

General Description

The MAX3678 evaluation kit (EV kit) is a fully assembled and tested demonstration board that simplifies evaluation of the MAX3678 low-jitter frequency synthesizer with intelligent dynamic switching (IDS). The EV kit includes slide switches to allow easy selection of different modes of operation. Clock I/Os have SMA connectors and are AC-coupled to simplify connection to test equipment. The EV kit is powered by a +3.3V supply and uses LEDs for signal status indicators.

Features

- ♦ Fully Assembled and Tested
- **♦ Slide Switches for Mode Control**
- ♦ SMA Connectors and AC-Coupled Clock I/Os
- ♦ Powered by +3.3V Supply
- ♦ LED Signal Status Indicators

Ordering Information

PART	TYPE
MAX3678EVKIT+	EV Kit

⁺Denotes lead-free/RoHS compliant.

Component List

DESIGNATION	QTY	DESCRIPTION
C1, C6, C7 C11–C13, C16, C18–C22, C24–C27, C29, C30, C32–C39, C41, C42, C46–C50, C62, C63	35	0.1µF±10% ceramic capacitors (0402)
C2	1	33μF ±5% tantalum capacitor (B case)
C3	1	2.2µF ±10% ceramic capacitor (0805)
C4	1	0.1µF ±10% ceramic capacitor (0603)
C5	1	0.01µF±10% ceramic capacitor (0603)
C28	1	0.22µF±10% ceramic capacitor (0402)
D1, D3, D5, D6, D8	5	Green SMD LEDs (1206) Panasonic LNJ311G8PRA
D2, D4, D7	3	Red SMD LEDs (1206) Panasonic LNJ211R8ARA
J1, J2, J5–J12, J14, J15, J19, J20, J22–J29, J44, J45	24	SMA connectors, edge-mount, tab center Johnson 142-0701-851
J4, J13	2	Test points Keystone 5000
L13	1	4.7µH ±20% inductor Taiyo Yuden CBC3225T4R7M

-				
DESIGNATION	QTY	DESCRIPTION		
R1–R5, R15, R16, R17, R37–R46	18	143Ω ±1% resistors (0402)		
R6-R11	6	49.9Ω ±1% resistors (0402)		
R12, R13, R14, R18–R22	8	332Ω ±1% resistors (0603)		
R23, R24, R25	3	10kΩ ±1% resistors (0603)		
S1	1	Switch, momentary, SPST-NO Panasonic EVQQ2S02W		
S2–S5	4	Switches, slide, SPDT Copal Electronics CUS-12TB		
S6, S7, S8	3	Switches, slide, SP4T Copal Electronics CUS-14TB		
S9, S10	2	Switches, slide, SP3T Copal Electronics CUS-13TB		
TP1, TP3, TP20	3	Test points Keystone 5000		
U1–U4	4	Dual inverters (6 SC-70) TI SN74LVC2G14DCKR		
U7	1	Low-jitter, frequency synthesizer with intelligent dynamic switching (56 TQFN) Microsemi MAX3678UTN+		
None	1	PCB: MAX3678 EV Kit+ Circuit Board, Rev A		

Quick Start

1) Set the slide switches to the following settings:

PLL_BYPASS = NORMAL

SEL_CLK = REFCLK0

IDS_MODE = AUTO

DM = 133.33M

DA = 133.33M

DB = 133.33M

 $\overline{OUTA}_{EN} = A0, A1$

 $\overline{\text{OUTB}}_{\text{EN}} = \text{B0}$

FB SEL = INTERNAL

- 2) Connect a +3.3V supply to VCC (J13) and GND (J4). Set the supply current limit to 450mA.
- 3) Using SMA cables, connect a low-jitter 133.33MHz differential clock source to the REFCLK0 input. Verify that the green LEDs switch on for CLK_SELECTED (REFCLK0), INOFAIL, and LOCK.
- 4) Using SMA cables, connect the OUTA0 output to test equipment. Terminate all unused enabled outputs (OUTB0 and OUTA1).

_Detailed Description

The MAX3678 EV kit simplifies evaluation by providing the hardware needed to evaluate all the MAX3678 functions. Table 1 contains functional descriptions for the switches and indicators.

Clock Inputs

The clock inputs (REFCLK0, REFCLK1, FB_IN) are AC-coupled at the SMA connectors and have on-board 100Ω differential terminations. For optimal jitter performance it is critical to use a low-jitter, differential, square-wave clock source. If such a source is not available, the clock inputs can be driven with a single-ended sinusoidal or square-wave clock source for functional testing.

Clock Outputs

The clock outputs (OUTA[3:0], OUTB[4:0]) have onboard DC-biasing and are AC-coupled at the SMA connectors to allow direct connection to 50Ω -terminated test equipment. Unused outputs should be disabled (using switches S9 and S10) or have 50Ω terminations placed on the SMA connectors.

Table 1. Switch and Indicator Descriptions

COMPONENT	NAME	FUNCTION		
S1	MASTER RESET	Momentary switch to reset internal dividers. Not required at power-up. If the output divider settings (DA, DB) are changed on the fly, a reset is required to phase align the outputs.		
S2	PLL_BYPASS	Selects normal PLL operation or PLL bypass.		
S3	SEL_CLK	Selects the reference clock input (see IDS_MODE).		
S4	IDS_MODE	Selects IDS mode of operation. Auto mode allows IDS to automatically select the reference clock input. Manual mode forces IDS to select the reference clock input selected by SEL_CLK.		
S5	FB_SEL	Selects internal or external feedback for the PLL. If external is selected, connect any of the A-group or B-group outputs to the FB_IN input. If DA ≠ DB, a B-group output must be used.		
S6	DM	Selects the frequency of the reference clock inputs.		
S7	DA	Selects the frequency of the A-group clock outputs.		
S8	DB	Selects the frequency of the B-group clock outputs.		
S9	OUTA_EN	Selects which A-group outputs are enabled (see note).		
S10	OUTB_EN	Selects which B-group outputs are enabled (see note).		
D1, D2	INOFAIL	REFCLK0 failure indicator (green = pass, red = fail).		
D3, D4	ĪN1FAIL	REFCLK1 failure indicator (green = pass, red = fail).		
D5, D6	CLK_SELECTED	Indicates which reference clock input is being used by the PLL.		
D7, D8	LOCK	PLL lock indicator (green = PLL locked, red = PLL not locked).		
TP1	BUSY	Test point for BUSY indicator. Low indicates IDS is busy switching reference clocks.		

Note: Setting OUTA_EN = "—" and OUTB_EN = "B0" at the same time enables a factory test mode and is not a valid mode of operation.

2 ______

3

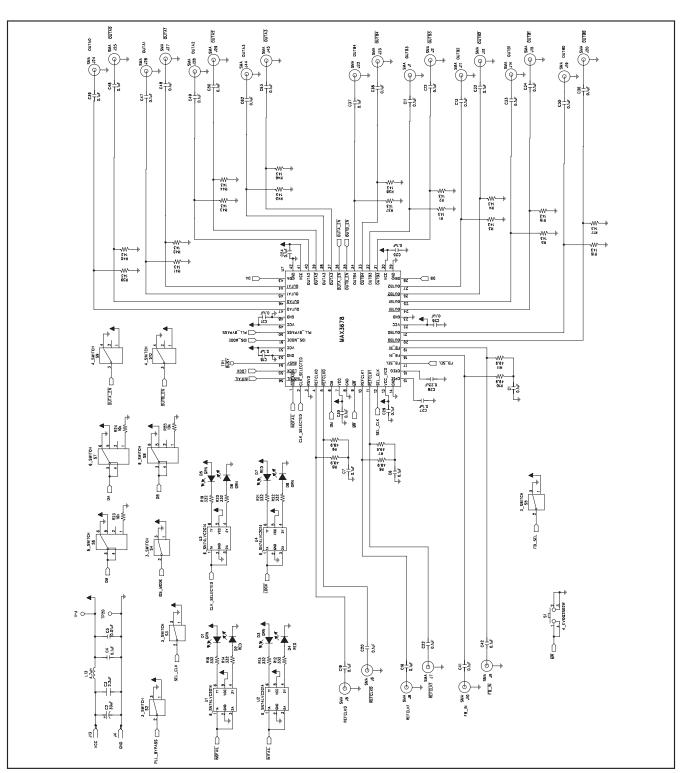


Figure 1. MAX3678 EV Kit Schematic

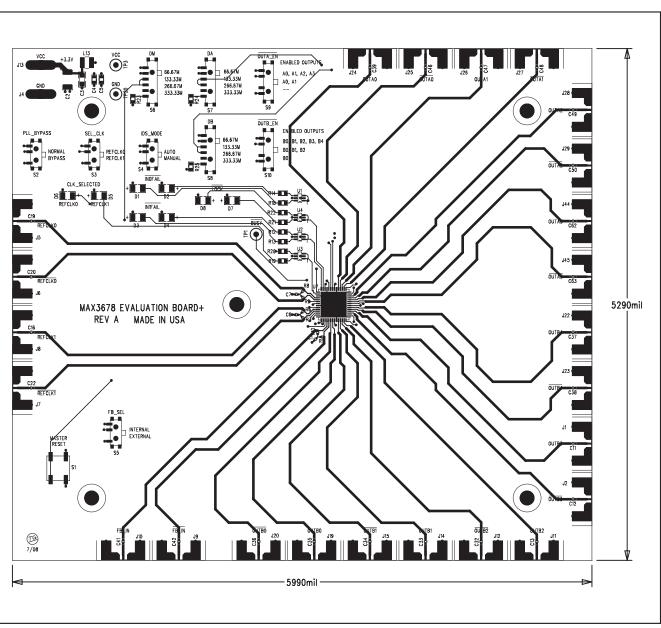


Figure 2. MAX3678 EV Kit Component Placement Guide—Component Side

4 _____

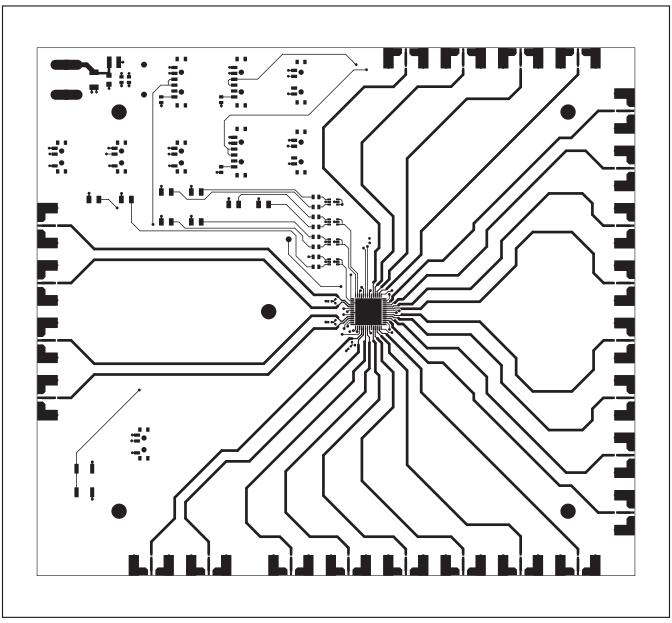


Figure 3. MAX3678 EV Kit PCB Layout—Component Side

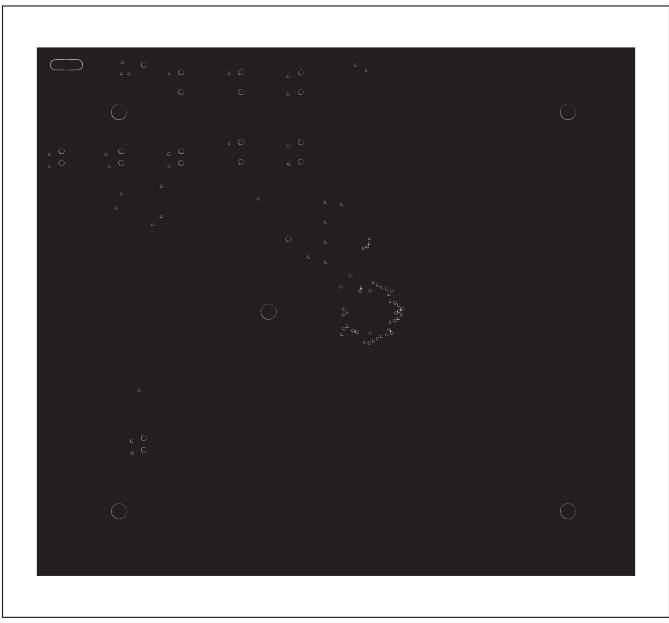


Figure 4. MAX3678 EV Kit PCB Layout—Ground Plane

6 _____

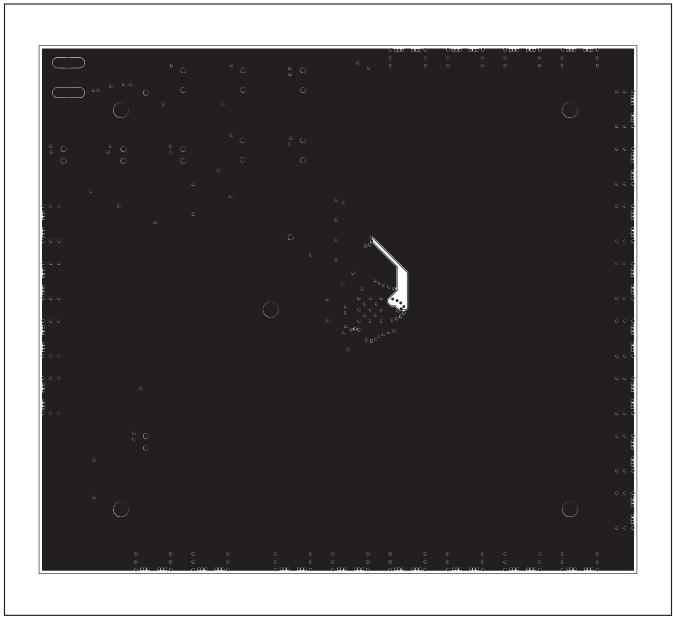


Figure 5. MAX3678 EV Kit PCB Layout—Power Plane

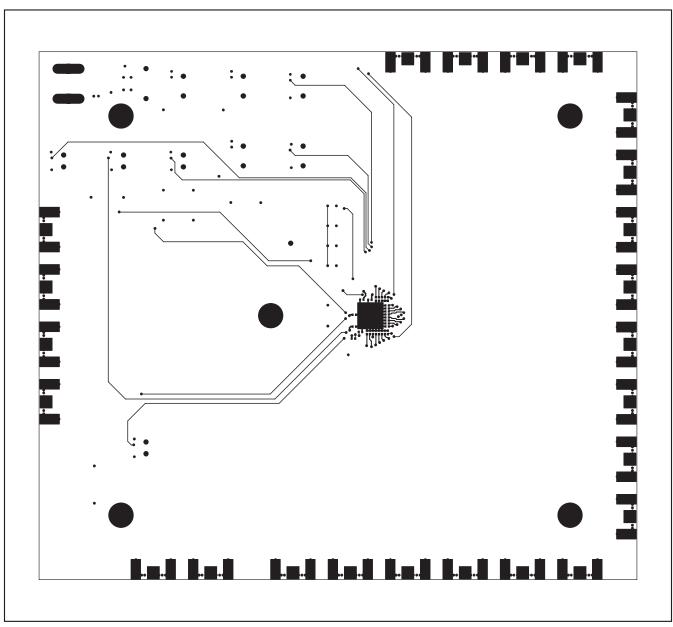


Figure 6. MAX3678 EV Kit PCB Layout—Solder Side

8 _____

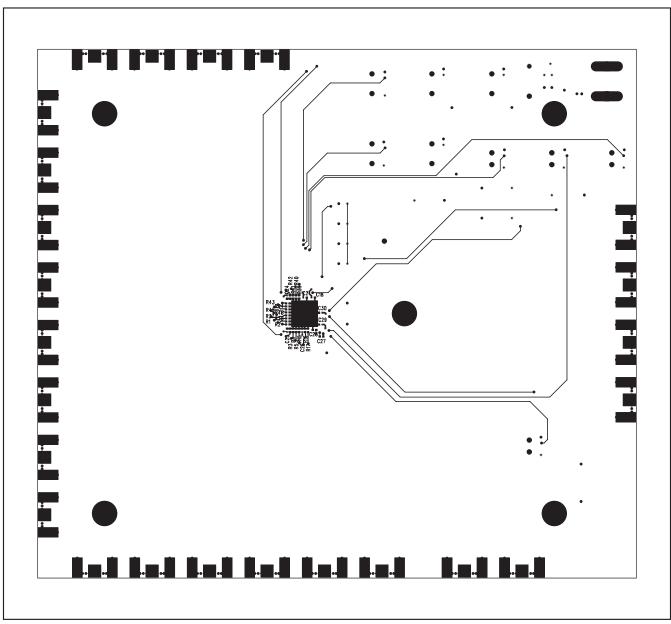


Figure 7. MAX3678 EV Kit Component Placement Guide—Solder Side

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.