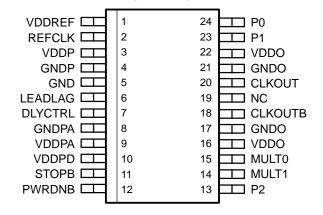


www.ti.com

SCAS698F-SEPTEMBER 2003-REVISED APRIL 2006

CLOCK MULTIPLIER WITH DELAY CONTROL AND PHASE ALIGNMENT (Not Recommended for New Designs Use CDCF5801A as a Replacement)


FEATURES

- Low-Jitter Clock Multiplier: ×1, ×2, ×4, ×8
- Programmable Bidirectional Delay Steps of 1.3 mUI
- Output Frequency Range of 25 MHz to 280 MHz
- Input Frequency Range of 12.5 MHz to 240 MHz
- Low Jitter Generation
- Single-Ended REFCLK Input With Adjustable Trigger Level (Works With LVTTL, HSTL, and LVPECL)
- Differential/Single-Ended Output
- Output Can Drive LVPECL, LVDS, and LVTTL
- Three Power Operating Modes to Minimize Power
- Low Power Consumption (< 190 mW at 280 MHz/3.3 V)
- Packaged in a Shrink Small-Outline Package (DBQ)
- No External Components Required for PLL
- Spread Spectrum Clock Tracking Ability to Reduce EMI (SSC)

APPLICATIONS

- Video Graphics
- Gaming Products
- Datacom
- Telecom
- Noise Cancellation Created by FPGAs

DBQ PACKAGE (TOP VIEW)

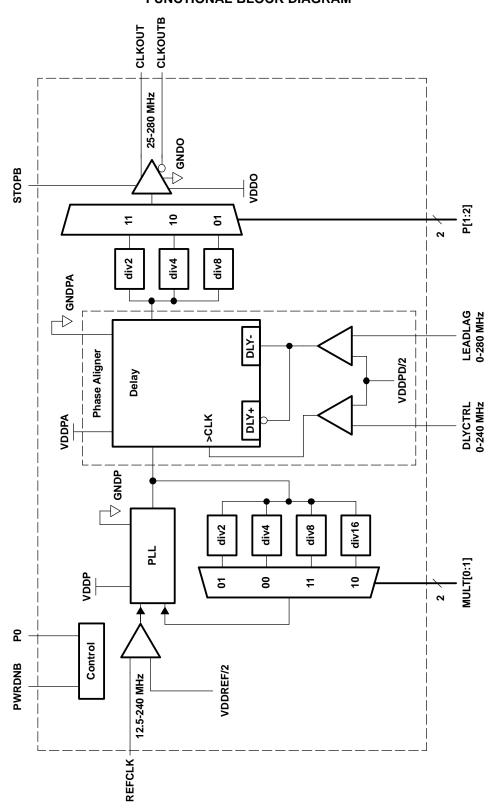
DESCRIPTION

The CDCF5801 provides clock multiplication from a reference clock (REFCLK) signal with the unique capability to delay or advance the CLKOUT/CLKOUTB with steps of only 1.3 mUl through a phase aligner. For every rising edge on the DLYCTRL pin the CLKOUT is delayed by a 1.3-mUl step size as long as the LEADLAG input detects a low signal at the time of the DLYCTRL rising edge. Similarly for every rising edge on the DLYCTRL pin the CLKOUT is advanced by a 1.3-mUl step size as long as the LEADLAG pin is high during the transition. This unique capability allows the device to phase align (zero delay) between CLKOUT/CLKOUTB and any one other CLK in the system by feeding the clocks that need to be aligned to the DLYCTRL and the LEADLAG pins. Also it provides the capability to program a fixed delay by providing the proper number of edges on the DLYCTRL pin, while strapping the LEADLAG pin to dc high or low. Further possible applications are:

- Aligning the rising edge of the output clock signal to the input clock rising edge
- Avoiding PLL instability in applications that require very long PLL feedback lines
- Isolation of jitter and digital switching noise
- Limitation of jitter in systems with good ppm frequency stability

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

CDCF5801



SCAS698F-SEPTEMBER 2003-REVISED APRIL 2006

The CDCF5801 provides clock multiplication and division from a reference clock (REFCLK) signal. The device is optimized to have extremely low jitter impact from input to output. The predivider pins MULT[0:1] and post-divider pins P[0:2] provide selection for frequency multiplication and division ratios, generating CLKOUT/CLOUTKB frequencies ranging from 25 MHz to 280 MHz with clock input references (REFCLK) ranging from 12.5 MHz to 240 MHz. See Table 1 for detailed frequency support. The selection of pins MULT[0:1] and P[1:2] determines the multiplication value of 1, 2, 4, or 8. The CDCF5801 offers several power-down/high-impedance modes, selectable by pins P0, STOPB and PWRDN. Another unique capability of the CDCF5801 is the high sensitivity and wide common-mode range of the clock-input pin REFCLK by varying the voltage on the VDDREF pin. The clock signal outputs CLKOUT and CLKOUTB can be used independently to generate single-ended clock signals. The CLKOUT/CLKOUTB outputs can also be combined to generate a differential output signal suitable for LVDS, LVPECL, or HSTL/SSTL signaling. The CDCF5801 is characterized for operation over free-air temperatures of -40°C to 85°C.

FUNCTIONAL BLOCK DIAGRAM

TERMINAL FUNCTIONS

TERMIN	IAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
CLKOUT CLKOUTB	2018	0	Output CLK signal (low-noise CMOS) Complementary output CLK signal (low-noise CMOS)
DLYCTRL	7	I	Every rising edge on this pin delays/advances the CLKOUT/CLKOUTB signal by 1/768 th of the CLKOUT/CLKOUTB period (1.3 mUI). (E.g., for a 90-degree delay or advancement one needs to provide 192 rising edges). See Table 3.
GND	5		GND for VDDREF and VDDPD
GNDO	17, 21		GND for the output pins (CLKOUT, CLKOUTB)
GNDP	4		GND for the PLL
GNDPA	8		GND for phase aligner, digital logic, and inputs P[0:2], MULT[0:1], STOPB, PWRDNB
LEADLAG	6	1	Controls whether the output CLK is delayed or advanced relative to REFCLK. See Table 3.
MULT0	15	I	PLL multiplication factor select. See Table 1.
MULT1	14		MULT[0:1] = 10: ×16
			MULT[0:1] = 11: ×8
			MULT[0:1] = 00: ×4
			MULT[0:1] = 01: ×2
NC	19		Not connected; leave pin floating or tied to GND.
P0	24	I	Mode control pins (see Table 1)
			0 - Normal operation
			1 - High-Z outputs and other special settings
P1	23	ı	Post divider control (see Table 1)
			P[1:2] = 11: div2
			P[1:2] = 10: div4
P2	13		P[1:2] = 01: div8
PWRDNB	12	1	Active-low power-down state. CLKOUT/CLKOUTB goes low, See Table 2).
			0 - IC in power down
			1 - Normal operation
REFCLK	2	ı	Reference input clock
STOPB	11	I	Active low output disabler, PLL and PA still running, CLKOUT and CLKOUTB goes to a dc value as listed in Table 2.
			0 - Outputs disabled
			1 - Normal operation
VDDO	16, 22		VDD for the output pin (CLKOUT, CLKOUTB) and power down circuit
VDDP	3		VDD for PLL and input buffer
VDDPA	9		VDD for phase aligner, digital logic, and inputs P[0:2], MULT[0:1], and STOPB
VDDPD	10		Reference voltage for inputs LEADLAG and DLYCTRL
VDDREF	1		Reference voltage for REFCLK

Table 1. Input-to-Output Settings

INPUT-TO-OUTPUT MULTIPLICATION-RATIO	INPUT FREQUENCY (MHz)		OUTPUT FREQUENCY (MHz)		PREDIVIDER		POST DIVIDER			NOTE
	FROM	то	FROM	то	MULT0	MULT1	P0	P1	P2	
8	12.5	35	100	280	1	0		1	1	
4	12.5	39	50	156	1	0		1	0	
4	25	70	100	280	1	1		1	1	
	12.5	39	25	78	1	0		0	1	
2	25	78	50	156	1	1	0	1	0	Normal operation ⁽¹⁾
	50	140	100	280	0	0		1	1	
	25	78	25	78	1	1		0	1	
1	50	156	50	156	0	0		1	0	
	100	240	100	240	0	1		1	1	
		CI	_KOUT high-i	impedance	X	X		0	0	
	CLOUOTB high-impedance							U	U	
	CLKOUT = high					X	1	_	1	Special mode of operation
CLKOUTB = high					X	^	1	0	'	Special filode of operation
	CLKOUT = P2					X		1	Х	
			CLKC	DUTB = P2	Х	^		'	^	

⁽¹⁾ There is some overlapping of the input frequency ranges for multiplication ratios of 1, 2, and 4. For example, an input frequency of 30 MHz for a multiplication ratio of four falls within both the 12.5 to 39-MHz range and the 25 to 70-MHz range. For best device operation in a case such as this, always select the input frequency range nearer to the top of the table.

PLL DIVIDER/MULITPLIER SELECTION

Table 2. Power Down Modes

STATE	STATE PWRDNB		CLKOUT and CLKOUTB
Power down	0	X	GNDO
Clock stop	1	0	V _O , STOP
Normal	1	1	See Table 1

Table 3. Programmable Delay and Phase Alignment

DLYCTR	NOTE	LEADLAG	CLKOUT and CLKOUTB
Each rising edge+	For every 32 edges, there are one or two edges for which the phase aligner does not update the phase. Therefore, CLKOUT phase is not updated for every 32 nd edge.	HI	Advanced by one step: step size: 1/768 of the CLKOUT period (1.3 mUl) at P[1:2] = 11 1/1536 of the CLKOUT period (0.65 mUl) at P[1:2] = 10 1/3072 of the CLKOUT period (0.325 mUl) at P[1:2] = 01
Each rising edge+	The frequency of the DLYCTRL pin should	LO	Delayed by one step: step size: 1/768 of the CLKOUT period (1.3 mUl) at P[1:2] = 11 1/1536 of the CLKOUT period (0.65 mUl) at P[1:2] = 10 1/3072 of the CLKOUT period (0.325 mUl) at P[1:2] = 01

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted)(1)

$V_{DDx}^{(2)}$	Supply voltage range	-0.5 V to 4 V
	Voltage range at any output terminal	-0.5 V to V _{DD} + 0.5 V
	Voltage range at any input terminal	-0.5 V to V _{DD} + 0.5 V
T _{stg}	Storage temperature range	-65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under, absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under, recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

POWER DISSIPATION RATING TABLE

PACKA GE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 85°C POWER RATING
DBQ	830 mW	8.3 mW/°C	332 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
VDDP, VDDPA, VDDO	Supply voltage	3	3.3	3.6	V
V _{IH} (CMOS)	High-level input voltage	0.7 VDD			V
V _{IL} (CMOS)	Low-level input voltage			0.3 VDD	V
V _{IL} (DLYCTRL, LEADLAG)	Input signal low voltage		<u>,</u>	<u>VDDPD</u> – 0.2	V
V _{IH} (DLYCTRL, LEADLAG)	Input signal high voltage	$\frac{\text{VDDPD}}{2} + 0.2$			V
(VDDPD)	Input reference voltage for DLYCNTRL and LEADLAG	1.2		VDD	V
I _{OH}	High-level output current			-16	mA
I _{OL}	Low-level output current			16	mA
(VDDREF) (see Application section)	Input reference voltage for REFCLK	1.2		VDD	٧
V _{IL} (see Application section)	REFCLK input low voltage		7	<u>/DDREF</u> – 0.2	٧
V _{IH} (see Application section)	REFCLK input high voltage	$\frac{\text{VDDREF}}{2} + 0.2$			V
T _A	Operating free-air temperature	-40		85	°C

TIMING REQUIREMENTS

	PARAMETER	MIN	MAX	UNIT
F_{mod}	Input frequency of modulation, (if driven by SSC CLKIN)		33	kHz
	Modulation index, nonlinear maximum 0.5%		0.6%	
SR	Input slew rate	1	4	V/ns
	Input duty cycle on REFCLK	40%	60%	
	Input frequency on REFCLK	12.5	240	MHz
	Output frequency on CLKOUT and CLKOUTB	25	280	MHz
	Allowable frequency on DLYCTRL		240	MHz

⁽²⁾ All voltage values are with respect to the GND terminals.

TIMING REQUIREMENTS (continued)

PARAMETER	MIN	MAX	UNIT
Allowable frequency on LEADLAG		280	MHz
Allowable duty cycle on DLYCTRL and LEADLAG pins	25%	75%	ı

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMET	ER	TEST CON	IDITIONS ⁽¹⁾	MIN	TYP ⁽²⁾	MAX	UNIT
V _{O(STOP)}	Output voltage	during Clkstop mode	See Figure 1		1.1		2	V
V _{O(X)}	Output crossin	ng-point voltage	See Figure 1 and	Figure 4	$\frac{\text{VDDO}}{2} - 0.2$		$\frac{\text{VDDO}}{2} + 0.2$	V
Vo	Output voltage	swing (V _{OH} - V _{OL})	See Figure 1		1.7		2.9	V
V _{IK}	Input clamp vo	oltage	$V_{DD} = 3 V$,	I _I = -18 mA			-1.2	V
V	High lovel out	out voltago	$V_{DD} = 3 \text{ to } 3.6 \text{ V},$	See Figure 1	2	2.5		V
V _{OH}	High-level output voltage		$V_{DD} = 3 V$,	$I_{OH} = -16 \text{ mA}$	2.2			V
V _{OL}	Low-level outp	ut voltage	$V_{DD} = 3 \text{ to } 3.6 \text{ V},$	See Figure 1		0.4	0.6	V
VOL	Low-level outp	out voltage	$V_{DD} = 3 V$,	$I_{OH} = 16 \text{ mA}$			0.5	v
l		$V_{DD} = 3.135 \text{ V}, \qquad V_{O} = 1 \text{ V} \qquad -32 \qquad -52$ evel output current $V_{DD} = 3.3 \text{ V}, \qquad V_{O} = 1.65 \text{ V} \qquad -51$						
I _{OH}	High-level out	out current	$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		-51		mA
			$V_{DD} = 3.465 \text{ V},$	V _O = 3.135 V		-14.5	2 VDDO 2 + 0.2 2.9 -1.2 2.5 0.4 0.6 0.5 -52 -51	
			$V_{DD} = 3.135 \text{ V},$	V _O = 1.95 V	43	61.5		
I _{OL}	Low-level outp	out current	$V_{DD} = 3.3 \text{ V},$	V _O = 1.65 V		65		mA
			$V_{DD} = 3.465 \text{ V},$	V _O = 0.4 V		25.5	40	
I _{OZ}	High-impedan	ce-state output current	P0 = 1,	P1 = P2 = 0			±10	μΑ
I _{OZ(STOP)}	High-impedan during Clk Sto	ce-state output current	Stop = 0,	$V_{O} = GND \text{ or } V_{DD}$			±100	μΑ
I _{OZ(PD)}	High-impedan in power-dowr	ce-state output current	PWRDNB = 0,	$V_O = GND \text{ or } V_{DD}$	-10		100	μΑ
I _{IH}		REFCLK; STOPB;	$V_{DD} = 3.6 \text{ V},$	$V_I = V_{DD}$			10	μΑ
I _{IL}	High-level input current	PWRDNB; P[0:2]; MULT[0:1]; DLYCTRL; LEADLAG	V _{DD} = 3.6 V,				-10	μΑ
	Output	High state	R _I at I _O -14.5 mA to	o -16.5 mA	15	35	50	
Z _O	impedance (single ended)	Low state	R _I at I _O 14.5 mA to	o 16.5 mA	10	17	35	Ω
	Reference	\/ DEE-\/DDDD	V 2.6.V	PWRDNB = 0			50	μΑ
I _{REF}	current	V _{DD} REF; VDDPD	$V_{DD} = 3.6 \text{ V}$	PWRDNB = 1			0.5	mA
Cı	Input capacita	nce	$V_I = V_{DD}$ or GND	•		2		pF
Co	Output capaci	tance	$V_O = GND \text{ or } V_{DD}$			3		pF
I _{DD} (PD)	Supply curren	t in power-down state	REFCLK = 0 MHz PWRDNB = 0; ST				4	mA
I _{DD} (CLKSTOP)	Supply curren	t in CLK stop state	BUSCLK configure	ed for 280 MHz			44	mA
I _{DD} (NORMAL)	Supply current mode)	t (normal operation	BUSCLK 280 MHz P[0:2] = 011; Load	z, MULT[0:1] = 10; d , See Figure 1			75	mA

⁽¹⁾ V_{DD} refers to any of the following; VDDP, VDDREF, VDDO, VDDPD, and VDDPA (2) All typical values are at $V_{DD}=3.3$ V, $T_A=25$ °C.

JITTER SPECIFICATION

over recommended free-air temperature range and $V_{\rm CC}$ range (unless otherwise noted)

			TEST (
	PARAMETER	REFCLK (MHz)	CLKOUT (MHz)	MULT[0:1]	P[0:2]	NOTES	TYP (ps)	MAX (ps)
	Period rms (1-sigma jitter, full frequency band)	25	25	11	001		20	48
	Period p-p						120	225
	Cycle to cycle +						70	165
	Cycle to cycle -						70	165
	RMS phase jitter (accumulated, 100 kHz-12.5 MHz)						80	160
	Period rms (1-sigma jitter, full frequency band)	50	50	11	001		7	15
	Period p-p			100 00 010 Phase aligner running (CLKOUT tight to LEADLAG; REFCLK tight to DLYCTRL).			37	75
	Cycle to cycle +						27	55
	Cycle to cycle -					27	55	
	RMS phase jitter (accumulated, 100 kHz-25 MHz)					aligner	27	65
	Period rms (1-sigma jitter, full frequency band)	100	100	00	010	(CLKOUT tight to	5	14
	Period p-p						30	65
t _(jitter)	Cycle to cycle +					tight to	24	55
	Cycle to cycle -					DLYCTRL). All typical	24	55
	RMS phase jitter (accumulated, 100 kHz-40 MHz)					values are at	35	65
	Period rms (1-sigma jitter, full frequency band)	156	156	00	010	VDD = 3.3 V, T _A = 25°C.	4	8
	Period p-p					1 _A = 25 C.	20	40
	Cycle to cycle +						17	40
	Cycle to cycle -						17	40
	RMS phase jitter (accumulated, 100 kHz-40 MHz)						15	35
	Period rms (1-sigma jitter, full frequency band)	200	200	01	011		8	15
	Period p-p						38	60
	Cycle to cycle +						5	55
	Cycle to cycle -						35	55
	RMS phase jitter (accumulated, 100 kHz-40 MHz)						30	60

JITTER SPECIFICATION (continued)

over recommended free-air temperature range and V_{CC} range (unless otherwise noted)

			TEST (
	PARAMETER	REFCLK (MHz)	CLKOUT (MHz)	MULT[0:1]	P[0:2]	NOTES	TYP (ps)	MAX (ps)
	Period rms (1-sigma jitter, full frequency band)	25	200	10	011		4	11
	Period p-p						20	48
	Cycle to cycle +						16	45
	Cycle to cycle -						16	45
	Period rms (1-sigma jitter, full frequency band)	25	100	10	010		4	11
	Period p-p						22	55
	Cycle to cycle +						15	45
	Cycle to cycle -	1				Phase aligner	15	45
	Period rms (1-sigma jitter, full frequency band)	70	280	11	011		4	11
	Period p-p					not running (LEADLAG	18	48
	Cycle to cycle +					= 0,	15	45
	Cycle to cycle -					DLYCTRL =	15	45
t _(jitter)	Period rms (1-sigma jitter, full frequency band)	25	50	10	001	0). All typical values are	6	16
	Period p-p					at	34	75
	Cycle to cycle +					VDD = 3.3 V, T _A =	20	65
	Cycle to cycle -					25°℃.	20	65
	Period rms (1-sigma jitter, full frequency band)	78	156	11	010		3	11
	Period p-p						15	44
	Cycle to cycle +						13	40
	Cycle to cycle -						13	40
	Period rms (1-sigma jitter, full frequency band)	62.5	125	00	011		6	20
	Period p-p						35	80
	Cycle to cycle +						25	75
	Cycle to cycle -						25	75

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(DC)	Output duty cycle over 1000 cycles	See Figure 3	42%		58%	
t _r , t _f	Output rise and fall times (measured at 20%-80% of output voltage	See Figure 5	150	250	350	ps

STATE TRANSITION LATENCY SPECIFICATIONS

	PARAMETER	FROM	то	TEST CONDITION	MIN	TYP	MAX	UNIT
	Delay time, PWRDNB↑ to CLKOUT / CLKOUTB settled	Dames dame	Normal	See Figure 6			3	
t _(powerup)	Delay time, PWRDNB↑ to internal PLL and clock are on and settled	Power down					3	ms

STATE TRANSITION LATENCY SPECIFICATIONS (continued)

	PARAMETER	FROM	то	TEST CONDITION	MIN	TYP	MAX	UNIT
+	Delay time, power up to CLKOUT output settled	V	Normal	Soo Figure 6			3	ms
t(VDDpowerup)	Delay time, power up to internal PLL and clock are on and settled	- V _{DD}	Nomai	See Figure 6			3	1115
t _(MULT)	MULT0 and MULT1 change to CLKOUT output resettled	Normal	Normal	See Figure 7			1	ms
t _(CLKON)	STOPB [↑] to CLKOUT glitch-free clock edges	CLK stop	Normal	See Figure 8			10	ns
t _(CLKSETL)	STOPB [↑] to CLKOUT output settled to within 50 ps of the phase before STOPB was disabled	CLK stop	Normal	See Figure 8			20	cycles
t _(CLKOFF)	STOPB↓ to CLKOUT output disabled	Normal	CLK stop	See Figure 8			5	ns
t _(powerdown)	Delay time, PWRDNB↓ to the device in the power-down mode	Normal	Power down	See Figure 6			1	ms
t _(STOP)	Maximum time in CLKSTOP (STOPB = 0) before reentering normal mode (STOPB = 1)	STOPB	Normal	See Figure 8	100			μs
t _(ON)	Minimum time in normal mode (STOPB = 1) before reentering CLKSTOP (STOPB = 0)	Normal	CLK stop	See Figure 8	100			ms

PARAMETER MEASUREMENT INFORMATION

TESTING CONDITIONS

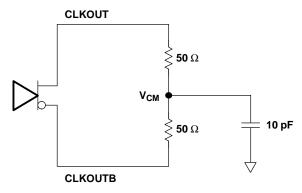
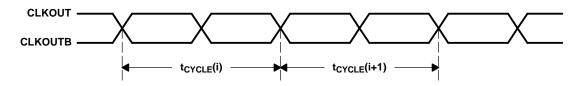



Figure 1. Test Load and Voltage Definitions V_{OH} , V_{OL} , $V_{O(STOP)}$

 $\label{eq:cycle-to-Cycle} \textit{Cycle-to-Cycle Jitter } (t_{(jitter)}) = \mid t_{CYCLE}(i) - t_{CYCLE}(i+1) \mid \text{ over 1000 consecutive cycles}$

Figure 2. Cycle-to-Cycle Jitter

PARAMETER MEASUREMENT INFORMATION (continued)

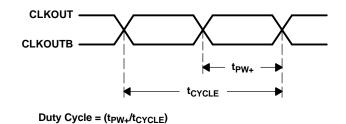


Figure 3. Output Duty Cycle

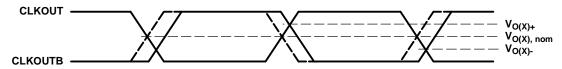


Figure 4. Crossing Point Voltage

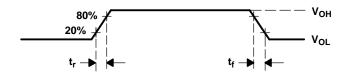
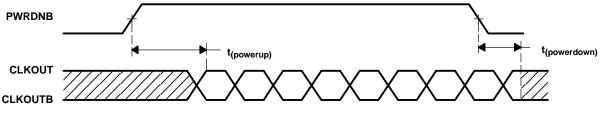
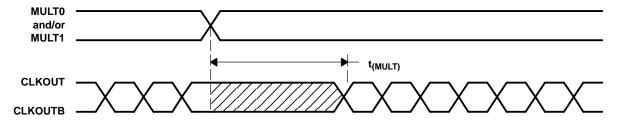




Figure 5. Voltage Waveforms

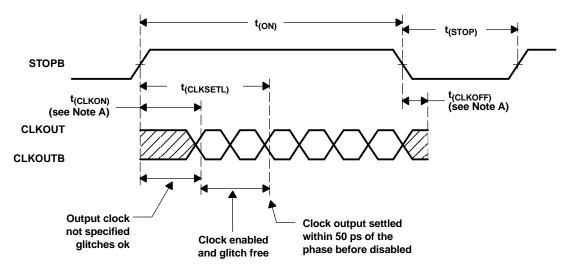

Figure 6. PWRDNB Transition Timings

Figure 7. MULT Transition Timings

PARAMETER MEASUREMENT INFORMATION (continued)

A. $V_{ref} = V_O \pm 200 \text{ mV}$

Figure 8. STOPB Transition Timings

APPLICATION INFORMATION

APPLICATION EXAMPLE

The following figure shows an example of using the CDCF5801 as a phase aligner de-skewing the unknown buffer delay of the two CDCV304s in the circuit. This circuitry would not be possible with a simple PLL because the feedback of the PLL would have the second CDCV304 in the loop, causing instability of the PLL due to a long delay.

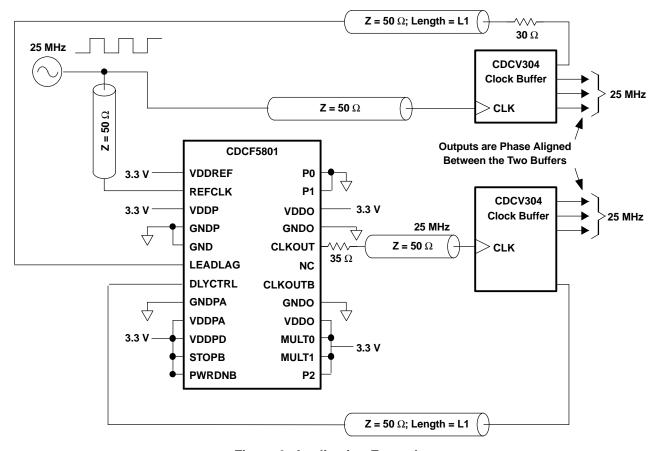
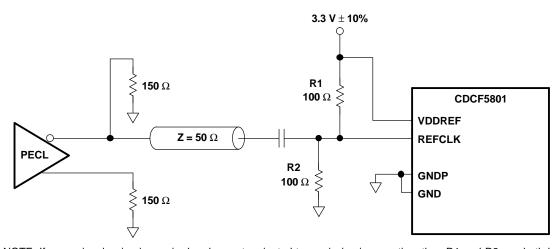


Figure 9. Application Example

NOTE:

If an active element (microcontroller, ASIC, DSP< FPYA, DSP, etc.) is used in the CDCF5801 CLKOUT to DLYCTRL feedback loop, see application report SCAA075.


SELECTING VDDREF

Generally, VDDREF can be set to any value between 1.2 V and VDD. The setting of VDDREF directly influences the trigger voltage of the input. Special care must be taken when using small signal swings to drive the CVDCF5801 input (e.g., PECL). It is recommended to connect VDDREF directly to VDD, ac-couple the REFCLK input, and rebias the signal.

The following circuit is recommended to drive the CDCF5801 from a differential clock signal like PECL.

APPLICATION INFORMATION (continued)

A. NOTE: If more signal swing is required and an unterminated transmission is on option, then R1 and R2 can both be replaced with 10- $k\Omega$ resistors.

Revision History

DATE	REV	PAGE	SECTION	DESCRIPTION
29 JUL 05	Е	13	Application Example	Changed first paragraph and changed P2 connection in Figure 9
18 DEC 04	D	_	_	Unknown
17 FEB 04	С	_	_	Unknown
15 OCT 03	В	_	_	Unknown
9 OCT 03	Α	_	_	Unknown
16 SEP 03	*	-	-	Original version

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
CDCF5801DBQ	NRND	SSOP	DBQ	24	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	
CDCF5801DBQG4	NRND	SSOP	DBQ	24	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	
CDCF5801DBQR	NRND	SSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	
CDCF5801DBQRG4	NRND	SSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CDCF5801	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

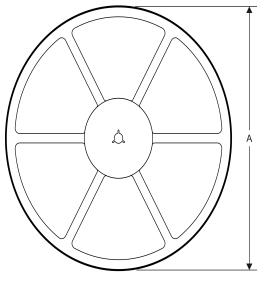
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

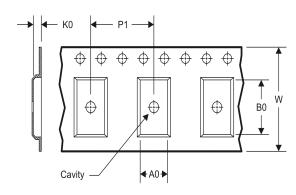
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.


11-Apr-2013

PACKAGE MATERIALS INFORMATION

www.ti.com 16-Aug-2012


TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

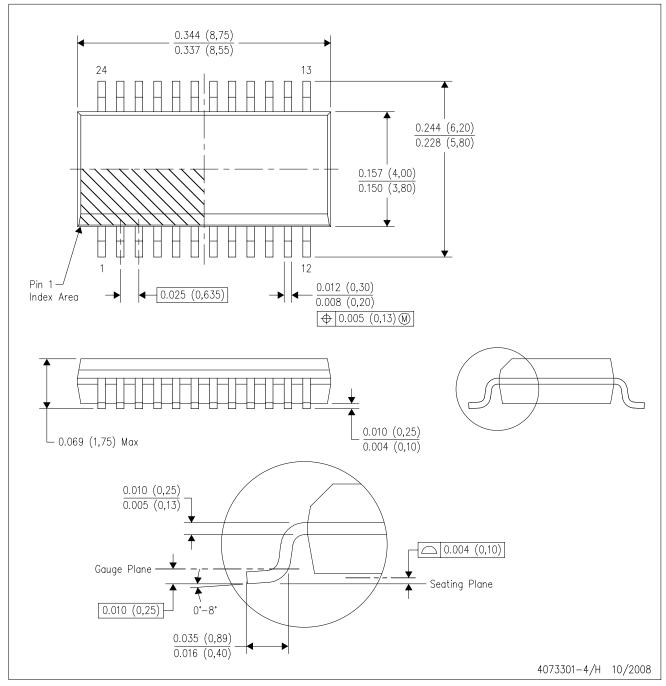
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCF5801DBQR	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com 16-Aug-2012

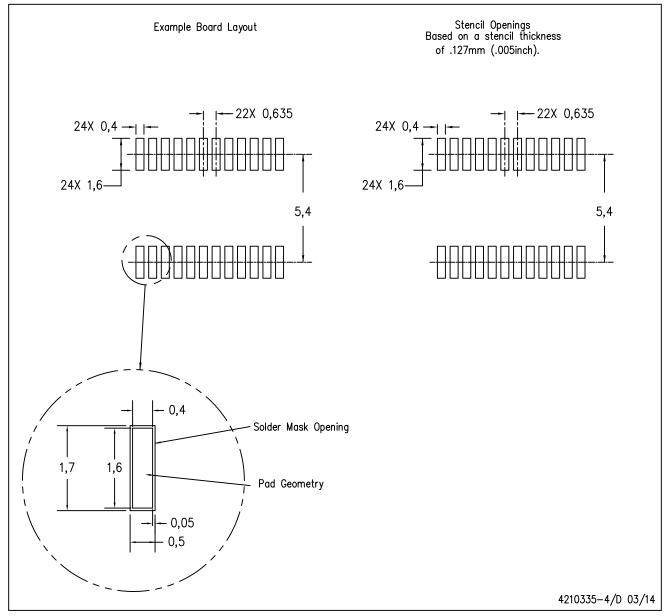


*All dimensions are nominal

De	vice	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCF5	301DBQR	SSOP	DBQ	24	2500	367.0	367.0	38.0

DBQ (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AE.

DBQ (R-PDSO-G24)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>