

Current Transducer HNC-050.. 100P

 $I_{DN} = 50 ... 100 A$

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Elect	trical data			
Primary nom DC current	inal Primary current measuring range		Туре	
I _{PN} (A)	I _P (A)			
50	0 ± 75		HNC - 050P	
100	0 ± 140		HNC - 1	00P
		HNC - 050P	HNC - 100P	
$R_{_{\mathrm{M}}}$	Measuing resistance	60 90	60 80	Ω
	Second nominal current	50	50	mΑ
I _{SN} K _N	Turns ratio	1:1000	1:2000	
$\mathbf{V}_{\!\scriptscriptstyle{\mathrm{C}}}$	Supply voltage (± 5 %)		± 15	V
l V	Current consumpution		15 + I _{SN}	mΑ
Ŭ,	R.m.s. voltage for AC isolation	test. 50/60Hz. 1 m	in 2.5	kV

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V
- Low power consumption

Accuracy-Dynamic performance data							
X	Accuracy @ T _a = 25°C	± 1 % of I _{PN}					
$\mathbf{e}_{\scriptscriptstyle \perp}$	Linearity $(0 \pm \hat{I}_{PN})$	< ± 0.5 %					
I _O	Electrical offset current $@I_p = 0$, $@T_A = 25^{\circ}C$ Hysteresis offset current $@I_p = 0$,	± 0.2 mA					
пС	after an excursion of I _{PN}	± 0.15 mA					
I_{OT}	Thermal drift of I ₀ 0°C +70°C	± 0.005 ms/°C					
t _r	Response time $\overset{\circ}{@}$ 90% of $I_{_{\rm P}}$	<1 µs					
TC	$\mathbf{e}_{\scriptscriptstyle{\mathrm{G}}}$ Thermal drift of the gain (% of reading)	< ± 0.004 %/°C					

General data							
T _A	Ambient operating temperature Ambient storage temperature		- 10 + 80 - 15 + 85	_			
" S		HNC - 200P	HNC - 300P	O			
$R_{\rm S}$	Secondary coil Resistance @ T _A = 25°C	75	95	Ω			
m	Mass		30	g			

Advantages

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference

Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Inverters

HNC-050 .. 100P

UNIT: mm

NANALEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.