

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 8998202021 Printed: 2013-07-03

Part Number:	8998202021
Frequency Range:	Dimensions
Description:	98 EFD CORE
Application:	Inductive Components
Where Used:	Closed Magnetic Circuit
Part Type:	EFD Cores
Generic Name:	EFD20

Mechanical Specifications

Weight: 7.000 (g) per Set

Part Type Information

EFD10, EFD12, EFD15, EFD20, EFD25, EFD30

EFD (Economical Flat Design) cores have been designed to maximize volume in a low profile geometry. EFD cores allow maximum throughput power density with reasonably low mass for board level installation.

-EFD cores can be supplied with the centerpost gapped to a mechanical dimension or an AL value.

-AL value is measured at 1 kHz, B < 10 gauss.

-Weight indicated is per pair or set.

Fair-Rite Products Corp. Your Signal Solution®

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Mechanical Specifications

Fair-Rite Product's Catalog Part Data Sheet, 8998202021 Printed: 2013-07-03

Land Patterns

Dim	mm	mm	nominal	inch
		tol	inch	misc.
А	20.00	± 0.55	0.787	-
В	10.00	± 0.25	0.394	-
С	6.65	± 0.2	0.262	-
D	7.70	± 0.25	0.303	-
E	15.40	± 0.5	0.606	-
F	8.90	± 0.3	0.350	-
G	-	-	-	-
Н	-	-	-	-
J	-	-	-	-
К	3.60	± 0.15	0.142	-

Electrical Specifications

Typical Impedance (Ω)		
Electrical Properties		
A _L (nH)	1200 ±25%	
Ae(cm ²)	0.31000	
ΣI/A(cm ⁻¹)	15.60	
l _e (cm)	4.74	
V _e (cm ³)	1.44000	
A _{min} (cm ²)	.290	

V	W ref	Х	Y	Ζ
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

N/AWG - Number of Turns/Wire Size for Test Coil

I e: Effective Path Length

V_e: Effective Core Volume

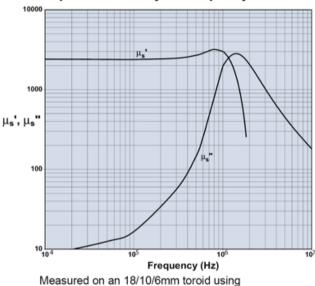
NI - Value of dc Ampere-turns

Fair-Rite Product's Catalog Part Data Sheet, 8998202021 Printed: 2013-07-03

Ferrite Material Constants

Specific Heat	0.25 cal/g/ºC
Thermal Conductivity	3.5 - 4.5 mW/cm - °C
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /ºC
Tensile Strength	4.9 kgf/mm ²
Compressive Strength	42 kgf/mm ²
Young's Modulus	15x10 ³ kgf/mm ²
Hardness (Knoop)	650
Specific Gravity	\approx 4.7 g/cm ³
The above quoted properties are typical for Fair-Rit	e MnZn and NiZn ferrites.

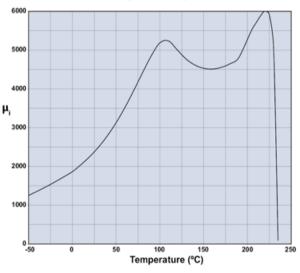
See next page for further material specifications.


Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

> A low loss MnZn ferrite material for power applications up to 200 kHz.

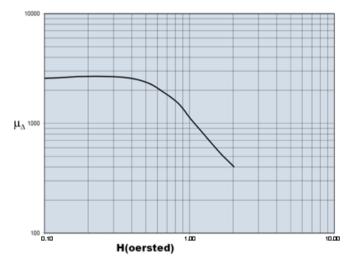
> New type 98 Material is an improved version of Fair-Rite's 78 Material, this material supplies, lower power loss at 100°C at moderate flux densities for operation below 200 kHz.

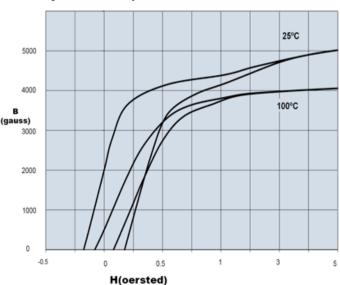

Shapes available in 98 material are Toroids, U Cores, E & I Cores, Pot Cores, RM, PQ, ETD, EFD, EP, EER.

Complex Permeability vs. Frequency

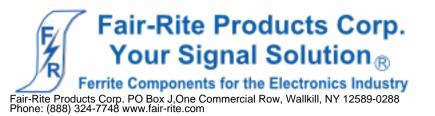
Initial Permeability vs. Temperature

HP 4284A and HP4291A.

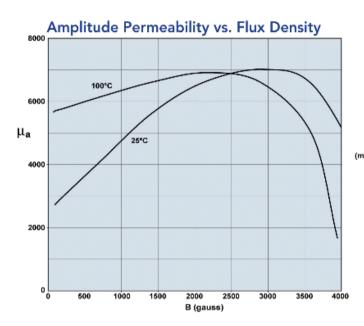

Fair-Rite Product's Catalog Part Data Sheet, 8998202021 Printed: 2013-07-03

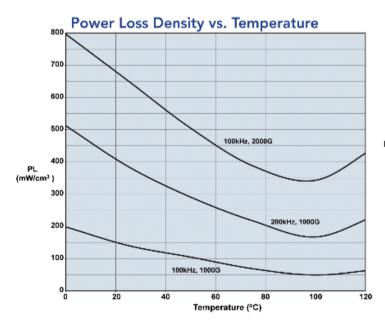


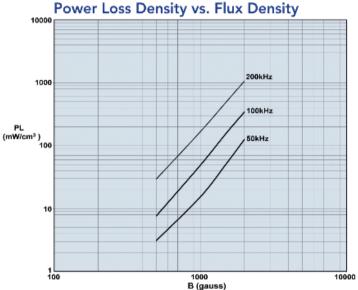
98 Material Characteristics

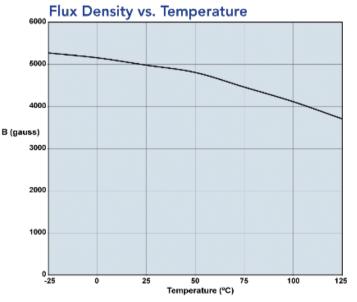

Property	Unit	Symbol	Value
Initial Permeability @ B < 10gauss		μ	2400
Flux Density @ Field Strength	gauss oersted	в Н	5000 5
Residual Flux Density	gauss	Br	1800
Coercive Force	oersted	Hc	0.17
Loss Factor @ Frequency	10 ⁻⁶ MHz	tanδ/μ _i	3.5 0.1
Temperature Coefficient of Initial Permeability (20 - 70°C)	% / °C		1.5
Curie Temperature	°C	Tc	> 215
Resistivity	ohm-cm	ρ	200

Incremental Permeability vs. H


Hysteresis Loop


Fair-Rite Product's Catalog Part Data Sheet, 8998202021 Printed: 2013-07-03


A low loss MnZn ferrite material for power applications up to 200kHz.


Measured on an 18/10/6mm toroid at 10kHz.

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.

Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.