Octal D-type flip-flop with reset; positive-edge trigger Rev. 5 — 26 February 2016 Product of

Product data sheet

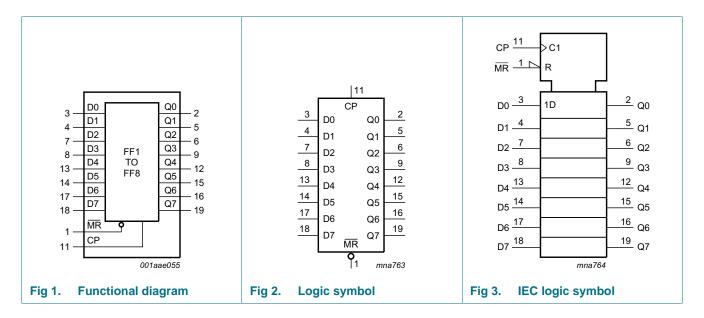
1. **General description**

The 74HC273; 74HCT273 is an octal positive-edge triggered D-type flip-flop. The device features clock (CP) and master reset (MR) inputs. The outputs Qn will assume the state of their corresponding Dn inputs that meet the set-up and hold time requirements on the LOW-to-HIGH clock (CP) transition. A LOW on MR forces the outputs LOW independently of clock and data inputs. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

2. **Features and benefits**

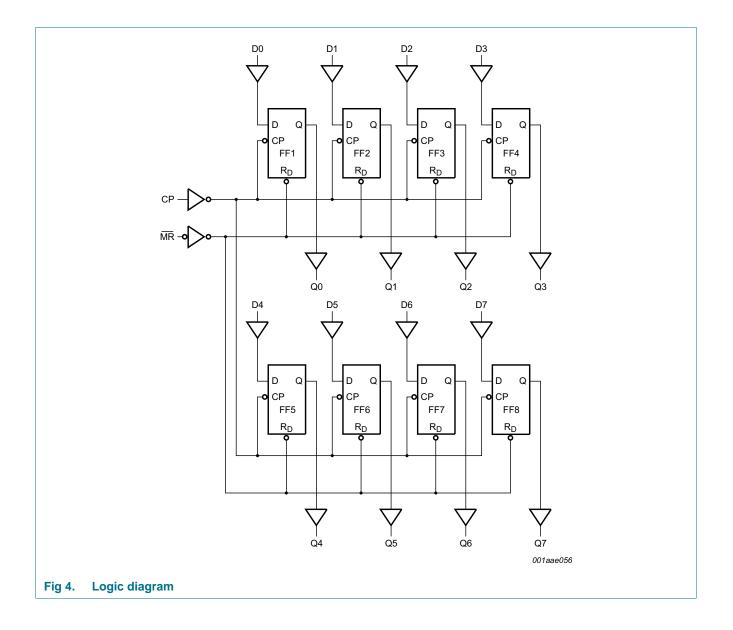
- Input levels:
 - For 74HC273: CMOS level
 - For 74HCT273: TTL level
- Common clock and master reset
- Eight positive edge-triggered D-type flip-flops
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

Ordering information 3.

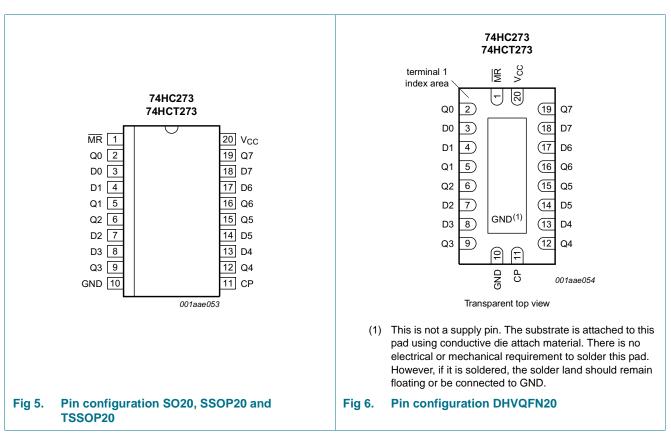

Table 1. **Ordering information**

Type number	Package			
	Temperature range	Name	Description	Version
74HC273D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74HCT273D				
74HC273DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width	SOT339-1
74HCT273DB			5.3 mm	
74HC273PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body	SOT360-1
74HCT273PW			width 4.4 mm	
74HC273BQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin	SOT764-1
74HCT273BQ			quad flat package; no leads; 20 terminals; body 2.5 \times 4.5 \times 0.85 mm	

nexperia


Octal D-type flip-flop with reset; positive-edge trigger

4. Functional diagram


74HC273; 74HCT273

Octal D-type flip-flop with reset; positive-edge trigger

Octal D-type flip-flop with reset; positive-edge trigger

5. Pinning information

5.2 Pin description

Table 2. Pin description		
Symbol	Pin	Description
MR	1	master reset input (active LOW)
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	2, 5, 6, 9, 12, 15, 16, 19	flip-flop output
D0, D1, D2, D3, D4, D5, D6, D7	3, 4, 7, 8, 13, 14, 17, 18	data input
GND	10	ground (0 V)
СР	11	clock input (LOW-to-HIGH, edge-triggered)
V _{CC}	20	supply voltage

5.1 Pinning

Octal D-type flip-flop with reset; positive-edge trigger

6. Functional description

Table 3. Function table^[1]

Operating modes	Inputs	nputs						
	MR	Qn						
reset (clear)	L	Х	Х	L				
load "1"	Н	\uparrow	h	Н				
load "0"	Н	↑	I	L				

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

 \uparrow = LOW-to-HIGH clock transition.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5 \text{ V or } V_{\rm I} > V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{ОК}	output clamping current	$V_{\rm O} < -0.5 \text{ V or } V_{\rm O} > V_{\rm CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _O	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$			
		SO20, SSOP20, TSSOP20 and DHVQFN20 package	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO20 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.
 For SSOP20 and TSSOP20 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.
 For DHVQFN20 packages: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

Octal D-type flip-flop with reset; positive-edge trigger

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions		74HC273			74HCT273		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	1
74HC27	3		1	1			1	1		
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
	V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V	
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_{I} = V_{CC} \text{ or } GND;$ $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	8.0	-	80	-	160	μA

Octal D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	o +125 ℃	Unit
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT2	73									
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{ОН}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_{O} = 20 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 5.2 \text{ mA}; V_{CC} = 5.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1	-	±1	μA
I _{CC}	supply current		-	-	8.0	-	80	-	160	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V								
		MR input	-	100	360	-	450	-	490	μΑ
		CP input	-	175	630	-	787.5	-	857.5	μΑ
		Dn input	-	15	54	-	67.5	-	73.5	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit, see <u>Figure 10</u>

Symbol	Parameter	Conditions		25 °C		–40 °C to	o +85 ℃	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC273	5									
t _{pd}	propagation	CP to Qn; see Figure 7 [1]								
	delay	V _{CC} = 2.0 V	-	41	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	15	30	-	37	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	13	26	-	31	-	38	ns

Octal D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
PHL	HIGH to LOW	MR to Qn; see Figure 8		- 71-						
1112	propagation	$V_{CC} = 2.0 V$	-	44	150	-	185	-	225	ns
	delay	$V_{CC} = 4.5 V$	-	16	30	-	37	-	45	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	15	-	-	-	-	-	ns
		$V_{\rm CC} = 6.0 \text{ V}$	-	14	26	-	31	-	38	ns
t _t	transition time	Qn output; see <u>Figure 7</u> [2]								
·		$V_{CC} = 2.0 V$	-	19	75	-	95	-	110	ns
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
		$V_{\rm CC} = 6.0 \text{ V}$	-	6	13	-	15	-	19	ns
t _W	pulse width	CP input HIGH or LOW; see Figure 7								
		$V_{CC} = 2.0 V$	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	4	-	17	-	20	-	ns
		MR input LOW; see Figure 8								
		$V_{CC} = 2.0 V$	60	17	-	75	-	90	-	ns
		V _{CC} = 4.5 V	12	6	-	15	-	18	-	ns
		V _{CC} = 6.0 V	10	5	-	13	-	15	-	ns
t _{rec}	recovery time	MR to CP; see Figure 8								
		V _{CC} = 2.0 V	50	-6	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	-2	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	-2	-	11	-	13	-	ns
t _{su}	set-up time	Dn to CP; see Figure 9								
		V _{CC} = 2.0 V	60	11	-	75	-	90	-	ns
		V _{CC} = 4.5 V	12	4	-	15	-	18	-	ns
		V _{CC} = 6.0 V	10	3	-	13	-	15	-	ns
t _h	hold time	Dn to CP; see Figure 9								
		V _{CC} = 2.0 V	3	-6	-	3	-	3	-	ns
		V _{CC} = 4.5 V	3	-2	-	3	-	3	-	ns
		V _{CC} = 6.0 V	3	-2	-	3	-	3	-	ns
f _{max}	maximum	CP input; see Figure 7								
	frequency	V _{CC} = 2.0 V	6	20.6	-	4.8	-	4	-	MHz
		V _{CC} = 4.5 V	30	103	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	66	-	-	-	-	-	MHz
		$V_{CC} = 6.0 V$	35	122	-	28	-	24	-	MHz
C _{PD}	power dissipation capacitance	per package; [3] $V_1 = GND$ to V_{CC}	-	20	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit, see Figure 10

74HC_HCT273 Product data sheet

Octal D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HCT2	73					1		1		
t _{pd}	propagation	CP to Qn; see Figure 7 [1]								
	delay	V _{CC} = 4.5 V	-	16	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 8								
	propagation delay	V _{CC} = 4.5 V	-	23	34	-	43	-	51	ns
	delay	$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	20	-	-	-	-	-	ns
t _t	transition time	Qn output; see Figure 7 [2]								
		V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
t _W	pulse width	CP input; see Figure 7								
		V _{CC} = 4.5 V	16	9	-	20	-	24	-	ns
		MR input LOW; see <u>Figure 8</u>								
		V _{CC} = 4.5 V	16	8	-	20	-	24	-	ns
t _{rec}	recovery time	MR to CP; see Figure 8								
		V _{CC} = 4.5 V	10	-2	-	13	-	15	-	ns
t _{su}	set-up time	Dn to CP; see Figure 9								
		V _{CC} = 4.5 V	12	5	-	15	-	18	-	ns
t _h	hold time	Dn to CP; see Figure 9								
		V _{CC} = 4.5 V	3	-4	-	3	-	3	-	ns
f _{max}	maximum	CP input; see Figure 7								
	frequency	V _{CC} = 4.5 V	30	56	-	24	-	20	-	MHz
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	36	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	per package; [3] $V_1 = GND$ to $V_{CC} - 1.5 V$	-	23	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit, see Figure 10

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

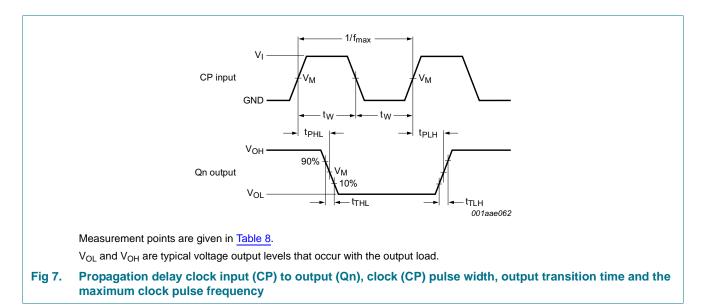
 $\label{eq:ttilde} [2] \quad t_t \text{ is the same as } t_{THL} \text{ and } t_{TLH}.$

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma \ (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;


 $\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.

Octal D-type flip-flop with reset; positive-edge trigger

11. Waveforms

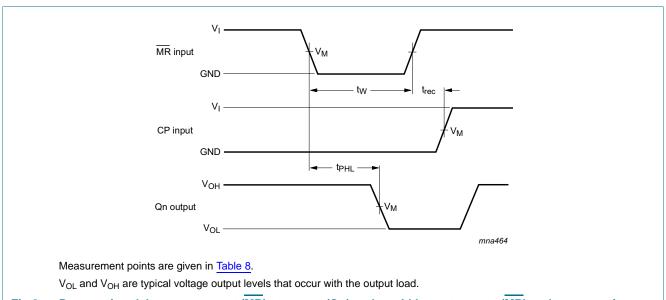
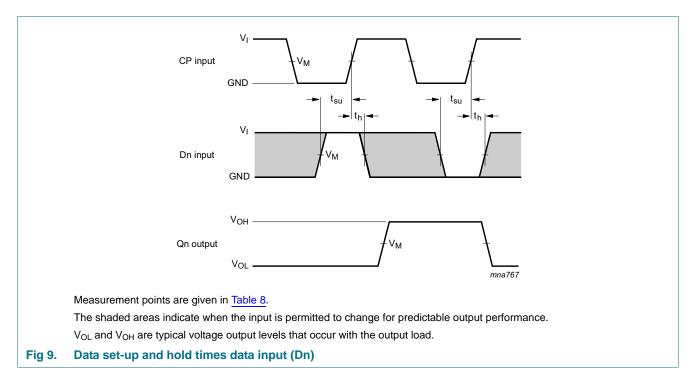



Fig 8. Propagation delay master reset (MR) to output (Qn), pulse width master reset (MR) and recovery time master reset (MR) to clock (CP)

74HC273; 74HCT273

Octal D-type flip-flop with reset; positive-edge trigger

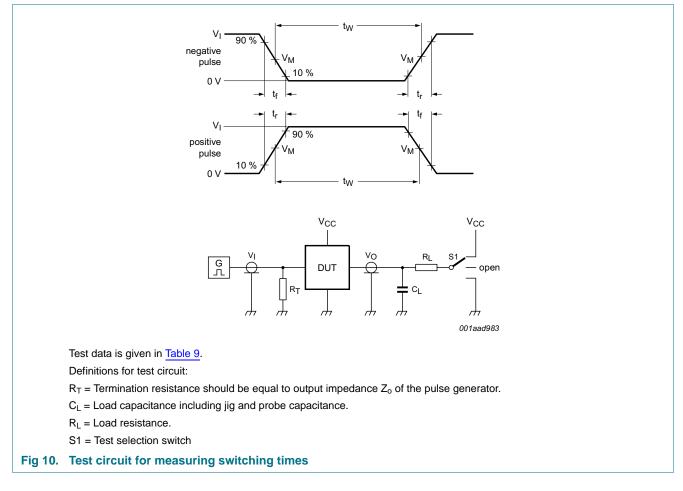


Table 8.Measurement points

Туре	Input	Output	
	VI	V _M	V _M
74HC273	V _{CC}	0.5V _{CC}	0.5V _{CC}
74HCT273	3 V	1.3 V	1.3 V

74HC273; 74HCT273

Octal D-type flip-flop with reset; positive-edge trigger

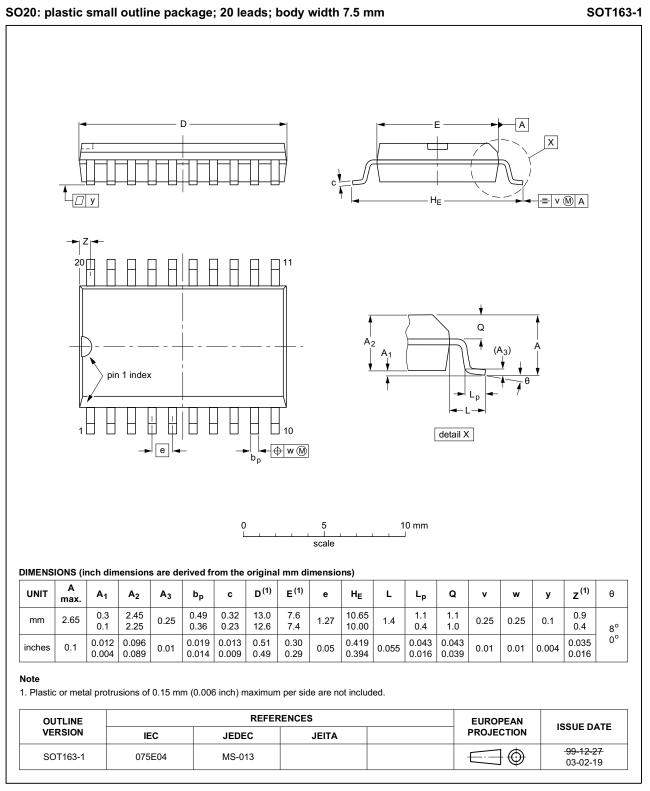


Table 9.Test data

Туре	Input		Load	S1 position	
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}
74HC273	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open
74HCT273	3 V	6 ns	15 pF, 50 pF	1 kΩ	open

Octal D-type flip-flop with reset; positive-edge trigger

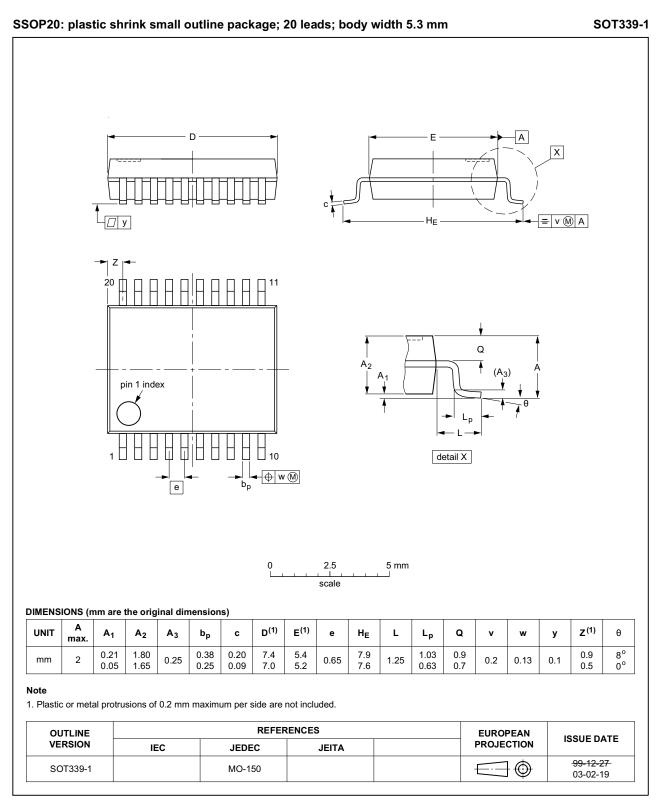

12. Package outline

Fig 11. Package outline SOT163-1 (SO20)

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with reset; positive-edge trigger

Fig 12. Package outline SOT339-1 (SSOP20)

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with reset; positive-edge trigger

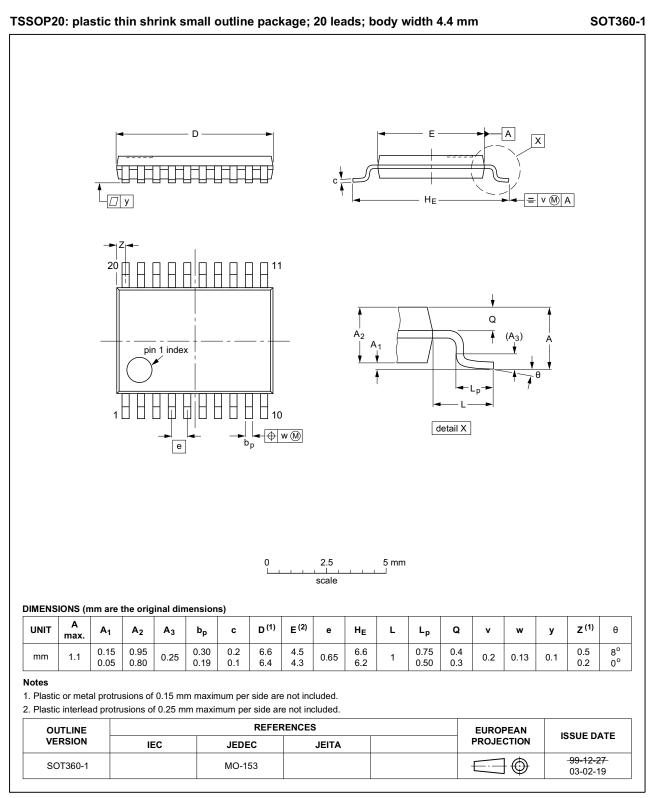
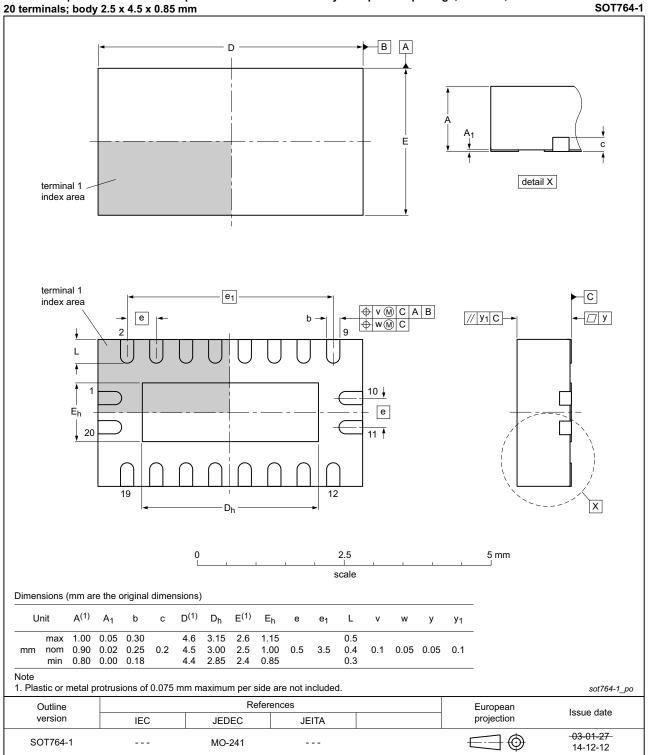



Fig 13. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with reset; positive-edge trigger

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads;

Fig 14. Package outline SOT764-1 (DHVQFN20)

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with reset; positive-edge trigger

13. Abbreviations

Table 10. Abbreviations		
Acronym	Description	
CMOS	Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC_HCT273 v.5	20160226	Product data sheet	-	74HC_HCT273 v.4	
Modifications:	Type numbers 74HC273N and 74HCT273N (SOT146-1) removed.				
74HC_HCT273 v.4	20130610	Product data sheet	-	74HC_HCT273 v.3	
Modifications:	• The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors.				
	 Legal texts have been adapted to the new company name where appropriate. 				
74HC_HCT273 v.3	20060124	Product data sheet	-	74HC_HCT273_CNV v.2	
74HC_HCT273_CNV v.2	19970827	Product specification	-	-	

Octal D-type flip-flop with reset; positive-edge trigger

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Product data sheet

Octal D-type flip-flop with reset; positive-edge trigger

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74HC273; 74HCT273

Octal D-type flip-flop with reset; positive-edge trigger

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 7
11	Waveforms 10
12	Package outline 13
13	Abbreviations 17
14	Revision history 17
15	Legal information 18
15.1	Data sheet status 18
15.2	Definitions 18
15.3	Disclaimers
15.4	Trademarks 19
16	Contact information 19
17	Contents 20