

19-Output DB1900Z Low-Power Derivative with 85ohm Terminations

DATASHEET

General Description

The 9ZXL1950 is a DB1900Z derivative buffer utilizing Low-Power HCSL (LP-HCSL) outputs to increase edge rates on long traces, reduce board space, and reduce power consumption more than 50% from the original 9ZX21901.It is pin-compatible to the 9ZXL1930 and fully integrates the output terminations. It is suitable for PCI-Express Gen1/2/3 or QPI/UPI applications, and uses a fixed external feedback to maintain low drift for demanding QPI/UPI applications.

Recommended Application

Buffer for Romley, Grantley and Purley Servers

Output Features

19 LP-HCSL output pairs w/integrated terminations (Zo = 85Ω)

Key Specifications

- Cycle-to-cycle jitter: <50ps
- Output-to-output skew: <50ps
- Input-to-output delay variation: <50ps
- Phase jitter: PCle Gen3 <1ps rms
- Phase jitter: QPI/UPI 9.6GB/s <0.2ps rms

Features/Benefits

- LP-HCSL outputs; up to 90% IO power reduction, better signal integrity over long traces
- Direct connect to 85Ω transmission lines; eliminates 76 termination resistors, saves 130mm² area
- Pin compatible to the 9ZXL1930; easy upgrade to reduced board space
- 72-pin VFQFPN package; smallest 19-output Z-buffer
- Fixed feedback path; ~0ps input-to-output delay
- 9 Selectable SMBus addresses; multiple devices can share same SMBus segment
- Separate VDDIO for outputs; allows maximum power
- PLL or bypass mode; PLL can dejitter incoming clock
- 100MHz & 133.33MHz PLL mode; legacy QPI support
- Selectable PLL BW; minimizes jitter peaking in downstream PLL's
- Spread spectrum compatible; tracks spreading input clock for EMI reduction
- SMBus Interface; unused outputs can be disabled

Block Diagram

1

Pin Configuration

Note: Pins with ^ prefix have internal 120K pullup
Pins with v prefix have internal 120K pulldowm
Pins with ^v prefix have internal 120K pullup/pulldown (biased to VDD/2)

Power Management Table

Inputs	Control Bits	Oı			
CKPWRGD_PD#	DIF_IN/ DIF_IN#	SMBus EN bit	DIFx/ FBOUT_NC/ DIFx# FB_OUT_NC#		PLL State
0	X	Х	Low/Low	Low/Low	OFF
,		0	Low/Low	Running	ON
1	Running	1	Running	Running	ON

Power Connections

	Description		
VDD	VDDIO	GND	Description
1		2	Analog PLL
7		6	Analog Input
28, 45, 64	21, 33, 40, 52, 57, 69	16, 22, 27, 34, 39, 46, 51, 58, 63, 70, 73	DIF clocks

Functionality at Power-up (PLL mode)

100M_133M#	DIF_IN	DIFx
	(MHz)	(MHz)
1	100.00	DIF_IN
0	133.33	DIF IN

PLL Operating Mode

HiBW_BypM_LoBW#	Byte0, bit (7:6)
Low (PLL Low BW)	00
Mid (Bypass)	01
High (PLL High BW)	11

NOTE: PLL is off in Bypass mode

Tri-level Input Thresholds

Level	Voltage
Low	<0.8V
Mid	1.2 <vin<1.8v< td=""></vin<1.8v<>
High	Vin > 2.2V

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	Power for the PLL core.
2	GNDA	GND	Ground pin for the PLL core.
3	^100M_133M#	IN	3.3V Input to select operating frequency. This pin has an internal pull-up resistor. See Functionality Table for Definition
		LATCHE	Trilevel input to select High BW, Bypass or Low BW mode.
4	^vHIBW_BYPM_LOBW#	D IN	See PLL Operating Mode Table for Details.
5	CKPWRGD_PD#	IN	3.3V Input notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters
6	GND	GND	Power Down Mode. Ground pin.
7	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
8	DIF_IN	IN	HCSL True input
9	DIF_IN#	IN	HCSL Complementary Input
10	^SADR0_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SADR1 to decode 1 of 9 SMBus Addresses. It has an internal 120Kohm pull up resistor.
11	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
12	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
13	^SADR1_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SADR0 to decode 1 of 9 SMBus Addresses. It has an internal 120Kohm pull up resistor.
14	FBOUT_NC#	OUT	Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay.
15	FBOUT_NC	OUT	True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay.
16	GND	GND	Ground pin.
17	DIF0	OUT	Differential true clock output
18	DIF0#	OUT	Differential Complementary clock output
19	DIF1	OUT	Differential true clock output
20	DIF1#	OUT	Differential Complementary clock output
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin.
23	DIF2	OUT	Differential true clock output
24	DIF2#	OUT	Differential Complementary clock output
25	DIF3	OUT	Differential true clock output
26	DIF3#	OUT	Differential Complementary clock output
27	GND	GND	Ground pin.
28	VDD	PWR	Power supply, nominal 3.3V
29	DIF4	OUT	Differential true clock output
30	DIF4#	OUT	Differential Complementary clock output
31	DIF5	OUT	Differential true clock output
32	DIF5#	OUT	Differential Complementary clock output
33	VDDIO	PWR	Power supply for differential outputs Cround pin
34	GND DIF6	GND OUT	Ground pin. Differential true clock output
35 36	DIF6#	OUT	Differential Complementary clock output
30	טורט#	001	опнетенцат сопириентату стоск ошриг

Pin Descriptions (cont.)

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
37	DIF7	OUT	Differential true clock output
38	DIF7#	OUT	Differential Complementary clock output
39	GND	GND	Ground pin.
40	VDDIO	PWR	Power supply for differential outputs
41	DIF8	OUT	Differential true clock output
42	DIF8#	OUT	Differential Complementary clock output
43	DIF9	OUT	Differential true clock output
44	DIF9#	OUT	Differential Complementary clock output
45	VDD	PWR	Power supply, nominal 3.3V
46	GND	GND	Ground pin.
47	DIF10	OUT	Differential true clock output
48	DIF10#	OUT	Differential Complementary clock output
49	DIF11	OUT	Differential true clock output
50	DIF11#	OUT	Differential Complementary clock output
51	GND	GND	Ground pin.
52	VDDIO	PWR	Power supply for differential outputs
53	DIF12	OUT	Differential true clock output
54	DIF12#	OUT	Differential Complementary clock output
55	DIF13	OUT	Differential true clock output
56	DIF13#	OUT	Differential Complementary clock output
57	VDDIO	PWR	Power supply for differential outputs
58	GND	GND	Ground pin.
59	DIF14	OUT	Differential true clock output
60	DIF14#	OUT	Differential Complementary clock output
61	DIF15	OUT	Differential true clock output
62	DIF15#	OUT	Differential Complementary clock output
63	GND	GND	Ground pin.
64	VDD	PWR	Power supply, nominal 3.3V
65	DIF16	OUT	Differential true clock output
66	DIF16#	OUT	Differential Complementary clock output
67	DIF17	OUT	Differential true clock output
68	DIF17#	OUT	Differential Complementary clock output
69	VDDIO	PWR	Power supply for differential outputs
70	GND	GND	Ground pin.
71	DIF18	OUT	Differential true clock output
72	DIF18#	OUT	Differential Complementary clock output
73	epad	GND	Connect EPAD to ground.

Electrical Characteristics-Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA, R				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
I/O Supply Voltage	VDDIO				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-DIF_IN Clock Input Parameters

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3 V +/-5%. See Test Loads for Loading Conditions

The Toom, Supply Voltage VBB/VBB/V = 0.0 V 17 0/0, VBB/O = 1.00 to 0.0 V 17 0/0. God Tool Educating Containing									
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES		
Input Crossover Voltage - DIF_IN	V _{CROSS}	Cross Over Voltage	150		900	mV	1		
Input Swing - DIF_IN	V _{SWING}	Differential value	300			mV	1		
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2		
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA			
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1		
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		125	ps	1		

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDVDD}	All outputs 100MHz, $C_L = 2pF$; $Zo = 85\Omega$		20	35	mA	
	I _{DDVDDA/R}	All outputs 100MHz, $C_L = 2pF$; $Zo = 85\Omega$		15	20	mA	
	I _{DDVDDIO}	All outputs 100MHz, $C_L = 2pF$; $Zo = 85\Omega$		142	185	mA	
	I _{DDVDDPD}	All differential pairs low-low		2.2	6	mA	
Powerdown Current	I _{DDVDDA/RPD}	All differential pairs low-low		4.5	9	mA	
	I _{DDVDDIOPD}	All differential pairs low-low		0.1	1	mA	

² Operation under these conditions is neither implied nor guaranteed.

²Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics-Input/Supply/Common Output Parameters

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions

- ADD / \DD	- 3.3 V +/-3/6, VDDIO = 1.03 to 3.3V +/-3/6. 3ee 1	est Luaus i	or Loading	Conditions)	
SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
T _{COM}	Commmercial range	0	35	70	°C	
V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	٧	
V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	V	
I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	- 5		5	uA	
I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200		200	uA	
F_{ibyp}	V _{DD} = 3.3 V, Bypass mode	33		150	MHz	2
F_{ipII}	$V_{DD} = 3.3 \text{ V}, 100\text{MHz PLL mode}$	90	100.00	110	MHz	2
F_{ipII}	V _{DD} = 3.3 V, 133.33MHz PLL mode	120	133.33	147	MHz	2
L_{pin}				7	nH	1
C_{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
C _{INDIF_IN}	DIF_IN differential clock inputs	1.5	35 70 °C V _{DD} + 0.3 V 0.8 V 5 uA 200 uA 150 MHz 100.00 110 MHz 133.33 147 MHz 7 nH	pF	1,4	
C_{OUT}	Output pin capacitance			6	.7 pF	1
T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.65	1	ms	2
f _{MODIN}	Allowable Frequency (Triangular Modulation)	30	31.5	33	kHz	
t _{DRVPD}	DIF output enable after PD# de-assertion		25	300	us	1,3
t_{F}	Fall time of control inputs			5	ns	1,2
t _R	Rise time of control inputs			5	ns	1,2
V_{ILSMB}				0.8	V	
		2.1		V_{DDSMB}	V	
	@ I _{PULLUP}				V	
I _{PULLUP}	@ V _{OL}	4			mA	
V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	
t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
f _{SMB}	SMBus operating frequency	100			kHz	5
	SYMBOL TCOM VIH VIL IIN IINP Fibyp FipII Lpin CIN CINDIF_IN COUT TSTAB fMODIN tDRVPD tF tR VILSMB VOLSMB IPULLUP VDDSMB tRSMB tRSMB	TCOM Commercial range VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs Single-ended inputs, except SMBus, low threshold and tri-level inputs Single-ended inputs, except SMBus, low threshold and tri-level inputs IIN Single-ended inputs, VIN = GND, VIN = VDD Single-ended inputs VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors VIN = VDD; Inputs with internal pull-down resistors Fibyp VDD = 3.3 V, Bypass mode Fipil VDD = 3.3 V, 100MHz PLL mode Fipil VDD = 3.3 V, 133.33MHz PLL mode Lpin CIN Logic Inputs, except DIF_IN CINDIF_IN DIF_IN differential clock inputs COUT Output pin capacitance From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock Allowable Frequency (Triangular Modulation) tDF OUTPUT enable after PD# de-assertion tR Fall time of control inputs tR Rise time of control inputs VILSMB VILSMB VILSMB VOLSMB IPULLUP @ VOL VDDSMB (Max VIL - 0.15) to (Min VIH + 0.15) tRSMB (Min VIH + 0.15) to (Max VIL - 0.15)	SYMBOL CONDITIONS MIN TCOM Commmercial range 0 VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 VIL Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 IIN Single-ended inputs, VIN = GND, VIN = VDD -5 Single-ended inputs, VIN = GND, VIN = VDD -5 VIN = 0 V; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors -200 Fibyp VDD = 3.3 V, Bypass mode 33 Fipil VDD = 3.3 V, 100MHz PLL mode 90 Fipil VDD = 3.3 V, 133.33MHz PLL mode 120 Lpin Logic Inputs, except DIF_IN 1.5 CIN Logic Inputs, except DIF_IN 1.5 CINDIF IN DIF_IN differential clock inputs 1.5 COUT Output pin capacitance 30 TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 4 fmodin Allowable Frequency (Triangular Modulation) 30 tp Fall time of control inputs 4 VILSMB <td>SYMBOL CONDITIONS MIN TYP TCOM Commmercial range 0 35 VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 VIL Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 IIN Single-ended inputs, VIN = GND, VIN = VDD -5 IINP Single-ended inputs, VIN = GND, VIN = VDD -5 Single-ended inputs, VIN = GND, VIN = VDD -5 VIN = VDD; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors -200 Fibyp VDD = 3.3 V, 133.3 W, Bypass mode 33 FipII VDD = 3.3 V, 100MHz PLL mode 90 100.00 FipII VDD = 3.3 V, 133.33MHz PLL mode 120 133.33 Lopin DIF_IN differential clock inputs 1.5 0.65 CIN Logic Inputs, except DIF_IN 1.5 0.65 TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 0.65 fMODIN Allowable Frequency (Triangular Modulation) 30 31.5 tp Fall time of cont</td> <td>SYMBOL CONDITIONS MIN TYP MAX TCOM Commmercial range 0 35 70 V_{IH} Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 V_{DD} + 0.3 V_{IL} Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 0.8 I_{IN} Single-ended inputs, V_{IN} = GND, V_{IN} = VDD -5 5 Single-ended inputs, v_{IN} = GND, V_{IN} = VDD -5 5 I_{INP} V_{IN} = 0 V; Inputs with internal pull-up resistors V_{IN} = VDD; Inputs with internal pull-down resistors -200 200 F_{Ibyp} V_{DD} = 3.3 V, Bypass mode 33 150 F_{Ipil} V_{DD} = 3.3 V, 100MHz PLL mode 90 100.00 110 F_{Ipil} V_{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 L_{pin} V_{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 L_{pin} DIF_IN differential clock inputs 1.5 5 5 C_{INDE,IN} DIF_IN differential clock inputs 1.5 2.7 6 C_{INDE,I}</td> <td>TCOM Commmercial range 0 35 70 °C V_{IH} Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 V_{DD} + 0.3 V V_{IL} Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 0.8 V I_{IN} Single-ended inputs, V_{IN} = GND, V_{IN} = VDD -5 5 uA Single-ended inputs, V_{IN} = GND, V_{IN} = VDD -5 5 uA V_{IN} = 0 V; Inputs with internal pull-up resistors V_{IN} = VDD; Inputs with internal pull-down resistors -200 uA F_{IbyP} V_{DD} = 3.3 V, 100MHz PLL mode 90 100.00 110 MHz F_{IpII} V_{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 MHz F_{IpII} V_{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 MHz C_{IN} Logic Inputs, except DIF_IN 1.5 5 pF C_{INDIF IN} DIF_IN differential clock inputs 1.5 2.7 pF C_{OUT} Output pin capacitance 6 pF T_{STAB}</td>	SYMBOL CONDITIONS MIN TYP TCOM Commmercial range 0 35 VIH Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 VIL Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 IIN Single-ended inputs, VIN = GND, VIN = VDD -5 IINP Single-ended inputs, VIN = GND, VIN = VDD -5 Single-ended inputs, VIN = GND, VIN = VDD -5 VIN = VDD; Inputs with internal pull-up resistors VIN = VDD; Inputs with internal pull-down resistors -200 Fibyp VDD = 3.3 V, 133.3 W, Bypass mode 33 FipII VDD = 3.3 V, 100MHz PLL mode 90 100.00 FipII VDD = 3.3 V, 133.33MHz PLL mode 120 133.33 Lopin DIF_IN differential clock inputs 1.5 0.65 CIN Logic Inputs, except DIF_IN 1.5 0.65 TSTAB From VDD Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock 0.65 fMODIN Allowable Frequency (Triangular Modulation) 30 31.5 tp Fall time of cont	SYMBOL CONDITIONS MIN TYP MAX TCOM Commmercial range 0 35 70 V _{IH} Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 V _{DD} + 0.3 V _{IL} Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 0.8 I _{IN} Single-ended inputs, V _{IN} = GND, V _{IN} = VDD -5 5 Single-ended inputs, v _{IN} = GND, V _{IN} = VDD -5 5 I _{INP} V _{IN} = 0 V; Inputs with internal pull-up resistors V _{IN} = VDD; Inputs with internal pull-down resistors -200 200 F _{Ibyp} V _{DD} = 3.3 V, Bypass mode 33 150 F _{Ipil} V _{DD} = 3.3 V, 100MHz PLL mode 90 100.00 110 F _{Ipil} V _{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 L _{pin} V _{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 L _{pin} DIF_IN differential clock inputs 1.5 5 5 C _{INDE,IN} DIF_IN differential clock inputs 1.5 2.7 6 C _{INDE,I}	TCOM Commmercial range 0 35 70 °C V _{IH} Single-ended inputs, except SMBus, low threshold and tri-level inputs 2 V _{DD} + 0.3 V V _{IL} Single-ended inputs, except SMBus, low threshold and tri-level inputs GND - 0.3 0.8 V I _{IN} Single-ended inputs, V _{IN} = GND, V _{IN} = VDD -5 5 uA Single-ended inputs, V _{IN} = GND, V _{IN} = VDD -5 5 uA V _{IN} = 0 V; Inputs with internal pull-up resistors V _{IN} = VDD; Inputs with internal pull-down resistors -200 uA F _{IbyP} V _{DD} = 3.3 V, 100MHz PLL mode 90 100.00 110 MHz F _{IpII} V _{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 MHz F _{IpII} V _{DD} = 3.3 V, 133.33MHz PLL mode 120 133.33 147 MHz C _{IN} Logic Inputs, except DIF_IN 1.5 5 pF C _{INDIF IN} DIF_IN differential clock inputs 1.5 2.7 pF C _{OUT} Output pin capacitance 6 pF T _{STAB}

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴DIF_IN input

⁵The differential input clock must be running for the SMBus to be active

Electrical Characteristics-DIF 0.7V Low Power Differential Outputs

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1.5	2.7	4	V/ns	1, 2, 3
Slew rate matching	ΔTrf	Slew rate matching.		8.8	20	%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	787	850	mV	
Voltage Low	VLow	averaging on)		33	150	'''	
Max Voltage	Vmax	Single ended signal using absolute value.		845	1150	mV	
Min Voltage	Vmin	Includes 300mV of over/undershoot. (Scope	-300	9		IIIV	
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	471	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		14	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. $C_L = 2pF$ with $Z_0 = 85\Omega$ differential trace impedance.

Clock Periods-Differential Outputs with Spread Spectrum Disabled

				N	Measurement	Window				
	Contor	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Center Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2,3
DIF	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	1,2,4

Clock Periods-Differential Outputs with Spread Spectrum Enabled

				N	/leasurement	Window				
SSC ON	Comton	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
	Center Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2,3
DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	1,2,4

Notes:

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

¹ Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (+/-100ppm). The 9ZXL1950 itself does not contribute to ppm error.

³ Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode

⁴ Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode

Electrical Characteristics-Skew and Differential Jitter Parameters

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions

CLK_IN, DIF[x:0] t _{SPO_PLL} Input-to-Output Skew in PLL mode nominal value @ 35°C, 3.3V, 100MHz -150 -117 -50 ps 1,2.4	Colvi, eappry restage t					.9		
CLK_IN, DIF[x:0] tspo_Pll nominal value @ 35°C, 3.3V, 100MHz -150 -117 -50 ps 1,2,4	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
CLK_IN, DIF[x:0] tpD_BYP nominal value @ 35°C, 3.3V 2.5 3.6 4.5 ns 1,2,3	CLK_IN, DIF[x:0]	t _{SPO_PLL}	·	-150	-117	-50	ps	1,2,4,5,8
CLK_IN, DIF[x:0] t_DSPO_PLL across voltage and temperature CLK_IN, DIF[x:0] t_DSPO_BYP lnput-to-Output Skew Varation in Bypass mode across temperature for a given voltage CLK_IN, DIF[x:0] t_DE Random Differential Tracking error beween two 9ZX devices in Hi BW Mode CLK_IN, DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode DIF[x:0] t_DSSTE lndom Differential Spread Spectrum Tracking error beween two 9ZX devices	CLK_IN, DIF[x:0]	t _{PD_BYP}		2.5	3.6	4.5	ns	1,2,3,5,8
CLK_IN, DIF[x:0] t_DE across temperature for a given voltage -250 0 250 ps 1,2,3 CLK_IN, DIF[x:0] t_DE Random Differential Tracking error beween two 9ZX devices in Hi BW Mode 1 5 ps 1,2,3 CLK_IN, DIF[x:0] t_DESTE Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode 5 75 ps 1,2,3 DIF[x:0] t_SKEW_ALL (Common to Bypass and PLL mode). 100MHz 37 50 ps 1,2,3 PLL Jitter Peaking j_peak-hibw (Common to Bypass and PLL mode). 100MHz 37 50 ps 1,2,3 PLL Jitter Peaking j_peak-hibw (Common to Bypass and PLL mode). 100MHz 1 0 1.8 2.5 dB 7 PLL Bandwidth j_peak-lobw (Common to Bypass AllBW = 1 0 0 0.7 2 dB 7 PLL Bandwidth pll_HBW LOBW#_BYPASS_HIBW = 1 2 3.3 4 MHz 8 PLL Bandwidth pll_LOBW LOBW#_BYPASS_HIBW = 0 0.7 1.2 1.4 MHz 8 <td>CLK_IN, DIF[x:0]</td> <td>t_{DSPO_PLL}</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>-50</td> <td>0</td> <td>50</td> <td>ps</td> <td>1,2,3,5,8</td>	CLK_IN, DIF[x:0]	t _{DSPO_PLL}	· · · · · · · · · · · · · · · · · · ·	-50	0	50	ps	1,2,3,5,8
CLK_IN, DIF[x:0] total 9ZX devices in Hi BW Mode 1 5 (rms) 1,2,3 CLK_IN, DIF[x:0] total Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode 5 75 ps 1,2,3 DIF[x:0] total Output-to-Output Skew across all outputs (Common to Bypass and PLL mode). 100MHz 37 50 ps 1,2,3 PLL Jitter Peaking Jpeak-hibw (Common to Bypass and PLL mode). 100MHz 1 0 1.8 2.5 dB 7 PLL Jitter Peaking Jpeak-hibw (Common to Bypass and PLL mode). 100MHz 1 0 1.8 2.5 dB 7 PLL Jitter Peaking Jpeak-hibw (Common to Bypass and PLL mode). 100MHz 0 0.7 2 dB 7 PLL Bandwidth pll _{HBW} LOBW#_BYPASS_HIBW = 0 0 0.7 2 dB 7 PLL Bandwidth pll _{LOBW} LOBW#_BYPASS_HIBW = 0 0.7 1.2 1.4 MHz 8 Duty Cycle total Measured differentially, PLL Mode 45 50 55 % 6 <tr< td=""><td>CLK_IN, DIF[x:0]</td><td>t_{DSPO_BYP}</td><td>l , , , , , , , , , , , , , , , , , , ,</td><td>-250</td><td>0</td><td>250</td><td>ps</td><td>1,2,3,5,8</td></tr<>	CLK_IN, DIF[x:0]	t _{DSPO_BYP}	l , , , , , , , , , , , , , , , , , , ,	-250	0	250	ps	1,2,3,5,8
DIF[x:0] t _{DSSTE} error beween two 9ZX devices in Hi BW Mode 5 75 ps 1,2,3	CLK_IN, DIF[x:0]	t _{DTE}	_		1	5		1,2,3,5,8
DIF[X:0] t _{SKEW_ALL} (Common to Bypass and PLL mode). 100MHz 37 50 ps 1,2	CLK_IN, DIF[x:0]	t _{DSSTE}			5	75	ps	1,2,3,5,8
PLL Jitter Peaking j _{peak-lobw} LOBW#_BYPASS_HIBW = 0 0 0.7 2 dB 7 PLL Bandwidth pll _{HBW} LOBW#_BYPASS_HIBW = 1 2 3.3 4 MHz 8 PLL Bandwidth pll _{LOBW} LOBW#_BYPASS_HIBW = 0 0.7 1.2 1.4 MHz 8 Duty Cycle t _{DC} Measured differentially, PLL Mode 45 50 55 % Duty Cycle Distortion t _{DCD} Measured differentially, Bypass Mode @100MHz 0 0.7 1.5 % 1, PLL mode 12 50 ps 1,	DIF[x:0]	t _{SKEW_ALL}	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		37	50	ps	1,2,3,8
PLL Bandwidth pll _{HBW} LOBW#_BYPASS_HIBW = 1 2 3.3 4 MHz 8 PLL Bandwidth pll _{LOBW} LOBW#_BYPASS_HIBW = 0 0.7 1.2 1.4 MHz 8 Duty Cycle t _{DC} Measured differentially, PLL Mode 45 50 55 % Duty Cycle Distortion t _{DCD} Measured differentially, Bypass Mode @ 100MHz 0 0.7 1.5 % 1, PLL mode 12 50 ps 1,	PLL Jitter Peaking	j peak-hibw	LOBW#_BYPASS_HIBW = 1	0	1.8	2.5	dB	7,8
PLL Bandwidth pll _{LOBW} LOBW#_BYPASS_HIBW = 0 0.7 1.2 1.4 MHz 8 Duty Cycle t _{DC} Measured differentially, PLL Mode 45 50 55 % Duty Cycle Distortion t _{DCD} Measured differentially, Bypass Mode @100MHz 0 0.7 1.5 % 1, PLL mode 12 50 ps 1,	PLL Jitter Peaking	j peak-lobw	LOBW#_BYPASS_HIBW = 0	0	0.7	2	dB	7,8
Duty Cycle t _{DC} Measured differentially, PLL Mode 45 50 55 % Duty Cycle Distortion t _{DCD} Measured differentially, Bypass Mode @100MHz 0 0.7 1.5 % 1, PLL mode 12 50 ps 1,	PLL Bandwidth	pll _{HIBW}	LOBW#_BYPASS_HIBW = 1	2	3.3	4	MHz	8,9
Duty Cycle Distortion t _{DCD} Measured differentially, Bypass Mode 0 0.7 1.5 % 1, PLL mode 12 50 ps 1,	PLL Bandwidth	pll _{LOBW}	LOBW#_BYPASS_HIBW = 0	0.7	1.2	1.4	MHz	8,9
@100MHz	Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50	55	%	1
litter Cycle to cycle	Duty Cycle Distortion			0	0.7	1.5	%	1,10
	Jitter, Cycle to cycle	+.	PLL mode		12	50	ps	1,11
Additive Jitter in Bypass Mode 0 10 ps 1,	ontier, Cycle to Cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		0	10	ps	1,11

Notes for preceding table:

Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.

² Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.

³ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

⁴ This parameter is deterministic for a given device

⁵ Measured with scope averaging on to find mean value.

^{6.} t is the period of the input clock

⁷ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.

^{8.} Guaranteed by design and characterization, not 100% tested in production.

⁹ Measured at 3 db down or half power point.

¹⁰ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

¹¹ Measured from differential waveform

Electrical Characteristics-Phase Jitter Parameters

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, VDDIO = 1.05 to 3.3V +/-5%. See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		34	86	ps (p-p)	1,2,3
	tion pole on	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.2	3	ps (rms)	1,2
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.1	3.1	ps (rms)	1,2
Phase Jitter, PLL Mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.5	1	ps (rms)	1,2,4
	t _{jphQPI_} SMI	QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.2	0.5	ps (rms)	1,5
		QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.1	0.3	ps (rms)	1,5
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.1	0.2	ps (rms)	1,5
	t _{iphPCleG1}	PCIe Gen 1		0.1	10	ps (p-p)	1,2,3
	t _{jphPCleG2}	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.3	ps (rms)	1,2,6
		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.1	0.7	ps (rms)	1,2,6
Additive Phase Jitter, Bypass mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.0	0.3	ps (rms)	1,2,4,6
Вурасо пісас		QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.0	0.3	ps (rms)	1,5,6
	t _{jphQPI_SMI}	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.0	0.1	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.0	0.1	ps (rms)	1,5,6

¹ Applies to all outputs.

Test Loads

Differential Output Terminations

DIF Zo (Ω)	Rs (Ω)
85	Internal
100	7.5
100	(External)

9ZXL Differential Test Loads

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final ratification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.4

⁶ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)² = (total jitter)² - (input jitter)²

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ock \	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	g Byte N		
			ACK
0		×	
0		X Byte	0
0		Ö	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	Read C	peration
Co	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT Repeat starT			
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		<u>e</u>	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

9ZXL1950 SMBus Addressing

SADR(1:0)_tri	SMBus Address (Rd/Wrt bit = 0)
00	D8
OM	DA
01	DE
MO	C2
MM	C4
M1	C6
10	CA
1M	CC
11	CE

SMBusTable: PLL Mode, and Frequency Select Register

Byte	0 Pin#	Name	Control Function	Type	0 1		Default
Bit 7	4	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode		Latch
Bit 6	4	PLL Mode 0	PLL Operating Mode Rd back 0	R	Readback Table		Latch
Bit 5	72/71	DIF_18_En	Output Control	RW	Low/Low	Enable	1
Bit 4	68/67	DIF_17_En	Output Control	RW	Low/Low	Enable	1
Bit 3	66/65	DIF_16_En	Output Control	RW	Low/Low	Enable	1
Bit 2		Reserved					
Bit 1		Reserved					
Bit 0	3	100M_133M#	Frequency Select Readback	R	133MHz	100MHz	Latch

SMBusTable: Output Control Register

Ombao	Buorusic. Output Control Hogistor								
Byte	1 Pin #	Name	Control Function	Type	0	1	Default		
Bit 7	38/37	DIF_7_En	Output Control	RW			1		
Bit 6	35/36	DIF_6_En	Output Control	RW			1		
Bit 5	31/32	DIF_5_En	Output Control	RW			1		
Bit 4	29/30	DIF_4_En	Output Control	RW	Low/Low	Enable	1		
Bit 3	25/26	DIF_3_En	Output Control	RW	Low/Low	Enable	1		
Bit 2	23/24	DIF_2_En	Output Control	RW			1		
Bit 1	19/20	DIF_1_En	Output Control	RW			1		
Bit 0	17/18	DIF 0 En	Output Control	RW			1		

SMBusTable: Output Control Register

Byte	2 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	62/61	DIF_15_En	Output Control	RW			1
Bit 6	60/59	DIF_14_En	Output Control	RW			1
Bit 5	56/55	DIF_13_En	Output Control	RW			1
Bit 4	54/53	DIF_12_En	Output Control	RW	Low/Low	Enable	1
Bit 3	50/49	DIF_11_En	Output Control	RW	LOW/LOW		1
Bit 2	48/47	DIF_10_En	Output Control	RW			1
Bit 1	44/43	DIF_9_En	Output Control	RW			1
Bit 0	42/41	DIF_8_En	Output Control	RW			1

SMBusTable: PLL SW Override Control Register

Byte	3	Pin#	Name	Control Function	Type	0	1	Default		
Bit 7				Reserved						
Bit 6				Reserved						
Bit 5				Reserved						
Bit 4			Reserved							
Bit 3			PLL_SW_EN	Enable S/W control of PLL BW	RW	HW Latch	SMBus Control	0		
Bit 2			PLL Mode 1	PLL Operating Mode 1	RW	See PLL Op	erating Mode	1		
Bit 1			PLL Mode 0 PLL Operating Mode 1		RW	Readback Table		1		
Bit 0	Bit 0 Reserved							0		

Note: Setting bit 3 to '1' allows the user to overide the Latch value from pin 4 via use of bits 2 and 1. Use the values from the PLL Operating Mode Readback Table. Note that Byte 0, Bits 7:6 will keep the value originally latched on pin 4. A warm reset of the system will have to accomplished if the user changes these bits.

SMBusTable: Reserved Register

Byte	e 4	Pin #	Name	Control Function	Type	0	1	Default
Bit 7				Reserved				0
Bit 6			Reserved					
Bit 5			Reserved					
Bit 4			Reserved					
Bit 4 Bit 3			Reserved					0
Bit 2				Reserved				0
Bit 1				Reserved				0
Bit 0			Reserved					

SMBusTable: Vendor & Revision ID Register

Chipacitable Vender & Nevicien is Register									
Byte 5	Pin #	Name	Control Function	Type	0	1	Default		
Bit 7	-	RID3		R	A rov	A rev = 0000			
Bit 6	-	RID2	REVISION ID REVISION ID REVISION ID		Х				
Bit 5	-	RID1		R	etc.		Х		
Bit 4	-	RID0		R			Х		
Bit 3	-	VID3		R	-	-	0		
Bit 2	-	VID2	VENDOD ID	R	-	-	0		
Bit 1	-	VID1	VENDOR ID	R	-	-	0		
Bit 0	-	VID0		R	-	-	1		

SMBusTable: DEVICE ID

Byte 6	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	Device ID 7 (MSB)		R			1
Bit 6	-	Device ID 6		R			1
Bit 5	-	Device ID 5		R	1950 is 195 Decimal		0
Bit 4	-	Device ID 4		R	or C3 Hex		0
Bit 3	-		Device ID 3	R	1550 is 1	55 Decimal	0
Bit 2	-		Device ID 2	R	or 9l	B Hex	0
Bit 1	-		Device ID 1	R			1
Bit 0	-		Device ID 0	R			1

SMBusTable: Byte Count Register

Byte	7	Pin #	Name	Control Function	Type	0	1	Default		
Bit 7				Reserved						
Bit 6				Reserved						
Bit 5			Reserved							
Bit 4			BC4		RW			0		
Bit 3			BC3	Writing to this register configures how	RW	Default value	is 8 hex, so 9	1		
Bit 2			BC2	many bytes will be read back.	RW	bytes (0 to 8) w	ill be read back	0		
Bit 1			BC1	many bytes will be lead back.	RW	by de	efault.	0		
Bit 0		-	BC0		RW			0		

SMBusTable: Reserved Register

Swibus rabie: Reserved Register										
Byte 8	Pin #	Name	Control Function	Type	0	1	Default			
Bit 7			Reserved				0			
Bit 6		Reserved								
Bit 5		Reserved								
Bit 4			Reserved				0			
Bit 3			Reserved				0			
Bit 2			Reserved				0			
Bit 1		Reserved								
Bit 0			Reserved				0			

Alternate Terminations

The 9ZXL1950 can be terminated to other logic families. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs"</u> for details.

Marking Diagram

Notes:

- 1. "LOT" denotes the lot number.
- 2. "YYWW" is the last two digits of the year and week that the part was assembled.
- 3. "LF" denotes RoHS compliant package.
- 4. Bottom marking: country of origin if not USA.

Package Outline and Dimensions (NLG72)

SIDE VIEW

NOTES:

- 1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1994
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. INDEX AREA (PIN1 IDENTIFIER)

TOLERANCES UNLESS SPECIFIED DECIMAL ANGULAR X± XX± XXX±		w.IDT.com FAX: (408	CA 95138 108) 284-8:) 284-8591	200
	TITLE NL/NLG72 PACKAGE OUTLINE 10.0 x 10.0 mm BODY, EPAD 5.9mm SQ. 0.50 mm Pitch VFQFPN (SAWN)			
	SIZE	DRAWING No. PSC-4208-	01	REV 02
	DO NO	OT SCALE DRAWING	SHEET 1	OF 3

BOTTOM VIEW

DATE CREATED REV DESCRIPTION AUTHOR 2/2/16 00 INITIAL RELEASE. JH 1/11/17 01 CORRECT eee TOLERANCE. JH 5/8/17 02 CHANGE PACKAGE CODE GFN to VFQFPN JH NOTE: REFER TO DCP FOR OFFICIAL RELEASE DATE

S Y	DI	MENSIO	NS
S Y M B O L	MIN.	NOM.	MAX.
D2	5.80	5.90	6.00
E2	5.80	5.90	6.00
A2	0.00	0.65	1.00
L	0.30	0.40	0.50
Α	0.80	0.90	1.00
A1	0.00	0.02	0.05
А3		0.20 ref.	
b	0.18	0.25	0.30
е		0.50 BSC	
D	1	10.00 BS	0
E	1	10.00 BS	0
K		1.65 ref.	
	TOLEF	RANCES	
aaa		0.15	
bbb		0.10	
ccc		0.05	
eee		0.08	
fff		0.10	

TOLERANCES UNLESS SPECIFIED DECIMAL ANGULAR X± XX±		,	CA 95138 -08) 284-8	200	
XXX±	WW	/w.IDT.com FAX: (408) 284–8591		
	10	TITLE NL/NLG72 PACKAGE OUTLINE 10.0 x 10.0 mm BODY, EPAD 5.9mm SQ. 0.50 mm Pitch VFQFPN (SAWN)			
	SIZE	DRAWING No.		REV	
	С	PSC-4208-	01	02	
	DO NO	T SCALE DRAWING	SHEET 2	OF 3	

Package Outline and Dimensions (NLG72), cont. AUTHOR JH JH

9ZXL1950 DATASHEET

DATE CREATED REV REVISIONS DESCRIPTION 2/2/16 00 INITIAL RELEASE. CORRECT eee TOLERANCE. 1/11/17 01 5/8/17 02 CHANGE PACKAGE CODE QFN to VFQFPN INDEX AREA-NOTE: REFER TO DCP FOR OFFICIAL RELEASE DATE

RECOMMENDED LAND PATTERN DIMENSION

NOTES:

- 1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
- 2. TOP DOWN VIEW. AS VIEWED ON PCB.
- 3. COMPONENT OUTLINE SHOWS FOR REFERENCE IN GREEN.
- 4. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
- 5. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

10.75 9.05

TOLERANCES UNLESS SPECIFIED DECIMAL ANGULAR X± XXX± XXX±	PHONE: (408) 284–8200 www.IDT.com FAX: (408) 284–8591			200
	TITLE NL/NLG72 PACKAGE OUTLINE 10.0 x 10.0 mm BODY, EPAD 5.9mm SQ. 0.50 mm Pitch VFQFPN (SAWN)			
	1 1			REV 02
	DO NO	DO NOT SCALE DRAWING SHEET		

Ordering Information

Part / Order Number	Shipping Package	Package	Temperature
9ZXL1950BKLF	Trays	72-pin VFQFPN	0 to +70°C
9ZXL1950BKLFT	Tape and Reel	72-pin VFQFPN	0 to +70°C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History

Rev.	Issuer	Issue Date	Description	Page #
Α	RDW	3/11/2014	Moved to final.	
			Cleaned up output pin names to be DIFxx instead of DIF_xx	
			2. Updated electrical tables to new format	
В	RDW	3/7/2015	3. Updated ordering info to B rev along with Rev ID.	Various
			4. Updated termination schemes for driving LVDS.	
			5. Minor cleanup/reformatting of DS, including front page text.	
С	RDW	6/16/2015	Added landing pattern from POD	17
			1. Tightened O2O spec from 75 to 50ps	1,8
			2. Added epad (pin 73) to power connections table	2
		7/30/2015	3. Updated pin 73 pin name from "GND" to "epad"	4
D	RDW		4. Clarified SMBus operating frequency by removing the word "Maximum"	6
	אטח	7/30/2013	and updated the symbol from fMINSMB to fSMB	
			5. Tightened duty cycle distortion and additive cycle to cycle jitter specs	8
			6. Updated Rs from 7 to 7.5 ohms in Test Loads Table	9
			7. Replaced LVDS termination info with reference to AN891.	13
			Updated QPI references to QPI/UPI	
E	RDW	11/20/2015	2. Updated DIF_IN table to match PCI SIG specification, no silicon change	1,5
			2. Operation 511 _114 table to material of ord specimention, no smooth change	
F	RDW	5/11/2017	Updated package outline drawings to latest version.	14-16

[&]quot;B" is the device revision designator (will not correlate with the datasheet revision).

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales

1-800-345-7015 or 408-284-8200

Fax: 408-284-2775 www.IDT.com/go/sales Tech Support

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products.

and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved.