power. Both serializer and deserializer have a power-over-coax (POC) circuit that is active by default. - 9) Verify that LOCK\_LED on the deserializer board lights up, indicating that the link has been successfully established. If the LOCK\_LED is off, or ERR\_LED is on, go to the *Troubleshooting* section and fix the problem before continuing. Note: If you are working with an earlier version of the deserializer IC, you must write value of 0xA6 to register address 0x9b at slave address 0x90 to enable the control channel. In the current revision of the IC, this step is no longer needed. - Start the EV kit software by selecting Start | Programs | Maxim Integrated | MAXSerDesEV-N | MAXSerDesEV-N. - 11) The Configuration Settings window opens (see Figure 2) and the GUI automatically searches for any active listener in both I<sup>2</sup>C and UART mode and identifies a valid GMSL product. Once a valid device is identified, the corresponding configuration jumpers are displayed to help users configure the serializer and deserializer. - 12) In case an operating evaluation board with a Nuvoton microcontroller is not found, a window appears (Figure 3) warning as such. Press OK to continue and start the GUI anyway, or press Cancel to terminate the application. See the <u>Troubleshooting</u> section at the end of this document and fix the problem before continuing. - 13) When an operating Nuvoton microcontroller is found, the GUI checks the firmware version in the microcontroller and prompts the user to update (Figure 4). - 14) While the Configuration Settings window is open, press the Identify Devices button to search for the devices connected. - 15) Only Link Type and Device Address selections on the Configuration Settings window affects the EV kit operation. Other items are for user reference only. - 16) Press the Connect button to open the Evaluation Kit window and the devices under test (DUT) register maps (Figure 5). The GUI reads all internal registers of the serializer and deserializer and update the corresponding tabs. # Evaluates: MAX96707/MAX96709 with Coax or STP Cable - 17) Press the **Read All MAX96707** button in the **Serializer** group box to read all the serializer registers. - 18) Press the MAX96707 Des tab (Figure 6) and then press the Read All MAX96706 button in the Deserializer group box to read all the deserializer registers. - 19) Select any of the other tabs to evaluate other serializer/deserializer (SerDes) functions. Figure 1. Serializer Test Setup Block Diagram ## **Table 1. Jumper Description\*** | JUMPER | SIGNAL | SHUNT<br>POSITION | FUNCTION | |--------|---------|-------------------|------------------------------------------------------------------------------------------------| | J1 | +12V | _ | +12V AC adapter input | | J2 | +5VIN | _ | +5V power-supply input positive terminal | | J3 | GND | _ | +5V power-supply input negative terminal | | J4 | OUT+ | _ | GMSL OUT+ FAKRA connector | | J5 | OUT- | _ | GMSL OUT- FAKRA connector | | J6 | EXT_UC | _ | 4-pin header to apply user microcontroller | | J7 | VIDT | INT** | U4 powered from on board LDO | | J/ | VIDT | EXT | U4 powered from external source applied on J20 | | J8 | BRDVDD | INT** | Peripheral circuit powered from internal source | | Jö | BRDVDD | EXT | Peripheral circuit powered through EXT-DVDD terminal, J19 | | J11 | U15 ch3 | Open** | VLC3 = U15 level shifter, channel 3 low side<br>VLC4 = U15 level shifter, channel 4 low side | | J13 | U15 ch4 | Open** | VHC3 = U15 level shifter, channel 3 high side<br>VHC4 = U15 level shifter, channel 4 high side | | 104 | OCL DIL | Short** | on board SCL pulled up resistor in circuit | | J21 | SCLPU | Open | on board SCL pulled up resistor NOT in circuit | | | | Short** | on board SDA pulled up resistor in circuit | | J22 | SDAPU | Open | on board SDA pulled up resistor NOT in circuit | | | | Open | External µC SCL signal must be pulled up externally | | 105 | 114 001 | Short** | μC connected to U4 oscillator | | J25 | U4_SCL | Open | μC not connected to U4 oscillator | | | | L | U4 oscillator output not enabled | | J26 | IDT_OE | H** | U4 oscillator output enabled | | | | Open | U4 oscillator OE pin not connected | <sup>\*</sup>Jumper selections in the **Serializer/Deserializer** group boxes on the **Configurations Settings** window are for reference only and do not affect software operation. <sup>\*\*</sup>Default position. Evaluates: MAX96707/MAX96709 with Coax or STP Cable **Table 1. Jumper Description\* (continued)** | JUMPER | SIGNAL | SHUNT<br>POSITION | FUNCTION | |------------------|----------------|-------------------|------------------------------------------------------| | | | L** | U4 oscillator FSEL0 pin pulled low | | J27 | FSEL0 | Н | U4 oscillator FSEL0 pin pulled high | | | | Open | U4 oscillator FSEL0 pin not connected (internal low) | | | | L** | U4 oscillator FSEL1 pin pulled low | | J28 | FSEL1 | Н | U4 oscillator FSEL1 pin pulled high | | | | Open | U4 oscillator FSEL1 pin not connected (internal low) | | J29 | U1_SDA | Short** | U1 SDA connected to μC | | 329 | U I_SDA | Open | U1 SDA is open | | J30 | GPIO1 | Short | Shorted to IOVDD | | 330 | GPIOT | Open** | Shorted to GND | | J32 | GPIO2 | Short | Shorted to IOVDD | | J32 | GPI02 | Open** | Shorted to GND | | | | L | Connected to GND | | J33 | GPO_Low U4_SDA | Н | Connected to IOVDD | | | | Open** | Not connected | | J35 | | Short** | U4 oscillator SDA connected to μC | | J33 | 04_SDA | Open | U4 oscillator SDA open | | | | IDT** | U1 PCLKIN connected to U4 output | | J38 | PCLK_IN | SMA | U1 PCLKIN connected to PCLK_SMA connector | | JSO | | GND | GND terminal for externally applied PCLK to J38.1 | | | | Open | U1 PCLKIN pin not connected | | | | TX | U1 TX/SCL pin connected to μC RX pin | | J39 | U1_SCL | Short** | U1 SCL connected to μC | | | | Open | U1 SCL open | | J44 | | Short | HIM pin pulled up to IOVDD | | J <del>44</del> | HIM_HI | Open** | HIM internally pulled down | | J45 | CPO LOW | Short | U1 GPO pin connected to IOVDD | | J <del>4</del> 0 | GPO_LOW | Open** | U1 GPO open | <sup>\*</sup>Jumper selections in the **Serializer/Deserializer** group boxes on the **Configurations Settings** window are for reference only and do not affect software operation. <sup>\*\*</sup>Default position. Evaluates: MAX96707/MAX96709 with Coax or STP Cable **Table 1. Jumper Description\* (continued)** | JUMPER | SIGNAL | SHUNT<br>POSITION | FUNCTION | |--------|---------|-------------------|-----------------------------------------------------------------| | | | POC5VOUT | 5V POC is sourced by the serializer | | J51 | POC+ | POC5VIN** | 5V POC is expected from the deserializer | | J51 | POC+ | POC12V | 12V POC can be applied by either the serializer or deserializer | | | | Open | POC circuit disconnected | | | | POC5VOUT | 5V POC is sourced by the serializer | | J52 | POC- | POC5VIN** | 5V POC is expected from the deserializer | | 352 | POC- | POC12V | 12V POC can be applied by either the serializer or deserializer | | | | Open | POC circuit disconnected | | | | +3.3V** | Reference voltage for external μC signals set to +3.3V | | J53 | VDD_REF | +5V | Reference voltage for external μC signals set to +5V | | | | Open | Reference voltage for external μC signals applied to J6.VDD_REF | | J54 | EXSDAPU | Short** | On-board pullup applied on external µC SDA signal | | 354 | LASDAFO | Open | External µC SDA signal must be pulled up externally | | J55 | EXSCLPU | Short** | On-board pullup applied on external µC SCL signal | | 355 | EXSCLPU | Open | External µC SCL signal must be pulled up externally | | | | USB+5V | Board powered from USB port | | JU1 | Power | +5VIN | Board powered from 5V external power supply | | 301 | | POC5V | Board power from deserializer through Coax link | | | | REG+5V | Board powered from +12V supply, stepped down to 5V | | JU3 | DVDD | INT** | U1 DVDD supplied from internal source | | 300 | טטט | EXT | U1 DVDD supplied through EXT-DVDD terminal (J19) | | JU4 | AVDD | INT** | U1 AVDD supplied from internal source | | 304 | AVDD | EXT | U1 AVDD supplied through EXT-AVDD terminal (J18) | <sup>\*</sup>Jumper selections in the Serializer/Deserializer group boxes on the Configurations Settings window are for reference only and do not affect software operation. \*\*Default position. # Evaluates: MAX96707/MAX96709 with Coax or STP Cable ## **Detailed Description of Software** To start the serializer evaluation kit GUI, select <u>Start | All Programs | Maxim Integrated | MAXSerDesEV-N | MAXSerDesEV-N</u>. ### **Configuration Settings Window** The **Configuration Settings** window is the first window that opens after successful program launch. It allows the user to specify serializer and deserializer board setup and mode of operation (Figure 2). #### **Controller Group Box** In the Controller group box, select Coax or STP from the Link Type drop-down list, I2C or UART from the Bus drop-down list, and whether the Serializer or Deserializer should be connected to the USB controller. Upon changing any of these parameters, conflicting jumper settings are highlighted, guiding the user to check and make the corresponding changes to the evaluation boards. Only the **Link Type** and **Device Address** selections on the **Configuration Settings** window affect EV kit operation. Other items, including jumper selection, are for user reference only. Serializer and Deserializer Jumper Selection Blocks The Serializer and Deserializer Jumper Selection blocks list jumpers on the evaluation boards of the selected Device ID and displays the correct shunt positions based on the conditions selected in the Controller block. Figure 2. MAXSerDesEV-N EV Kit Software: Configuration Settings Window (Shown with MAX96709 and MAX96706 EV Kits Connected) # Evaluates: MAX96707/MAX96709 with Coax or STP Cable Figure 3. MAXSerDesEV-N EV Kit Software: Warning! (Nuvoton μController is NOT Detected!) Figure 4. MAXSerDesEV-N EV Kit Software: Warning! (Microcontroller Firmware is Not the Latest Version) #### **Identify Devices Button** The **Identify Devices** button causes the GUI to scan the system and hunt for slave addresses on the bus. Upon successful communication, it reads the **Device ID** register from the DUTs and displays the corresponding jumper lists on the **Serializer** and **Deserializer Jumper Selection** blocks. It is also possible to select a device from the **Device ID** drop-down list and manually change the slave address in the **Device Address** edit box. It is a good practice to utilize the **Identify Devices** button and verify communication with the DUTs before attempting to **Connect**. <u>Figure 15</u> and <u>Figure 16</u> show jumper settings on the SerDes PCBs for coax cable and I<sup>2</sup>C communication with a USB cable connected to the serializer board. Refer to the respective SerDes IC data sheets for detailed configuration information. See $\underline{\text{Table 1}}$ for the serializer jumper descriptions. #### **Connect Button** The **Connect** button opens the **Evaluation Kit** window. The GUI reads the SerDes registers and updates the register maps for both. Successful register map updates are indicated by green LED indicators. In case of a communication problem, the LED indicators turn red. #### **Cancel - Do not Connect Button** The Cancel - Do Not Connect button opens the Evaluation Kit main window without attempting to connect to the microcontroller. Although there is no communication with the microcontroller, all functions and tabs corresponding to the selected Device IDs on the Evaluation Kit window become active once there. # Evaluates: MAX96707/MAX96709 with Coax or STP Cable #### **Evaluation Kit Window** The **Evaluation Kit** window shown in <u>Figure 5</u> provides access to all internal registers and functions of the DUTs by means of reading and writing registers through different tabs; thus, enabling the user to evaluate various functions of the serializer and deserializer. The **Read All** button updates the SerDes register maps by reading the DUT's internal registers. The **Serializer** group box provides pushbuttons to update the serializer's register map from the DUT using the **Read All MAX96707** button. The **Load** button reads and updates from a previously saved file and the **Save** button saves the existing register values into a new file. The **Deserializer** group box provides pushbuttons to update the deserializer's register map from the DUT using the **Read All MAX96706** button. The **Load** button reads and updates from a previously saved file and the **Save** button saves the existing register values into a new file. The **Wake Up** button applies the register write sequence described in the IC data sheets to wake the DUTs from sleep mode. The **Open Configuration** button returns to the **Configuration Settings** window. #### MAX96707 Ser Tab The MAX96707 Ser tab (Figure 5) lists the serializer's register bitmaps. The Read and Write buttons in each register group box allows access to each bit or group of bits that specify a function or condition, as defined in the respective serializer IC data sheet. The color of the small LED indicator next to the Read/Write buttons indicates the communication status. Green indicates successful communication and red indicates failed communication. Figure 5. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (MAX96709 Ser Tab (Serializer)) Evaluates: MAX96707/MAX96709 with Coax or STP Cable #### MAX96706 Des Tab The MAX92706 Des tab (Figure 6) lists the deserializer's register bitmaps. The Read and Write buttons in each register group box allows access to each bit or group of bits that specify a function or condition, as defined in the respective dserializer data sheet. The color of the small LED indicator next to the Read/Write buttons indicates the communication status. Green indicates successful communication and red indicates failed communication. Figure 6. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (MAX96706 Des Tab (Deserializer)) Evaluates: MAX96707/MAX96709 with Coax or STP Cable #### **Additional Features Tab** The **Additional Features** tab (<u>Figure 7</u>) provides pushbuttons for specific functions that connected devices can perform. By pressing a button, a new window pops up, launching the specific function selected. Function buttons not supported by the selected device are grayed out. Figure 7. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Additional Features Tab) Evaluates: MAX96707/MAX96709 with Coax or STP Cable On the **Additional Features** tab, press the **Serializer Crossbar Switch** button to launch the **Serializer Crossbar Switch Configuration** function (Figure 8). This capability allows the rerouting of data between the parallel input/output by the serializer. Refer to the respective IC data sheet for a detailed description and operation on the embedded crossbar switches. Figure 8. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Serializer Crossbar Switch Configuration Window) Evaluates: MAX96707/MAX96709 with Coax or STP Cable On the **Additional Features** tab, press the **Deserializer Crossbar Switch** button to launch the **Deserializer Crossbar Switch Configuration** function for the deserializer (<u>Figure 9</u>). This capability enables rerouting data between the parallel input/output by the deserializer. Refer to the respective IC data sheet for a detailed description and operation on the embedded crossbar switches. Figure 9. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Deserializer Crossbar Switch Configuration Window) Evaluates: MAX96707/MAX96709 with Coax or STP Cable On the **Additional Features** tab, press the **Timing Generator** button to launch this function (<u>Figure 10</u>), which allows the user to utilize the programmable video timing generator to generate/retime the input sync signals. Refer to the respective IC data sheet for a detailed description. Figure 10. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Timing Generator Window) Evaluates: MAX96707/MAX96709 with Coax or STP Cable On the **Additional Features** tab, press the **Equalizer Visualization** button to launch this function (<u>Figure 11</u>), which allows compensating for higher cable attenuation and higher frequencies. Refer to the respective IC data sheet for a detailed description. Figure 11. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Equalizer Visualization Window) Evaluates: MAX96707/MAX96709 with Coax or STP Cable On the **Additional Features** tab, press the **Eye Width Measurement** button to launch this function (<u>Figure 12</u>) which graphically displays Eye Width/opening of the high-speed data over the link. Refer to the IC data sheet for detailed description. Note that this function is not supported by the MAX96708 deserializer. Figure 12. MAXSerDesEV-N EV KIT Software: Evaluation Kit Window (Eye Width Measurement Window) # Evaluates: MAX96707/MAX96709 with Coax or STP Cable On the **Additional Features** tab, press the **Show PRBS Test** button to perform a PRBS test (<u>Figure 13</u>). Enter test duration (maximum 32,767s = 9.1hrs) in the **Duration** edit box and press **Start** to start the test. At test completion, the number of bit errors are read from the PRBSERR register, and displayed in the **PRBS Error Counter** box. ### Log\Low Level Tab The **Log\Low Level** tab (<u>Figure 14</u>) logs all activities between the GUI and DUTs. The **Register Access** group box allows reads or writes of the specified slave and register addresses. Use the **Send String to EVKIT** button to communicate with non-register-based devices (such as the MAX7324). The **SerDes Baud Rate** drop-down list sets the communications baud rate. Note that the baud rate should be changed in small increments/decrements (one step change is forced by the GUI). Figure 13. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Show PRBS Test Window, Expanded) # Evaluates: MAX96707/MAX96709 with Coax or STP Cable Figure 14. MAXSerDesEV-N EV Kit Software: Evaluation Kit Window (Log\Low Level Tab) Figure 15. MAX96707/709 Coax EV KIT jumper setting Figure 16. MAX96706/MAX96708 Coax EV Kit Jumper Settings for Coax Link and I<sup>2</sup>C Communication # Evaluates: MAX96707/MAX96709 with Coax or STP Cable ### **Detailed Description of Firmware** The Nuvoton microcontroller on the daughter board runs a custom firmware that ensures reliable communication between the PC and DUTs. The firmware records 9-bit even-parity data received from the USB interface while RTS is set, and plays back the 9-bit data with 1.5 stop bits timing when RTS is cleared. Data received from the DUTs is immediately relayed to the USB port. ### **How to Update Firmware** To update the Nuvotron microcontroller firmware, follow the instructions in this folder: "...\Program Files\Maxim Integrated\MAXSerDesEV-N\ Firmware Update\Updating MAXSerDesEV-N firmware. pdf". ## **Detailed Description of Hardware** The MAX96707/MAX96709 coax EV kit provides a proven, easy to use, and flexible design for evaluation of MAX96707 and MAX96709 GMSL serializers with parallel input and FAKRA coaxial cable output. On-board level translators and easy-to-use USB-PC connections are also included on the FV kit. The MAX96707/MAX96709 coax EV kit board consists of four principal functional blocks: - Microcontroller daughter board - MAX96707/MAX96709 application circuit block - Power-supply block - Oscillator (PCLK) circuit block #### Microcontroller Daughter Board The Nuvoton-based microcontroller daughter board provides UART and I<sup>2</sup>C interfaces that communicate with both serializer and deserializer boards when they are powered on and properly configured. The Nuvoton microcontroller is programmed with the latest firmware at the time of manufacturing. To use the EV kit with an externally applied controller, remove the Nuvoton microcontroller board from the EV kit board (DB1 position) and apply the RX/SDA, TX/SCL, VDD, and GND signals from the user microcontroller to the corresponding signals on J6 of the serializer board. Use one of the logic levels from the VDD\_REF, J53 header, or apply externally. ### **Application Circuit** The application circuit block includes the serializer and all other components and circuits suggested in the respective IC data sheet, and test points and provisions to provide access to internal functions of the serializer for evaluation of the product. ### **Power Supplies** On-board LDO regulators U2, U3, and U12 generate various voltage levels required to operate the EV kit board. There are four options to power the board: - USB port (default) - 12V AC adapter - 5V power supply applied power over coax cable - Power jumper (JU1 selects from the four power sources) To operate the EV kits with voltage levels different from what are generated by on-board regulators, move desired IOVDD (JU2), DVDD (JU3), and AVDD (JU4) shunt from INT to EXT positions and apply the external voltage to the corresponding wire-loop terminal. #### **Oscillator (PCLK) Circuit Block** An on-board custom oscillator (U4) to supply PCLK is provided to facilitate the serializer/deserializer evaluation. This is an I<sup>2</sup>C-programmable oscillator with four custom preprogrammed and jumper-selectable frequencies. FSEL0 and FSEL1 jumpers positions select one of the preprogrammed frequencies per list below: #### FSEL1 FSEL0 PCLK (MHz) | L | L | 25.0 | |---|---|-------| | L | Н | 37.0 | | Н | L | 78.0 | | Н | Н | 104.0 | Place jumper IDT\_EN (J26) in the "L" position to disable the oscillator output. To operate the the oscillator at a frequency other than the four preprogrammed frequencies, refer to the oscillator data sheet available at <a href="https://www.idt.com/products/clocks-timing/quartz-crystal-oscillator-ics-xo-crystal-clock-oscillators-and-low-power-oscillator-circuits/8n0q001-quad-frequency-programmable-xo-0">www.idt.com/products/clocks-timing/quartz-crystal-oscillator-ics-xo-crystal-clock-oscillators-and-low-power-oscillator-circuits/8n0q001-quad-frequency-programmable-xo-0</a>, or contact the manufacturer. # Evaluates: MAX96707/MAX96709 with Coax or STP Cable ### **Troubleshooting** Possible causes of board test failure: - Coax cable not properly connected between the serializer OUT+ to the deserializer IN+. - PCLKIN not applied (e.g., FG output is disabled): Verify signal at the pins on the board. - PCLKIN and function generator output are not correct: Verify signal at the pins on the board. - Incorrect jumper setting on the deserializer board: Reverify. - Incorrect jumper setting on the serializer board: Reverify. - Bus selection on the GUI is not consistent with jumpers' position on the boards: Check and verify that USB cable is properly connected. - USB port has locked: Exit application GUI, remove USB cable from the board, reinsert and relaunch the GUI. - Nuvoton µC is not communicating: Exit application GUI, remove USB cable from the board, reinsert and relaunch the GUI. - Deserializer board is faulty: Try a different board (if available). - Serializer board is faulty: Try a different board (if available). ## **Component Suppliers** | SUPPLIER | PHONE | WEBSITE | |--------------------------------------|-------------------|-------------------------| | Amphenol RF | 800-627-7100 | www.amphenolrf.com | | Hong Kong X'tals Ltd. | 852-35112388 | www.hongkongcrystal.com | | Integrated Device Technology (IDT) | 908-766-4941 | www.idt.com | | Murata Americas | 770-436-1300 | www.murataamericas.com | | ON Semiconductor | 602-244-6600 | www.onsemi.com | | Rosenberger Hochfrequenztechnik GmbH | 011-49-86 84-18-0 | www.rosenberger.de | | TDK Corp. | 847-803-6100 | www.component.tdk.com | Note: Indicate that you are using the MAX96707 or MAX96709 when contacting these component suppliers. ## **Component List** Click on the links below for component information, schematics, and PCB layout diagrams: - MAX96707/MAX96709 EV Kit BOM - MAX96707/MAX96709 EV Kit Schematics - MAX96707/MAX96709 EV Kit PCB Layout Diagrams ## **Ordering Information** | PART | TYPE | |--------------------|-------------| | MAX96707COAXEVKIT# | EV Kit | | MAX96709COAXEVKIT# | EV Kit | | MAXCOAX2STP-HSD# | Adapter Kit | #Denotes RoHs compliant. **Note:** The MAX96707 and MAX96709 coax EV kits are normally ordered with a companion board: - MAX96706 coax EV kit (MAX96706COAXEVKIT#) - MAX96708 coax EV kit (MAX96708COAXEVKIT#)\* Evaluates: MAX96707/MAX96709 with Coax or STP Cable ## **Revision History** | REVISION<br>NUMBER | REVISION<br>DATE | DESCRIPTION | PAGES<br>CHANGED | |--------------------|------------------|-----------------|------------------| | 0 | 4/16 | Initial release | _ | For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com. Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. | TEM REF_DES | DNI/DNP C | TY MFG PART# | MANUFACTURER | VALUE | DESCRIPTION | COMMENTS | |-----------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------| | 1 C1 | | 1 C1608X8R1H152K080 | TDK | 1500PF | CAPACITOR; SMT (0603); CERAMIC CHIP; 1500PF; 50V; TOL=10%; MODEL=C SERIES; HIGH<br>TEMPERATURE: TG=-55 DEGC TO +150 DEGC: TC=XRR | - | | 1 C1<br>2 C2 | | 1 C1210C106M4RAC; C3225X7R1C106M200AB | | 1500PF<br>10UF | TEMPERATURE; IG=55 DEGC. TO +150 DEGC; IC=X8R CAPACITOR; SMT (1210); CERAMIC CHIP; 10UF; 16V; TOL=20%; MODEL=; TG=-55 DEGC TO +125 DEGC; TC=X7R | | | C3, C8, C18, C30, C32, C115,<br>3 C127 | | 7 C1608JB1C106M080AB | TDK | 10UF | CAPACITOR; SMT (0603); CERAMIC CHIP; 10UF; 16V; TOL=20%; TG=-25 DEGC TO +85 DEGC; TC=JB | | | C4, C6, C7, C9, C16, C17, C116,<br>4 C117 | | 8 C1608X7R1E104K080AA | TDK | 0.1UF | CAPACITOR; SMT (0603); CERAMIC CHIP; 0.1UF; 25V; TOL=10%; MODEL=C SERIES; TG=-55 DEGC<br>TO +125 DEGC: TC=X7R | | | 5 C5, C34, C64, C114 | | 4 CL32A107MPVNNN | SAMSUNG ELECTRONICS | 100UF | CAPACITOR; SMT (1210); CERAMIC CHIP; 100UF; 10V; TOL=20%; MODEL=CL SERIES; TG=-55 DEGC<br>TO +88 DEGC: TC=X5R | | | 6 C10. C13. C130 | | 3 C3216X5R1A106M160 | TDK | 10UF | CAPACITOR; SMT (1206); CERAMIC CHIP; 10UF; 10V; TOL=20%; MODEL=C SERIES; TG=-55 DEGC TO +88 DEGC: TC=X5R | | | C11, C14, C19, C20, C53, C54,<br>7 C57, C58 | | C1608X5R0J475M080AB;<br>8 GRM188R60J475ME19; JMK107BJ475MA-T | TDK/MURATA/TAIYO YUDEN | 4.7UF | CAPACITOR; SMT (0603); CERAMIC; 4.7UF; 6.3V; TOL=20%; MODEL=C SERIES; TG=-55 DEGC TO +85 DEGC; TC=X5R | | | 8 C12, C33, C62, C63 | | 4 C1608X7R1H224K080 | TDK | 0.22UF | CAPACITOR; SMT (0603); CERAMIC CHIP; 0.22UF; 50V; TOL=10%; MODEL=C SERIES; TG=-55 DEGC TO +125 DEGC; TC=XTB | | | 0 011, 033, 001, 003 | | C0402X7R160-104KNE; CL05B104KO5NNNC; | | 0.2201 | 10 125 5260, 10-471 | | | 9 C15, C21, C28, C35, C61 | | GRM155R71C104KA88; C1005X7R1C104K;<br>5 CC0402KRX7R7BB104; EMK105B7104KV | ELECTRONICS/MURATA/TDK/YAG<br>EO PHICOMP/TAIYO YUDEN | 0.1UF | CAPACITOR; SMT (0402); CERAMIC CHIP; 0.1UF; 16V; TOL=10%; TG=-55 DEGC TO +125 DEGC; TC=X7R: | | | 10 C23, C24, C36, C60, C97 | | 5 C1005X7R1H102K050BA | TDK | 1000PF | CAPACITOR; SMT (0402); CERAMIC CHIP; 1000PF; 50V; TOL=10%; MODEL=C SERIES; TG=-55 DEGC TO +125 DEGC; TC=X7R | | | 11 C29, C85, C96, C99, C100 | | 5 GRM155R61C104KA88 | MURATA | 0.1UF | CAPACITOR; SMT (0402); CERAMIC; 0.1UF; 16V; TOL=10%; MODEL=GRM SERIES; TG=-55 DEGC to +85 DEGC; TC=X5R | | | 12 C31 | _ | 1 PCR1C471MCL6 | NICHICON | 470UF | CAPACITOR; SMT (CASE_F); ALUMINUM-ELECTROLYTIC; 470UF; 16V; TOL=20%; MODEL=CR SERIES; TG=-55 DEGC TO +105 DEGC | | | 13 C118 | - | 1 16TQC100MYF | PANASONIC | 100UF | CAPACITOR; SMT (7343); TANTALUM CHIP; 100UF; 16V; TOL=20%; MODEL=TQC SERIES CAPACITOR; SMT (0402); CERAMIC CHIP; 2200PF; 50V; TOL=10%; MODEL=C SERIES; TG=-55 DEGC | | | 14 C129 | - | 1 C1005X7R1H222K050BA | TDK | 2200PF | TO +125 DEGC; TC=X7R | | | 15 D4, D5<br>16 D8 | - | 2 B360B-13-F<br>1 SML-210VTT86 | DIODES INCORPORATED ROHM | B360B-13-F<br>SML-210VTT86 | DIODE; SCH; SCHOTTKY BARRIER DIODE; SMB; PIV=60V; IO=3A; -55 DEGC TO +125 DEGC DIODE; LED; SML-21 SERIES; RED; SMT (0805); PIV=2V; IF=0.02A | | | 17 DB1 | - | 1 TEENSY 3.1 | PJRC | TEENSY 3.1 | EVKIT PART; MODULE; CTRL; TEENSY USB DEVELOPMENT BOARD; TH-37; CUSTOM PART ONLY | | | 18 L4, L5, FB1, FB3, FB5, FB6, FB8 | - | 7 BLM18SG121TN1 | MURATA | 120 | INDUCTOR; SMT (0603); FERRITE-BEAD; 120; TOL=+/-25%; 3A TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; RED; PHOSPHOR | | | 19 TP1, GND1-GND3 | - | 4 5000 | KEYSTONE | N/A | BRONZE WIRE SILVER PLATE FINISH; | | | 20 H1 | - | 1 TSW-116-07-T-T | SAMTEC | TSW-116-07-T-T | CONNECTOR; MALE; THROUGH HOLE; 0.025IN SQ POST HEADER; STRAIGHT; 48PINS | | | 21 H2 | - | 1 PBC14SAAN | SULLINS ELECTRONICS CORP. | PBC14SAAN | CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 14PINS; -65 DEGC TO +125 DEGC CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 3PINS; -65 DEGC TO | | | 22 H3, J7, J26-J28, J53<br>H4, J11, J13, J21, J22, J25, J29, | - | 6 PCC03SAAN | SULLINS | PCC03SAAN | +125 DEGC | | | J30, J32, J35, J39, J44, J45, J54,<br>23 J55 | | 15 PCC02SAAN | SULLINS | PCC02SAAN | CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO<br>+125 DEGC<br>CONNECTOR: MALE: THROUGH HOLE: PL-2028H: DC POWER IACK: RIGHT ANGLE: R | | | 24 J1 | | 1 PJ-202BH | CUI INC. | PJ-202BH | 3PINS | | | 25 J2, J3, J18-J20, J34 | | 6 9020 BUSS | WEICO WIRE | MAXIMPAD | EVK KIT PARTS; MAXIM PAD; WIRE; NATURAL; SOLID; WEICO WIRE; SOFT DRAWN BUS TYPE-S;<br>20AWG | | | 26 J4, J5 | - | 2 59S2AX-400A5-Z | ROSENBERGER | | CONNECTOR; MALE; THROUGH HOLE; RIGHT ANGLE PLUG FOR PCB; RIGHT ANGLE; 5PINS | | | 27 J6<br>28 J8, JU3, JU4 | - | 1 PEC04SAAN<br>3 PEC03SAAN | SULLINS ELECTRONICS CORP. SULLINS | PEC04SAAN<br>PEC03SAAN | CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4PINS<br>CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS | | | 29 J36<br>30 J38, J51, J52 | | 1 PBC13SAAN<br>3 PEC04SAAN | SULLINS ELECTRONICS CORP. SULLINS ELECTRONICS CORP. | PBC13SAAN<br>PEC04SAAN | CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 13PINS; -65 DEGC TO +125 DEGC CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4PINS | | | 31 JU1<br>32 L1, L8 | - | 1 PBC05SAAN<br>2 LQW18CNR33J00 | SULLINS ELECTRONICS CORP. MURATA | PBC05SAAN<br>330NH | CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 5PINS; -65 DEGC TO +125 DEGC INDUCTOR; SMT (0603); FERRITE CORE; 330NH; TOL=+/-5%; 0.63A | | | 33 L2, L7 | | 2 LBC3225TGR8MR | TAIYO YUDEN | 6.8UH | INDUCTOR; SMT (1210); WIREWOUND CHIP; 6.8UH; TOL=20%; 0.62A | | | 34 L3, L6<br>35 L25 | | 2 LQH6PPN101M43L<br>1 7443330150 | MURATA ) WURTH ELECTRONICS INC. | 100UH<br>1.5UH | INDUCTOR; SMT (2424); WIREWOUND CHIP; 100UH; TOL=20%; 0.92A INDUCTOR; SMT; FERRITE-BEAD; 1.5UH; TOL=+/-20%; 27A | | | 36 MISC2 | | 1 MAXEVCNTR-NUV# | MAXIM | MAXEVCNTR-<br>NUV# | EVKIT PART-NUVOTON MICRO CONTROLLER | | | 37 N1, N2 | - | 2 FDS8449 | FAIRCHILD SEMICONDUCTOR | FDS8449 | TRAN; N-CHANNEL POWER TRENCH MOSFET; NCH; NSOIC8 ; PD-(2.5W); I-(7.6A); V-(40V) | | | 38 PCLK_SMA | | 1 5-1814832-1<br>1 ERJ-8BWJR015V | TYCO | 5-1814832-1 | CONNECTOR; FEMALE; THROUGH HOLE; CONN SOCKET SMA STR DIE CAST PCB; STRAIGHT; 5PINS | | | 39 R1<br>40 R2 | - | 1 ERJ-8BWJR015V<br>1 CRCW040214K3FK | PANASONIC<br>VISHAY DALE | 0.015<br>14.3K | RESISTOR; 1206; 0.015 OHM; 5%; 200PPM; 1W; THICK FILM<br>RESISTOR, 0402, 14.3K OHM, 1%, 100PPM, 0.0625W, THICK FILM | | | 41 R3, R5 | - | 2 CRCW060324K9FK | VISHAY DALE | 24.9K | RESISTOR; 0603; 24.9K OHM; 1%; 100PPM; 0.10W; THICK FILM | | | 42 R4 | - | 1 CRCW060341K2FK | VISHAY DALE | 41.2K<br>11K | RESISTOR; 0603; 41.2K OHM; 1%; 100PPM; 0.10W; METAL FILM | | | 43 R6<br>44 R7, R9, R11, R13-R15 | - | 1 CR0603-FX-1102ELF<br>6 CRCW06032K20FK | BOURNS<br>VISHAY DALE | 11K<br>2.2K | RESISTOR; 0603; 11K OHM; 1%; 100PPM; 0.10W; THICK FILM<br>RESISTOR, 0603, 2.2K OHM, 1%, 100PPM, 0.10W, THICK FILM | | | 45 R12, R27 | | 2 CRCW04020000ZS | VISHAY DALE | | RESISTOR; 0402; 0 OHM; 1%; 100PPM; 0.0625W; THICK FILM | | | 46 R22, R36 | - | 2 CRCW06031001FK; ERJ-3EKF1001V | VISHAY DALE; PANASONIC | 1K | RESISTOR; 0603; 1K; 1%; 100PPM; 0.10W; THICK FILM | | | 47 R23 | - | 1 CRCW06032R00FN | VISHAY DALE | 2<br>2K | RESISTOR, 0603, 2 OHM, 1%, 100PPM, 0.10W, THICK FILM | | | 48 R24, R25, R30, R31<br>49 R26, R32 | | 4 CRCW06032K0FK; ERJ-3EKF2001V<br>2 ERJ-1GEF2001C | VISHAY DALE/PANASONIC<br>PANASONIC | 2K<br>2K | RESISTOR, 0603, 2K OHM, 1%, 100PPM, 0.10W, THICK FILM<br>RESISTOR; 0201; 2K OHM; 1%; 200PPM; 0.05W; THICK FILM | | | | | 1 CRCW060330K0FK | VISHAY DALE | 30K | RESISTOR; 0603; 30K OHM; 1%; 100PPM; 0.10W; THICK FILM | | | 50 R33 | | 1 RC0402FR-0730KL | YAGEO PHICOMP<br>SAMSUNG | 30K | RESISTOR; 0402; 30K OHM; 1%; 100PPM; 0.063W; THICK FILM | | | 50 R33<br>51 R74 | | | | | | | | 51 R74<br>52 R75, R76 | | RC1608J000CS; CR0603-J/-000ELF;RC0603JR-<br>2 070RL | ELECTRONICS/BOURNS/YAGEO<br>PH | | RESISTOR; 0603; 0 OHM; 5%; JUMPER; 0.10W; THICK FILM | | | 51 R74<br>52 R75, R76<br>53 R100 | : | 2 070RL<br>1 CR0603-FX-1001ELF | ELECTRONICS/BOURNS/YAGEO<br>PH<br>BOURNS | 1K | RESISTOR; 0603; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUMPER; STR; TOTAL LENGTH=0.256IN; BLACK; INSULATION=PBT | | | 51 R74<br>52 R75, R76<br>53 R100<br>54 SU1-SU25 | | 2 070RL<br>1 CR0603-FX-1001ELF<br>25 STC02SYAN | ELECTRONICS/BOURNS/YAGEO PH BOURNS SULLINS ELECTRONICS CORP. | 1K<br>STC02SYAN | RESISTOR; 0603; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUMPER; STR; TOTAL LENGTH-0.256IN; BLACK; INSULATION=PBT CONTACT=PHOSPHOR BROMZE; COPER PLATED IN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; BLACK; PHOSPHOR | | | 51 R74 52 R75, R76 53 R100 54 SU1-SU25 55 TP_Q | | 2 070RL<br>1 CR0603-FX-1001ELF<br>25 STC02SYAN<br>1 500: | ELECTRONICS/BOURNS/YAGEO PH BOURNS SULLINS ELECTRONICS CORP. | 1K<br>STC02SYAN<br>N/A | RESISTOR; 0603; 1k OHM; 1%; 100PPM; 0.10W; THICK FILM TESTOR; 0603; 1k OHM; 1%; TOTAL LENGTH=0.256IN; BIACK; INSULATION=PBT CONTACT=PHOSPHOR BRONZE; COPPER PLATED TIN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; BIACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINSH; EVKIT PARTI-C; HSS1 PRELIMINARY; PACKAGE OUTLINE 24 TQFN; 0.50MM PITCH; 21-0139/TZ444 | | | 51 R74 52 R75, R76 53 R100 54 SU1-SU25 55 TP_Q 56 U1 | | 2 070RL<br>1 CR0603-FX-1001ELF<br>25 STC025YAN<br>1 500:<br>1 MAX96707GTG+ | ELECTRONICS/BOURNS/YAGEO PH BOURNS SULLINS ELECTRONICS CORP. I KEYSTONE MAXIM | 1K<br>STC02SYAN<br>N/A<br>MAX96707GTG+ | RESISTOR;, 6083; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUMPER; STR; TOTAL LENGTH=0.256IN; BLACK; INSULATION=PBT CONTACT=PHOSPHOR BRONZE; COPPER PLATED TIN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; BLACK; PHOSPHOR BRONZE WIRE SULVER PLATE FINE; PLATE; EVKIT PART-IC; HS81 PRELIMINARY; PACKAGE OUTLINE 24 TQFN; 0.50MM PITCH; 21-0139/T2444-4 | | | 51 R74 52 R75, R76 53 R100 54 SU1-SU25 55 TP_Q 56 U1 57 U2,U3 | | 2 070RL 1 CR0603-FX-1001ELF 25 STC025YAN 1 500: 1 MAX96707GTG+ 2 MAX1792EUA33 | ELECTRONICS/BOURNS/VAGEO PH BOURNS SULLINS ELECTRONICS CORP. KEYSTONE MAXIM MAXIM | 1K<br>STC02SYAN<br>N/A<br>MAX96707GTG+<br>MAX1792EUA33<br>N0Q001BH- | RESISTOR; 6063; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUMPER; STR; TOTAL LENGTH=0.256IN; BLACK; INSULATION=PBT CONTACT=PHOSPHOR BRONZE; COPPER PLATED TIN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; BLACK; PHOSPHOR BRONZE WIRE SULVER PLATE FINSH; EVKIT PART-IC; HSB1 PRELIMINARY; PACKAGE OUTLINE 24 TQFN; 0.50MM PITCH; 21-0139/T2444-4 IC; VREG; LOW-DROPOUT LINEAR REGULATOR; UMAX8 EVKIT PART; IC; NOQ0018H-2202CDI; CD10 PACKAGE OUTLINE 7XS BODY; 2.54MM PITCH; | CUSTOM PART# N0Q001BH- | | 51 R74 52 R75, R76 53 R100 54 SU1-SU25 55 TP_Q 56 U1 57 U2,U3 58 U4 | | 2 070RL 1 CR0603-FX-1001ELF 25 STC025YAN 1 500: 1 MAX96707GTG+ 2 MAX1792EUA33 1 NOQ001BH-2202CDI | ELECTRONICS/BOURNS/VAGEO PH BOURNS SULLINS ELECTRONICS CORP. KEYSTONE MAXIM MAXIM N/A | 1K<br>STC02SYAN<br>N/A<br>MAX96707GTG+<br>MAX1792EUA33<br>NOQ001BH-<br>2202CDI | RESISTOR; 6003; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUMPER; STR; TOTA LIENGTH-12-SENS, BLACK; INSULATION=PBT CONTACT=PHOSPHOR BRONZE; COPPER PLATED TIN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH-0.3IN; BOARD HOLE=0.04IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; EVKIT PART-IC; HS81 PRELIMINARY; PACKAGE OUTLINE 24 TQFN; 0.50MM PITCH; 21-0139/T2444-4 IC; VREG; LOW-DROPOUT LINEAR REGULATOR; UMAX8 EVKIT PART; IC; NOQ0018H-2202CDI; CD10 PACKAGE OUTLINE 7XS BODY; 2.54MM PITCH; CUSTOM PART ONLY IC; TRANS; 4-75MY SED-PROTECTED, 1UA, 16MBPS, QUAD LOW-VOLTAGE LEVEL TRANSLATOR; | | | 51 R74 52 R75, R76 53 R100 54 SU1-SU25 55 TP_Q 56 U1 57 U2,U3 58 U4 59 U15 | | 2 070RL 1 CR0603-FX-1001ELF 25 STC025YAN 1 | ELECTRONICS/BOURNS/VAGEO PH BOURNS SULLINS ELECTRONICS CORP. KEYSTONE MAXIM N/A MAXIM | 1K STC02SYAN N/A MAX96707GTG+ MAX1792EUA33 NOQ001BH- 2202CDI MAX3378EEUD+ MAX16952AUE/ | RESISTOR; 6003; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUNPER; STR; TOTA; LENGTH-12-SIN; BLACK; INSULATION=PBT CONTACT-PHOSPHOR BRONZE; COPPER PLATED TIN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH-0.3IN; BOARD OLGE-0.04IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH EVKIT PART-IC; HSS1 PRELIMINARY; PACKAGE OUTLINE 24 TQFN; 0.50MM PITCH; 21-0139/T2444-4 IC; VBEG; LOW-DROPOUT LINEAR REGULATOR; LIMAX8 EVKIT PART; IC; NOQ0018H-2202CDI; CD10 PACKAGE OUTLINE 7XS BODY; 2.54MM PITCH; CUSTOM PART ONLY IC; TRANS; Y-15KV ESD-PROTECTED, 1UA, 16MBPS, QUAD LOW-VOLTAGE LEVEL TRANSLATOR; TSSOP14 | CUSTOM PART# N0Q001BH- | | 51 R74 52 R75, R76 53 R100 54 SU1-SU25 55 TP_Q 56 U1 57 U2,U3 58 U4 | | 2 070RL 1 CR0603-FX-1001ELF 25 STC025YAN 1 500: 1 MAX96707GTG+ 2 MAX1792EUA33 1 NOQ001BH-2202CDI | ELECTRONICS/BOURNS/VAGEO PH BOURNS SULLINS ELECTRONICS CORP. KEYSTONE MAXIM MAXIM N/A | 1K STC02SYAN N/A MAX96707GTG+ MAX1792EUA33 N0Q001BH- 2202CDI MAX3378EEUD+ | RESISTOR; 6003; 1K OHM; 1%; 100PPM; 0.10W; THICK FILM TEST POINT; JUMPER; STR; TOTA LIENGTH-12-SENS, BLACK; INSULATION=PBT CONTACT=PHOSPHOR BRONZE; COPPER PLATED TIN OVERALL TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH-0.3IN; BOARD HOLE=0.04IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH; EVKIT PART-IC; HS81 PRELIMINARY; PACKAGE OUTLINE 24 TQFN; 0.50MM PITCH; 21-0139/T2444-4 IC; VREG; LOW-DROPOUT LINEAR REGULATOR; UMAX8 EVKIT PART; IC; NOQ0018H-2202CDI; CD10 PACKAGE OUTLINE 7XS BODY; 2.54MM PITCH; CUSTOM PART ONLY IC; TRANS; 4-75MY SED-PROTECTED, 1UA, 16MBPS, QUAD LOW-VOLTAGE LEVEL TRANSLATOR; | CUSTOM PART# N0Q001BH- | #### SILK TOP ### INNER LAYER2 ### INNER LAYER3 #### BOTTOM #### SILK BOTTOM