MC68HC908GR8 MC68HC908GR4 **Data Sheet** M68HC08 Microcontrollers MC68HC908GR8 Rev. 7 10/2006 # MC68HC908GR8 MC68HC908GR4 **Data Sheet** To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://freescale.com/ Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc., 2006. All rights reserved. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # **List of Chapters** | Chapter 1 General Description | 19 | |--|-----| | Chapter 2 Memory Map | 27 | | Chapter 3 Low-Power Modes | 37 | | Chapter 4 Resets and Interrupts | 43 | | Chapter 5 Analog-to-Digital Converter (ADC) | 55 | | Chapter 6 Break Module (BRK) | 63 | | Chapter 7 Clock Generator Module (CGMC) | 69 | | Chapter 8 Configuration Register (CONFIG) | 89 | | Chapter 9 Computer Operating Properly (COP) | 93 | | Chapter 10 Central Processing Unit (CPU) | 97 | | Chapter 11 Flash Memory | 109 | | Chapter 12 External Interrupt (IRQ) | 117 | | Chapter 13 Keyboard Interrupt (KBI) | 121 | | Chapter 14 Low-Voltage Inhibit (LVI) | 127 | | Chapter 15 Monitor ROM (MON) | 131 | | Chapter 16 Input/Output Ports (I/O) | 143 | | Chapter 17 Random-Access Memory (RAM) | 159 | | Chapter 18 Serial Communications Interface (SCI) | 161 | | Chapter 19 System Integration Module (SIM) | 187 | | Chapter 20 Serial Peripheral Interface (SPI) | 205 | | Chapter 21 Timebase Module (TBM) | 225 | | Chapter 22 Timer Interface Module (TIM) | 229 | | Chapter 23 Electrical Specifications | 247 | | Chapter 24 Mechanical Specifications | 269 | | Chapter 25 Ordering Information | 281 | | | | **List of Chapters** # **Table of Contents** # Chapter 1 General Description | 1.1 | Introduction | 19 | |----------------|---|----| | 1.2 | Features | | | 1.2.1 | Standard Features of the MC68HC908GR8 | 19 | | 1.2.2 | Features of the CPU08 | 20 | | 1.3 | MCU Block Diagram | 21 | | 1.4 | Pin Assignments | 22 | | 1.5 | Pin Functions | | | 1.5.1 | Power Supply Pins (V _{DD} and V _{SS}) | | | 1.5.2 | Oscillator Pins (OSC1 and OSC2) | | | 1.5.3 | External Reset Pin (RST) | | | 1.5.4
1.5.5 | External Interrupt Pin (IRQ) | | | 1.5.6 | CGM Power Supply Pins (V _{DDA} and V _{SSA}) | | | 1.5.7 | Analog Power Supply/Reference Pins (V _{DDAD} /V _{REFH} and V _{SSAD} /V _{REFL}) | | | 1.5.8 | Port A Input/Output (I/O) Pins (PTA3/KBD3–PTA0/KBD0) | | | 1.5.9 | Port B I/O Pins (PTB5/AD5–PTB0/AD0) | | | 1.5.10 | Port C I/O Pins (PTC1–PTC0) | 25 | | 1.5.11 | Port D I/O Pins (PTD6/T2CH0–PTD0/SS) | | | 1.5.12 | Port E I/O Pins (PTE1/RxD–PTE0/TxD) | 26 | | | Chapter 2 | | | | Memory Map | | | 2.1 | Introduction | 27 | | 2.2 | Unimplemented Memory Locations | 27 | | 2.3 | Reserved Memory Locations | 27 | | 2.4 | Input/Output (I/O) Section | 27 | | 2.5 | Memory Map | 28 | | 2.6 | Register Summary | 29 | | 2.7 | Vector Addresses. | | | | | | | | Chapter 3 Low-Power Modes | | | 0.4 | | 37 | | 3.1
3.1.1 | Introduction | _ | | 3.1.2 | Stop Mode | | | 3.2 | Analog-to-Digital Converter (ADC) | | | 3.2.1 | Wait Mode | | | 3.2.2 | Stop Mode | | | | | | | | | | #### **Table of Contents** | 3.3 | Break Module (BRK) | 38 | |---------|--|----| | 3.3.1 | Wait Mode | 38 | | 3.3.2 | Stop Mode | 38 | | 3.4 | Central Processor Unit (CPU) | 38 | | 3.4.1 | Wait Mode | | | 3.4.2 | Stop Mode | | | 3.5 | Clock Generator Module (CGM) | | | 3.5.1 | Wait Mode | | | 3.5.2 | Stop Mode | | | 3.6 | Computer Operating Properly Module (COP) | | | 3.6.1 | Wait Mode | | | 3.6.2 | Stop Mode | | | 3.7 | | | | 3.7.1 | External Interrupt Module (IRQ) | | | _ | Wait Mode | | | 3.7.2 | Stop Mode | | | 3.8 | Keyboard Interrupt Module (KBI) | | | 3.8.1 | Wait Mode | | | 3.8.2 | Stop Mode | | | 3.9 | Low-Voltage Inhibit Module (LVI) | | | 3.9.1 | Wait Mode | | | 3.9.2 | Stop Mode | | | 3.10 | Serial Communications Interface Module (SCI) | | | 3.10.1 | Wait Mode | 40 | | 3.10.2 | Stop Mode | 40 | | 3.11 | Serial Peripheral Interface Module (SPI) | 40 | | 3.11.1 | Wait Mode | 40 | | 3.11.2 | Stop Mode | 40 | | 3.12 | Timer Interface Module (TIM1 and TIM2) | 40 | | 3.12.1 | Wait Mode | 40 | | 3.12.2 | Stop Mode | 41 | | 3.13 | Timebase Module (TBM) | 41 | | 3.13.1 | Wait Mode | | | 3.13.2 | Stop Mode | | | 3.14 | • | 41 | | 0.11 | ZXIIII G Clop Mode | | | | Chapter 4 | | | | Resets and Interrupts | | | 4.1 | Introduction | 43 | | 4.2 | Resets | 43 | | 4.2.1 | Effects | | | 4.2.2 | External Reset | | | 4.2.3 | Internal Reset. | | | 4.2.3.1 | Power-On Reset | | | 4.2.3.2 | | | | 4.2.3.3 | | | | 4.2.3.4 | | | | 4.2.3.5 | 3 1 | | | 4.2.4 | SIM Reset Status Register | | | | | | | 4.3 | Interrupts | . 46 | |--|---|--| | 4.3.1 | Effects | . 47 | | 4.3.2 | Sources | . 49 | | 4.3.2.1 | SWI Instruction | . 50 | | 4.3.2.2 | Break Interrupt | . 51 | | 4.3.2.3 | IRQ Pin | . 51 | | 4.3.2.4 | CGM (Clock Generator Module) | . 51 | | 4.3.2.5 | TIM1 (Timer Interface Module 1) | | | 4.3.2.6 | TIM2 (Timer Interface Module 2) | . 51 | | 4.3.2.7 | SPI (Serial Peripheral Interface) | . 51 | | 4.3.2.8 | SCI (Serial Communications Interface) | | | 4.3.2.9 | KBD0-KBD4 Pins | . 53 | | 4.3.2.1 | 0 ADC (Analog-to-Digital Converter) | . 53 | | 4.3.2.1 | TBM (Timebase Module) | . 53 | | 4.3.3 | Interrupt Status Registers | | | 4.3.3.1 | Interrupt Status Register 1 | | | 4.3.3.2 | · · · · · · · · · · · · · · · · · · · | | | 4.3.3.3 | Interrupt Status Register 3 | . 54 | | | Chapter 5 | | | | Chapter 5 Analog-to-Digital Converter (ADC) | | | | AUGIOU-IU-IUIIGI GOUVEHEI (ALAG) | | | - 4 | | | | 5.1 | Introduction | | | 5.2 | Introduction | . 55 | | 5.2
5.3 | Introduction | . 55
. 55 | | 5.2
5.3
5.3.1 | Introduction Features. Functional Description ADC Port I/O Pins | . 55
. 55
. 55 | | 5.2
5.3
5.3.1
5.3.2 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion | 55
55
55
56 | | 5.2
5.3
5.3.1
5.3.2
5.3.3 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time | 55
55
55
56 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion. | 55
55
55
56
56 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision | . 55
. 55
. 56
. 56
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4 | Introduction Features Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts | . 55
. 55
. 56
. 56
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision | . 55
. 55
. 56
. 56
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode | . 55
. 55
. 56
. 56
. 57
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5 | Introduction Features Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes | . 55
. 55
. 56
. 56
. 57
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5.1 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode | . 55
. 55
. 56
. 56
. 57
. 57
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5.1
5.5.2 | Introduction Features Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode I/O Signals | . 55
. 55
. 56
. 56
. 57
. 57
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5
5.5.1
5.5.2
5.6 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode | . 55
. 55
. 56
. 56
. 57
. 57
. 57
. 57
. 57 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5.1
5.5.2
5.6
5.6.1 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode I/O Signals ADC Analog Power Pin (V _{DDAD})/ADC Voltage Reference High Pin (V _{REFH}) | . 55
.
55
. 56
. 56
. 57
. 57
. 57
. 57
. 57
. 58
. 58 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode I/O Signals ADC Analog Power Pin (V _{DDAD})/ADC Voltage Reference High Pin (V _{REFH}) ADC Analog Ground Pin (V _{SSAD})/ADC Voltage Reference Low Pin (V _{REFL}) | . 55
. 55
. 56
. 56
. 57
. 57
. 57
. 57
. 58
. 58 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3 | Introduction Features Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode I/O Signals ADC Analog Power Pin (V _{DDAD})/ADC Voltage Reference High Pin (V _{REFH}) ADC Analog Ground Pin (V _{SSAD})/ADC Voltage Reference Low Pin (V _{REFL}) ADC Voltage In (V _{ADIN}) | . 55
. 55
. 55
. 56
. 56
. 57
. 57
. 57
. 57
. 58
. 58
. 58 | | 5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3
5.7 | Introduction Features. Functional Description ADC Port I/O Pins Voltage Conversion Conversion Time Conversion Accuracy and Precision Interrupts Low-Power Modes Wait Mode Stop Mode I/O Signals ADC Analog Power Pin (V _{DDAD})/ADC Voltage Reference High Pin (V _{REFH}) ADC Analog Ground Pin (V _{SSAD})/ADC Voltage Reference Low Pin (V _{REFL}) ADC Voltage In (V _{ADIN}) | . 55
. 55
. 56
. 56
. 57
. 57
. 57
. 57
. 58
. 58
. 58
. 58 | #### **Table of Contents** # Chapter 6 Break Module (BRK) | 6.1 | Introduction | 63 | |--------|--|----| | 6.2 | Features | 63 | | 6.3 | Functional Description | 63 | | 6.3.1 | Flag Protection During Break Interrupts | 63 | | 6.3.2 | CPU During Break Interrupts | 64 | | 6.3.3 | TIMI and TIM2 During Break Interrupts | 65 | | 6.3.4 | COP During Break Interrupts | 65 | | 6.4 | Low-Power Modes | 65 | | 6.4.1 | Wait Mode | | | 6.4.2 | Stop Mode | 65 | | 6.5 | Break Module Registers | 65 | | 6.5.1 | Break Status and Control Register | | | 6.5.2 | Break Address Registers | | | 6.5.3 | Break Status Register | | | 6.5.4 | Break Flag Control Register | 67 | | | Chapter 7 | | | | Clock Generator Module (CGMC) | | | 7.1 | Introduction | 69 | | 7.2 | Features | 69 | | 7.3 | Functional Description | | | 7.3.1 | Crystal Oscillator Circuit. | | | 7.3.2 | Phase-Locked Loop Circuit (PLL) | | | 7.3.3 | PLL Circuits | | | 7.3.4 | Acquisition and Tracking Modes | 72 | | 7.3.5 | Manual and Automatic PLL Bandwidth Modes | 72 | | 7.3.6 | Programming the PLL | | | 7.3.7 | Special Programming Exceptions | | | 7.3.8 | Base Clock Selector Circuit | | | 7.3.9 | CGMC External Connections | | | 7.4 | I/O Signals | 77 | | 7.4.1 | Crystal Amplifier Input Pin (OSC1) | | | 7.4.2 | Crystal Amplifier Output Pin (OSC2) | | | 7.4.3 | External Filter Capacitor Pin (CGMXFC) | | | 7.4.4 | PLL Analog Power Pin (V _{DDA}) | | | 7.4.5 | PLL Analog Ground Pin (V _{SSA}) | 78 | | 7.4.6 | Oscillator Enable Signal (SIMOSCEN) | | | 7.4.7 | Oscillator Stop Mode Enable Bit (OSCSTOPENB) | | | 7.4.8 | Crystal Output Frequency Signal (CGMXCLK) | | | 7.4.9 | CGMC CRI Linterport (CGMINIT) | | | 7.4.10 | CGMC CPU Interrupt (CGMINT) | | | 7.5 | CGMC Registers | | | 7.5.1 | PLL Control Register | | | 7.5.2 | PLL Bandwidth Control Register | | | 7.5.3 | PLL Multiplier Select Register High | ಶ3 | | 7.5.4 | PLL Multiplier Select Register Low | 83 | |--------|--|----| | 7.5.5 | PLL VCO Range Select Register | 84 | | 7.5.6 | PLL Reference Divider Select Register | 84 | | 7.6 | Interrupts | 85 | | 7.7 | Special Modes | 85 | | 7.7.1 | Wait Mode | | | 7.7.2 | Stop Mode | 86 | | 7.7.3 | CGMC During Break Interrupts | 86 | | 7.8 | Acquisition/Lock Time Specifications | 86 | | 7.8.1 | Acquisition/Lock Time Definitions | | | 7.8.2 | Parametric Influences on Reaction Time | 87 | | 7.8.3 | Choosing a Filter | 87 | | | Chapter 8 | | | | Configuration Register (CONFIG) | | | 8.1 | Introduction | | | 8.2 | Functional Description | 89 | | | Chapter 9 | | | | Computer Operating Properly (COP) | | | 9.1 | Introduction | 93 | | 9.2 | Functional Description | 93 | | 9.3 | I/O Signals | 94 | | 9.3.1 | CGMXCLK | 94 | | 9.3.2 | STOP Instruction | | | 9.3.3 | COPCTL Write | | | 9.3.4 | Power-On Reset | | | 9.3.5 | Internal Reset | | | 9.3.6 | Reset Vector Fetch | | | 9.3.7 | COPPS (COP Parts Calcat) | | | 9.3.8 | COPRS (COP Rate Select) | | | 9.4 | COP Control Register | | | 9.5 | Interrupts | | | 9.6 | Monitor Mode | | | 9.7 | Low-Power Modes | | | 9.7.1 | Wait Mode | | | 9.7.2 | Stop Mode | | | 9.8 | COP Module During Break Mode | 96 | | | Chapter 10 | | | | Central Processing Unit (CPU) | | | 10.1 | Features | 97 | | 10.2 | CPU Registers | 97 | | 10.2.1 | Accumulator | | | 10.2.2 | Index Register | | | 10.2.3 | Stack Pointer | 99 | | | | | MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 | | | Contents | |--|--|----------| | | | | | | | | | | | | | 10.2.4 | Program Counter | . 99 | |----------------|---|------| | 10.2.5 | Condition Code Register | 100 | | 10.3 | Arithmetic/Logic Unit (ALU) | 101 | | 10.4 | Low-Power Modes | | | 10.4.1 | Wait Mode | | | 10.4.2 | Stop Mode | | | 10.5 | CPU During Break Interrupts | | | 10.6 | Instruction Set Summary | | | 10.7 | Opcode Map | 107 | | | Chapter 11 Flash Memory | | | 11.1 | Introduction | 100 | | 11.2 | Functional Description | | | 11.3 | FLASH Control Register | | | 11.4 | FLASH Page Erase Operation | | | 11.5 | FLASH Mass Erase Operation | | | 11.6 | FLASH Program/Read Operation | | | 11.7 | FLASH Block Protection | | | 11.7.1 | FLASH Block Protect Register | | | 11.8 | Wait Mode | | | 11.9 | STOP Mode | | | | | | | | Chapter 12 External Interrupt (IRQ) | | | 12.1 | Introduction | 117 | | 12.2 | Features | 117 | | 12.3 | Functional Description | 117 | | 12.4 | TRQ Pin | 119 | | 12.5 | IRQ Module During Break Interrupts | 119 | | 12.6 | IRQ Status and Control Register | 120 | | | Chapter 13 | | | | Keyboard Interrupt (KBI) | | | 13.1 | Introduction | 121 | | 13.2 | Features | 121 | | 13.3 | Functional Description | 121 | | 13.4 | Keyboard Initialization | 123 | | 13.5 | Low-Power Modes | | | 13.5.1 | Wait Mode | | | 13.5.2 | Stop Mode | | | 13.6 | Keyboard Module During Break Interrupts | | | 13.7
13.7.1 | I/O Registers | | | 13.7.1 | Keyboard Interrupt Enable Register | | | | | | # Chapter 14 Low-Voltage Inhibit (LVI) | 14.1 | Introduction | 127 | |--------|-------------------------------------|-----| | 14.2 | Features | 127 | | 14.3 | Functional Description | 127 | | 14.3.1 | Polled LVI Operation | | | 14.3.2 | Forced Reset Operation | 128 | | 14.3.3 | Voltage Hysteresis Protection | 128 | | 14.3.4 | LVI Trip Selection | 129 | | 14.4 | LVI Status Register | 129 | | 14.5 | LVI Interrupts | 129 | | 14.6 | Low-Power Modes | 129 | | 14.6.1 | Wait Mode | | | 14.6.2 | Stop Mode | 129 | | | 01 1 4 | | | | Chapter 15 | | | | Monitor ROM (MON) | | | 15.1 | Introduction | | | 15.2 | Features | 131 | | 15.3 | Functional Description | | | 15.3.1 | Entering Monitor Mode | | | 15.3.2 | Data Format | | | 15.3.3 | Break Signal | | | 15.3.4 | Baud Rate | | | 15.3.5 | Commands | | | 15.4 | Security | 140 | | | Chapter 16 | | | | Input/Output Ports (I/O) | | | 16.1 | Introduction | 143 | | 16.2 | Port A. | | | 16.2.1 | Port A Data Register | | | 16.2.2 | Data Direction Register A | | | 16.2.3 | Port A Input Pullup Enable Register | | | 16.3 | Port B | 148 | | 16.3.1 | Port B Data Register | | | 16.3.2 | Data Direction Register B | | | 16.4 | Port C | 150 | | 16.4.1 | Port C Data Register | | | 16.4.2 | Data Direction Register C | 150 | | 16.4.3 | Port C Input Pullup Enable Register | 152 | | 16.5 | Port D | 152 | | 16.5.1 | Port D Data Register | 152 | | 16.5.2 | Data Direction Register D | | | 16.5.3 | Port D Input Pullup Enable Register | 155 | | _ | | | • | _ | | | |----|---|---|-----|-----|------|------| | 12 | h | 0 | Ot. | Cor | 1tor | nte. | | | | | | | | | | 16.6 | Port E | | |---------|---------------------------------------|-------| | 16.6.1 | Port E Data Register | | | 16.6.2 | Data Direction Register E | . 156 | | | Chapter 17 | | | | Random-Access Memory (RAM) | | | 17.1 | Introduction | . 159 | | 17.2 | Functional Description | . 159 | | | | | | | Chapter 18 | | | | Serial Communications Interface (SCI) | | | 18.1 | Introduction | . 161 | | 18.2 | Features | . 161 | | 18.3 | Pin Name Conventions | . 162 | | 18.4 | Functional Description | . 162 | | 18.4.1 | Data Format | | | 18.4.2 | Transmitter | | | 18.4.2. | | | | 18.4.2. | | | | 18.4.2. | 3 Break Characters | . 166 | | 18.4.2. | 4 Idle Characters | . 167 | | 18.4.2. | 5 Inversion of Transmitted Output | . 167 | | 18.4.2. | 6 Transmitter Interrupts | . 167 | | 18.4.3 | Receiver | . 167 | | 18.4.3. | | . 168 | | 18.4.3. | · · · · · · · · · · · · · · · · · · · | | | 18.4.3. | 1 3 | . 169 | | 18.4.3. | | | | 18.4.3. | | | | 18.4.3. | | | | 18.4.3. | | | | 18.4.3. | · · · · · · · · · · · · · · · · · · · | | | 18.4.3. | | | | 18.4.3. | • | | | 18.5 | Low-Power Modes | | | 18.5.1 | Wait Mode | | | 18.5.2 | Stop Mode | | | 18.6 | SCI During Break Module Interrupts | | | 18.7 | I/O Signals | | | 18.7.1 | PE2/TxD (Transmit Data) | | | 18.7.2 | PE1/RxD (Receive Data) | . 175 | | 18.8 | I/O Registers | . 175 | | 18.8.1 | SCI Control Register 1 | . 175 | | 18.8.2 | SCI Control Register 2 | . 177 | | 18.8.3 | SCI Control Register 3 | | | 18.8.4 | SCI Status Register 1 | | | 18.8.5 | SCI Status Register 2 | . 182 | | 18.8.6 | SCI Data Register | 183 | |------------------
---|-----| | 18.8.7 | SCI Baud Rate Register | 183 | | | Chapter 19 | | | | System Integration Module (SIM) | | | 19.1 | Introduction | 187 | | 19.2 | SIM Bus Clock Control and Generation. | | | 19.2.1 | Bus Timing | | | 19.2.2 | Clock Startup from POR or LVI Reset | | | 19.2.3 | Clocks in Stop Mode and Wait Mode | | | 19.3 | Reset and System Initialization | | | 19.3.1 | External Pin Reset | | | 19.3.2 | Active Resets from Internal Sources | | | 19.3.2. | | | | 19.3.2. | | | | 19.3.2. | | | | 19.3.2. | 4 Illegal Address Reset | 193 | | 19.3.2. | | | | 19.3.2. | 6 Monitor Mode Entry Module Reset (MODRST) | 193 | | 19.4 | SIM Counter | 193 | | 19.4.1 | SIM Counter During Power-On Reset | 193 | | 19.4.2 | SIM Counter During Stop Mode Recovery | | | 19.4.3 | SIM Counter and Reset States | 194 | | 19.5 | Exception Control | 194 | | 19.5.1 | Interrupts | | | 19.5.1. | · | | | 19.5.1. | | | | 19.5.1. | · · · · · · · · · · · · · · · · · · · | | | 19.5.1. | J | | | 19.5.1. | | | | 19.5.1. | · · · · · · · · · · · · · · · · · · · | | | 19.5.2 | Reset | | | 19.5.3
19.5.4 | Break Interrupts | | | | Status Flag Protection in Break Mode | | | 19.6 | Low-Power Modes | | | 19.6.1 | Wait Mode | | | 19.6.2 | Stop Mode | | | 19.7 | SIM Registers | | | 19.7.1 | SIM Break Status Register | | | 19.7.2 | SIM Reset Status Register | | | 19.7.3 | SIM Break Flag Control Register | 203 | | | Chapter 20 | | | | Serial Peripheral Interface (SPI) | | | 20.1 | Introduction | 205 | | 20.2 | Features | | | 20.3 | Pin Name Conventions and I/O Register Addresses | | | | | _55 | | | | | MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Freescale Semiconductor 15 #### **Table of Contents** | 20.4 | Functional Description | 206 | |---------|-----------------------------------|-----| | 20.4.1 | Master Mode | 208 | | 20.4.2 | Slave Mode | 208 | | 20.5 | Transmission Formats | 209 | | 20.5.1 | Clock Phase and Polarity Controls | 209 | | 20.5.2 | Transmission Format When CPHA = 0 | 209 | | 20.5.3 | Transmission Format When CPHA = 1 | 210 | | 20.5.4 | Transmission Initiation Latency | 211 | | 20.6 | Queuing Transmission Data | 213 | | 20.7 | Error Conditions | 214 | | 20.7.1 | Overflow Error | 214 | | 20.7.2 | Mode Fault Error | 215 | | 20.8 | Interrupts | 217 | | 20.9 | Resetting the SPI | 218 | | 20.10 | Low-Power Modes | 218 | | 20.10.1 | 1 Wait Mode | 218 | | 20.10.2 | Stop Mode | 218 | | 20.11 | SPI During Break Interrupts | 219 | | 20.12 | I/O Signals | 219 | | 20.12.1 | | | | 20.12.2 | | | | 20.12.3 | SPSCK (Serial Clock) | 220 | | 20.12.4 | 4 SS (Slave Select) | 220 | | 20.13 | I/O Registers | 221 | | 20.13.1 | 1 SPI Control Register | 221 | | 20.13.2 | 2 SPI Status and Control Register | 222 | | 20.13.3 | 3 SPI Data Register | 224 | | | Chapter 21 | | | | Timebase Module (TBM) | | | 21.1 | Introduction | 225 | | 21.2 | Features | | | 21.3 | | 225 | | 21.4 | Interrupts | | | 21.5 | Low-Power Modes | | | 21.5.1 | | 226 | | 21.5.2 | Stop Mode | | | 21.6 | Timebase Register Description | | | 21.0 | Timebase riegister Description | 221 | | | Chapter 22 | | | | Timer Interface Module (TIM) | | | 22.1 | Introduction | 229 | | 22.2 | Features | 229 | | 22.3 | Pin Name Conventions | 229 | | 22.4 | Functional Description | 230 | |---|--|---| | 22.4.1 | TIM Counter Prescaler | 230 | | 22.4.2 | Input Capture | 230 | | 22.4.3 | Output Compare | 230 | | 22.4.3. | | | | 22.4.3. | | | | 22.4.4 | Pulse Width Modulation (PWM) | | | 22.4.4. | | | | 22.4.4. | $oldsymbol{\circ}$ | | | 22.4.4. | | | | 22.5 | Interrupts | | | 22.6 | Low-Power Modes | | | 22.6.1 | Wait Mode | | | 22.6.2 | Stop Mode | | | 22.7 | TIM During Break Interrupts | | | 22.8 | I/O Signals | | | 22.9 | I/O Registers | | | 22.9.1 | TIM Status and Control Register | | | 22.9.2 | TIM Counter Registers | | | 22.9.3 | TIM Counter Modulo Registers | | | 22.9.4 | TIM Channel Status and Control Registers | | | 22.9.5 | TIM Channel Registers | 244 | | | Chapter 23 | | | | onaptor 20 | | | | Electrical Specifications | | | 23.1 | · · · · · · · · · · · · · · · · · · · | 247 | | 23.1
23.2 | Electrical Specifications Absolute Maximum Ratings | | | 23.2 | Electrical Specifications Absolute Maximum Ratings | 248 | | 23.2
23.3 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics | 248
248 | | 23.2
23.3
23.4 | Electrical Specifications Absolute Maximum Ratings | 248
248
249 | | 23.2
23.3
23.4
23.5 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics | 248248249251 | | 23.2
23.3
23.4
23.5
23.6 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing | 248248249251253 | | 23.2
23.3
23.4
23.5
23.6
23.7 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing | 248
248
249
251
253
254 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics | 248
249
251
253
254
255 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics CGM Component Specifications | 248
249
251
253
254
255
255 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics CGM Component Specifications CGM Electrical Specifications | 248
249
251
253
254
255
255
255 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics CGM Component Specifications CGM Electrical Specifications Output High-Voltage Characteristics | 248
248
249
251
253
254
255
255
255 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9
23.10 | Electrical Specifications Absolute Maximum Ratings. Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics | 248
248
249
251
253
254
255
255
256
259 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9
23.10
23.11 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics CGM Component Specifications CGM Electrical Specifications Output High-Voltage Characteristics Output Low-Voltage Characteristics Typical Supply Currents | 248
248
249
251
253
254
255
255
256
259
261 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9
23.10
23.11
23.12 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics | 248
249
251
253
254
255
255
256
259
261
263 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9
23.10
23.11
23.12 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics CGM Component Specifications CGM Electrical Specifications Output High-Voltage Characteristics Output Low-Voltage Characteristics Typical Supply Currents | 248
249
251
253
254
255
255
256
259
261
263 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9
23.10
23.11
23.12
23.13 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range
Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics | 248
249
251
253
254
255
255
256
259
261
263 | | 23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.8.1
23.8.2
23.9
23.10
23.11
23.12
23.13
23.14 | Electrical Specifications Absolute Maximum Ratings Functional Operating Range Thermal Characteristics 5.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics 5.0 V Control Timing 3.0 V Control Timing Clock Generation Module Characteristics CGM Component Specifications CGM Electrical Specifications Output High-Voltage Characteristics Output Low-Voltage Characteristics Typical Supply Currents ADC Characteristics 5.0 V SPI Characteristics | 248
249
251
253
254
255
255
256
259
261
263
264
265 | #### **Table of Contents** # Chapter 24 Mechanical Specifications | | mediamour opcomounding | | |-------|------------------------|-----| | 24.1 | Introduction | 269 | | | Chapter 25 | | | | Ordering Information | | | 25.1 | Introduction | 281 | | 25.2 | MC Order Numbers | 281 | | 25.3 | Development Tools | 282 | | | Revision History | | | Revis | ion History | 283 | # Chapter 1 General Description #### 1.1 Introduction The MC68HC908GR8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. This document also describes the MC68HC908GR4. The MC68HC908GR4 is a device identical to the MC68HC908GR8 except that it has less Flash memory. Only when there are differences from the MC68HC908GR8 is the MC68HC908GR4 specifically mentioned in the text. #### 1.2 Features For convenience, features have been organized to reflect: - Standard features of the MC68HC908GR8 - Features of the CPU08 #### 1.2.1 Standard Features of the MC68HC908GR8 - High-performance M68HC08 architecture optimized for C-compilers - Fully upward-compatible object code with M6805, M146805, and M68HC05 Families - 8-MHz internal bus frequency - FLASH program memory security⁽¹⁾ - On-chip programming firmware for use with host personal computer which does not require high voltage for entry - In-system programming - System protection features: - Optional computer operating properly (COP) reset - Low-voltage detection with optional reset and selectable trip points for 3.0 V and 5.0 V operation - Illegal opcode detection with reset - Illegal address detection with reset - Low-power design; fully static with stop and wait modes - Standard low-power modes of operation: - Wait mode - Stop mode - Master reset pin and power-on reset (POR) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users. #### **General Description** - 7680 bytes of on-chip FLASH memory on the MC68HC908GR8 and 4096 bytes of on-chip FLASH memory on the MC68HC908GR4 with in-circuit programming capabilities of FLASH program memory - 384 bytes of on-chip random-access memory (RAM) - Serial peripheral interface module (SPI) - Serial communications interface module (SCI) - One 16-bit, 2-channel timer (TIM1) and one 16-bit, 1-channel timer (TIM2) interface modules with selectable input capture, output compare, and PWM capability on each channel - 6-channel, 8-bit successive approximation analog-to-digital converter (ADC) - BREAK module (BRK) to allow single breakpoint setting during in-circuit debugging - Internal pullups on IRQ and RST to reduce customer system cost - Clock generator module with on-chip 32-kHz crystal compatible PLL (phase-lock loop) - Up to 21 general-purpose input/output (I/O) pins, including: - 19 shared-function I/O pins - Up to two dedicated I/O pins, depending on package choice - Selectable pullups on inputs only on ports A, C, and D. Selection is on an individual port bit basis. During output mode, pullups are disengaged. - High current 10-mA sink/10-mA source capability on all port pins - Higher current 15-mA sink/source capability on PTC0–PTC1 - Timebase module with clock prescaler circuitry for eight user selectable periodic real-time interrupts with optional active clock source during stop mode for periodic wakeup from stop using an external 32-kHz crystal - Oscillator stop mode enable bit (OSCSTOPENB) in the CONFIG register to allow user selection of having the oscillator enabled or disabled during stop mode - 4-bit keyboard wakeup port - 42-pin shrink dual in-line package (SDIP), 32-pin quad flat pack (QFP), 28-pin plastic dual-in-line package (DIP), or 28-pin small outline integrated circuit (SOIC) - Specific features of the MC68HC908GR8 in 28-pin DIP and 28-pin SOIC are: - Port B is only 4 bits: PTB0–PTB3; 4-channel ADC module - No Port C bits #### 1.2.2 Features of the CPU08 Features of the CPU08 include: - Enhanced HC05 programming model - Extensive loop control functions - 16 addressing modes (eight more than the HC05) - 16-bit index register and stack pointer - Memory-to-memory data transfers - Fast 8 × 8 multiply instruction - Fast 16/8 divide instruction - Binary-coded decimal (BCD) instructions - Optimization for controller applications - Efficient C language support # 1.3 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908GR8. [†] Ports are software configurable with pullup device if input port. Figure 1-1. MCU Block Diagram [‡] Higher current drive port pins ^{*} Pin contains integrated pullup device **General Description** # 1.4 Pin Assignments Figure 1-2. SDIP Pin Assignments 22 Freescale Semiconductor NOTE: Ports PTB4, PTB5, PTC0, and PTC1 are available only with the QFP. Figure 1-3. QFP Pin Assignments OTE: Ports PTB4, PTB5, PTC0, and PTC1 are available only with the QFP. Figure 1-4. DIP And SOIC Pin Assignments **General Description** #### 1.5 Pin Functions Descriptions of the pin functions are provided here. #### 1.5.1 Power Supply Pins (V_{DD} and V_{SS}) V_{DD} and V_{SS} are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-5 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels. NOTE: Component values shown represent typical applications. Figure 1-5. Power Supply Bypassing #### 1.5.2 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are the connections for the on-chip oscillator circuit. See Chapter 7 Clock Generator Module (CGMC). ## 1.5.3 External Reset Pin (RST) A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor that is always activated, even when the reset pin is pulled low. See Chapter 4 Resets and Interrupts. ## 1.5.4 External Interrupt Pin (IRQ) IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor that is always activated, even when the reset pin is pulled low. See Chapter 12 External Interrupt (IRQ). # 1.5.5 CGM Power Supply Pins (V_{DDA} and V_{SSA}) V_{DDA} and V_{SSA} are the power supply pins for the analog portion of the clock generator module (CGM). Decoupling of these pins should be as per the digital supply. See Chapter 7 Clock Generator Module (CGMC). #### 1.5.6 External Filter Capacitor Pin (CGMXFC) CGMXFC is an external filter capacitor connection for the CGM. See Chapter 7 Clock Generator Module (CGMC). ## 1.5.7 Analog Power Supply/Reference Pins (V_{DDAD}/V_{REFH} and V_{SSAD}/V_{REFL}) V_{DDAD} and V_{SSAD} are the power supply pins for the analog-to-digital converter. Decoupling of these pins should be as per the digital supply. #### **NOTE** V_{REFH} is the high reference supply for the ADC. The V_{REFH} signal is internally connected with V_{DDAD} and have the same potential as V_{DDAD} . V_{DDAD} should be tied to the same potential as V_{DD} via separate traces. V_{REFL} is the low reference supply for the ADC. The V_{REFL} pin is internally connected with V_{SSAD} and has the same potential as V_{SSAD} . V_{SSAD} should be tied to the same potential as V_{SS} via separate traces. See Chapter 5 Analog-to-Digital Converter (ADC). #### 1.5.8 Port A Input/Output (I/O) Pins (PTA3/KBD3-PTA0/KBD0) PTA3–PTA0 are special-function, bidirectional I/O port pins. Any or all of the port A pins can be programmed to serve as keyboard interrupt pins. See Chapter 16 Input/Output Ports (I/O) and See Chapter 12 External Interrupt (IRQ). These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. When the port pins are configured for special-function mode (KBI), pullups will be automatically engaged. As long as the port pins are in special-function mode, the pullups will always be on. #### 1.5.9 Port B I/O Pins (PTB5/AD5-PTB0/AD0) PTB5–PTB0 are special-function, bidirectional I/O port pins that can also be used for analog-to-digital converter (ADC) inputs. See Chapter 16 Input/Output Ports (I/O) and See Chapter 5 Analog-to-Digital Converter (ADC). There are no pullups associated with this port. #### 1.5.10 Port C I/O Pins (PTC1-PTC0) PTC1-PTC0 are general-purpose, bidirectional I/O port pins. See Chapter 16 Input/Output Ports (I/O). PTC0 and
PTC1 are only available on 32-pin QFP packages. These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. # 1.5.11 Port D I/O Pins (PTD6/T2CH0-PTD0/SS) PTD6–PTD0 are special-function, bidirectional I/O port pins. PTD3–PTD0 can be programmed to be serial peripheral interface (SPI) pins, while PTD6–PTD4 can be individually programmed to be timer interface module (TIM1 and TIM2) pins. See Chapter 22 Timer Interface Module (TIM), Chapter 20 Serial Peripheral Interface (SPI), and See Chapter 16 Input/Output Ports (I/O). MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **General Description** These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. When the port pins are configured for special-function mode (SPI, TIM1, TIM2), pullups can be selectable on an individual port pin basis. ### 1.5.12 Port E I/O Pins (PTE1/RxD-PTE0/TxD) PTE1-PTE0 are special-function, bidirectional I/O port pins. These pins can also be programmed to be serial communications interface (SCI) pins. See Chapter 18 Serial Communications Interface (SCI) and See Chapter 16 Input/Output Ports (I/O). #### NOTE Any unused inputs and I/O ports should be tied to an appropriate logic level (either V_{DD} or V_{SS}). Although the I/O ports of the MC68HC908GR8 do not require termination, termination is recommended to reduce the possibility of electro-static discharge damage. # **Chapter 2 Memory Map** #### 2.1 Introduction The CPU08 can address 64K bytes of memory space. The memory map, shown in Figure 2-1, includes: - 8K bytes of FLASH memory, 7680 bytes of user space on the MC68HC908GR8 or 4K bytes of FLASH memory, 4096 bytes of user space on the MC68HC908GR4 - 384 bytes of random-access memory (RAM) - 36 bytes of user-defined vectors - 310 bytes of monitor routines in read-only memory (ROM) - 544 bytes of integrated FLASH burn-in routines in ROM #### 2.2 Unimplemented Memory Locations Accessing an unimplemented location can cause an illegal address reset if illegal address resets are enabled. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded. ## 2.3 Reserved Memory Locations Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R. # 2.4 Input/Output (I/O) Section Most of the control, status, and data registers are in the zero page area of \$0000–\$003F. Additional I/O registers have these addresses: - \$FE00; SIM break status register, SBSR - \$FE01; SIM reset status register, SRSR - \$FE03; SIM break flag control register, SBFCR - \$FE04; interrupt status register 1, INT1 - \$FE05; interrupt status register 2, INT2 - \$FE06; interrupt status register 3, INT3 - \$FE07; reserved FLASH test control register, FLTCR - \$FE08; FLASH control register, FLCR - \$FE09; break address register high, BRKH - \$FE0A; break address register low, BRKL - \$FE0B; break status and control register, BRKSCR - \$FE0C; LVI status register, LVISR - \$FF7E; FLASH block protect register, FLBPR Data registers are shown in Figure 2-2, and Table 2-1 is a list of vector locations. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Memory Map** ## 2.5 Memory Map Continued on next page Figure 2-1. Memory Map MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Figure 2-1. Memory Map (Continued) # 2.6 Register Summary Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Memory Map** | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |------------|----------------------------------|--------|-------|------------|---------|-------------|------------|---------|----------|---------| | | B . B B | Read: | 0 | 0 | 0 | 0 | DDRA3 | DDRA2 | DDRA1 | DDRA0 | | \$0004 | Data Direction Register A (DDRA) | Write: | | | | | DUNAS | DUNAZ | DUNAI | DDNAU | | | (551111) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | DDRB5 | DDRB4 | DDRB3 | DDRB2 | DDRB1 | DDRB0 | | \$0005 | Data Direction Register B (DDRB) | Write: | | | כטווטט | DDI104 | סטווטט | DDI1D2 | DDINDI | DDI1D0 | | | (==:=/ | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Data Direction Desister C | Read: | 0 | 0 | 0 | 0 | 0 | 0 | DDRC1 | DDRC0 | | \$0006 | Data Direction Register C (DDRC) | Write: | | | | | | | BBHOT | BBHOO | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Data Direction Register D | Read: | 0 | DDRD6 | DDRD5 | DDRD4 | DDRD3 | DDRD2 | DDRD1 | DDRD0 | | \$0007 | Data Direction Register D (DDRD) | Write: | | DDIIDO | DDITEO | BBNB1 | DDIIDO | DUTIDE | BBNB1 | BBNBO | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Port E Data Pagistar | Read: | 0 | 0 | 0 | 0 | 0 | 0 | PTE1 | PTE0 | | \$0008 | Port E Data Register
(PTE) | Write: | | | | | | | | 1 120 | | | , | Reset: | | | | Unaffecte | d by reset | | | | | \$0009 | | Read: | | | | | | | | | | ↓
4000D | Unimplemented | Write: | | | | | | | | | | \$000B | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Data Direction Register E | Read: | 0 | 0 | 0 | 0 | 0 | 0 | DDRE1 | DDRE0 | | \$000C | (DDRE) | Write: | | | | | | | | 221.20 | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Port A Input Pullup Enable | Read: | 0 | 0 | 0 | 0 | PTAPUE3 | PTAPUE2 | PTAPUE1 | PTAPUE0 | | \$000D | Register (PTAPUE) | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Port C Input Pullup Enable | Read: | 0 | 0 | 0 | 0 | 0 | 0 | PTCPUE1 | PTCPUE0 | | \$000E | Register (PTCPUE) | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Port D Input Pullup Enable | Read: | 0 | PTDPUE6 | PTDPUE5 | PTDPUE4 | PTDPUE3 | PTDPUE2 | PTDPUE1 | PTDPUE0 | | \$000F | Register (PTDPUE) | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | SPI Control Register | Read: | SPRIE | R | SPMSTR | CPOL | СРНА | SPWOM | SPE | SPTIE | | \$0010 | (SPCR) | Write: | | •• | | - · • • | | 2 | | | | | . , | Reset: | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | | SPI Status and Control | Read: | SPRF | ERRIE | OVRF | MODF | SPTE | MODFEN | SPR1 | SPR0 | | \$0011 | Register (SPSCR) | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | | | | = Unimplem | ented | R = Reserve | d | U = Una | affected | | Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7) | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|--|-----------------|------------------------------|-------|-------|-----------|-------------|----------------|----------|-------| | | | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | \$0012 | SPI Data Register (SPDR) | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | | | (OI BIT) | Reset: | | | | Unaffecte | ed by reset | | | | | \$0013 | SCI Control Register 1
(SCC1) | Read:
Write: | LOOPS | ENSCI | TXINV | М | WAKE | ILTY | PEN | PTY | | | (0001) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0014 | SCI Control Register 2
(SCC2) | Read:
Write: | SCTIE | TCIE | SCRIE | ILIE | TE | RE | RWU | SBK | | | (0002) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0015 | SCI Control Register 3
(SCC3) | Read:
Write: | R8 | Т8 | R | R | ORIE | NEIE | FEIE | PEIE | | | (3003) | Reset: | U | U | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | SCTE | TC | SCRF | IDLE | OR | NF | FE | PE | | \$0016 | SCI Status Register 1
(SCS1) | Write: | | | | | | | | | | | (3031) | Reset: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | BKF | RPF | | \$0017 | SCI Status Register 2
(SCS2) | Write: | | | | | | | | | | | (0002) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2015 . 5 | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | \$0018 | SCI Data Register (SCDR) | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | | | (00211) | Reset: | | | | Unaffecte | ed by reset | | | | | \$0019 | SCI Baud Rate Register (SCBR) | Read:
Write: | 0 | 0 | SCP1 | SCP0 | R | SCR2 | SCR1 | SCR0 | | | (OCDN) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Keyboard Status | Read: | 0 | 0 | 0 | 0 | KEYF | 0 | IMACIZIZ | MODEK | | \$001A | and Control Register | Write: | | | | | | ACKK | IMASKK | MODEK | | | (INTKBSCR) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | K 1 11 15 15 | Read: | 0 | 0 | 0 | 0 | KBIE3 | KBIE2 | KBIE1 | KBIE0 | | \$001B | Keyboard Interrupt Enable
Register (INTKBIER) | Write: | | | | | KDIES | NDILZ | KDIET | KDIEU | | | riogistor (ii virializit) | Reset: | | | | | 0 | 0 | 0 | 0 | | \$001C | Time Base Module Control
Register (TBCR) | Read:
Write: | TBIF | TBR2 | TBR1 | TBR0 | 0
TACK | TBIE | TBON | R | | | riegistei (TDON) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | IRQF1 | 0 | IMA OK4 | MODE4 | | \$001D | IRQ Status and Control
Register (INTSCR) | Write: | | | | | | ACK1 | IMASK1 | MODE1 | | | riegister (IIVTOCH) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | = Unimplemented R = Reserved | | | | | U = Unaffected | | | Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7) #### **Memory Map** | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |---------------|--|-----------------|---------------|----------------|---------------|---------------|----------------------|--------------|------------|----------| | | Configuration Register 2 | Read: | 0 | 0 | 0 | 0 | 0 | 0 | OSC- | SCIBDSRC | | \$001E | (CONFIG2)† | Write: | | | | | | | STOPENB | SCIBDSNC | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$001F | Configuration Register 1 | Read:
Write: | COPRS | LVISTOP | LVIRSTD | LVIPWRD | LVI5OR3 [†] | SSREC | STOP | COPD |
 | (CONFIG1) [†] | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | TOF | T015 | TOTOR | 0 | 0 | B00 | 201 | 200 | | \$0020 | Timer 1 Status and Control
Register (T1SC) | Write: | 0 | TOIE | TSTOP | TRST | | PS2 | PS1 | PS0 | | | negister (1130) | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0021 | Timer 1 Counter Register
High (T1CNTH) | Write: | | | | | | | | | | | riigii (110iviri) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0022 | Timer 1 Counter Register
Low (T1CNTL) | Write: | | | | | | | | | | | LOW (TTOIVIL) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0023 | Timer 1 Counter Modulo | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | Register High (T1MODH) | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | \$0024 | Timer 1 Counter Modulo | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | Register Low (T1MODL) | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | # 000F | Timer 1 Channel 0 Status | Read: | CH0F | CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | \$0025 | and Control Register
(T1SC0) | Write: | 0 | | | | • | | | | | | (11000) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0026 | Timer 1 Channel 0
Register High (T1CH0H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | 3 3 1 7 | Reset: | | | | Indetermina | te after reset | | | | | \$0027 | Timer 1 Channel 0
Register Low (T1CH0L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | 110910101 2011 (1101102) | Reset: | | | | Indetermina | te after reset | | | | | | † One-time writeable re | egister at | ter each rese | et, except LVI | 50R3 bit. LVI | 50R3 bit is o | nly reset via F | POR (power-o | on reset). | | | | T 40 140 1 | Read: | CH1F | CH1IE | 0 | MS1A | ELS1B | ELS1A | TOV1 | CH1MAX | | \$0028 | Timer 1 Channel 1 Status and
Control Register (T1SC1) | Write: | 0 | OITHL | | IVIOTA | LLOID | LLOTA | 1001 | OTTIVIAX | | | Common riogistor (1.100.) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0029 | Timer 1 Channel 1 | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | Register High (T1CH1H) | Reset: | | I | I | Indetermina | te after reset | | l | | | | | | | = Unimplem | ented | R = Reserve | d | U = Una | affected | | Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |-------------|--|-----------------|--------|------------|--------|-------------|----------------|---------|----------|----------| | \$002A | Timer 1 Channel 1 | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | Register Low (T1CH1L) | Reset: | | | | Indetermina | te after reset | | I | <u> </u> | | | | Read: | TOF | TOLE | TOTOD | 0 | 0 | DOO | DO4 | DOO | | \$002B | Timer 2 Status and Control
Register (T2SC) | Write: | 0 | TOIE | TSTOP | TRST | | PS2 | PS1 | PS0 | | | negistei (1230) | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$002C | Timer 2 Counter Register
High (T2CNTH) | Write: | | | | | | | | | | | Tilgii (12014111) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$002D | Timer 2 Counter Register
Low (T2CNTL) | Write: | | | | | | | | | | | 20W (1201112) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$002E | Timer 2 Counter Modulo
Register High (T2MODH) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | riegister riigir (12MODIT) | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | \$002F | Timer 2 Counter Modulo
Register Low (T2MODL) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | negister Low (12100DL) | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Timer 2 Channel 0 Status | Read: | CH0F | CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | \$0030 | and Control Register | Write: | 0 | CHUIE | IVIOUD | IVIOUA | ELOUB | ELSUA | 1000 | CHUMAX | | | (T2SC0) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0031 | Timer 2 Channel 0
Register High (T2CH0H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | Reset: | | | | Indetermina | te after reset | | | | | \$0032 | Timer 2 Channel 0
Register Low (T2CH0L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | riegister Low (120110L) | Reset: | | | | Indetermina | te after reset | | l . | | | \$0033
↓ | Unimplemented | Read:
Write: | | | | | | | | | | \$0035 | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | DILLE | PLLF | D O | 500 | 2254 | DDE0 | \/DD: | \/DD0 | | \$0036 | PLL Control Register
(PCTL) | Write: | PLLIE | | PLLON | BCS | PRE1 | PRE0 | VPR1 | VPR0 | | | · | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | \$0037 | PLL Bandwidth Control
Register (PBWC) | Read:
Write: | AUTO | LOCK | ACQ | 0 | 0 | 0 | 0 | R | | | 1 - g.c.c. (. 2110) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | = Unimplen | nented | R = Reserve | ed | U = Una | affected | | Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7) #### **Memory Map** | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|---|-----------------|-----------|------------|-----------|-------------|----------------|---------|----------|-------| | | | Read: | 0 | 0 | 0 | 0 | MUUAA | MIII 40 | NAU II O | MUUO | | \$0038 | PLL Multiplier Select High
Register (PMSH) | Write: | | | | | MUL11 | MUL10 | MUL9 | MUL8 | | | negister (FMSH) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0039 | 9 PLL Multiplier Select Low | Read:
Write: | MUL7 | MUL6 | MUL5 | MUL4 | MUL3 | MUL2 | MUL1 | MUL0 | | | Register (PMSL) | Reset: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | \$003A | PLL VCO Select Range
Register (PMRS) | Read:
Write: | VRS7 | VRS6 | VRS5 | VRS4 | VRS3 | VRS2 | VRS1 | VRS0 | | | riegistei (i Mirio) | Reset: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | DDC0 | DDCo | DDC1 | DDCo | | \$003B | PLL Reference Divider
Select Register (PMDS) | Write: | | | | | RDS3 | RDS2 | RDS1 | RDS0 | | | Select Hegister (FIMDS) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Analog-to-Digital Status and | Read: | COCO | AIFN | ADCO | ADOLIA | ADCH3 | ADCLIO | ADCI14 | ADCH0 | | \$003C | Control Register | Write: | R | AIEN | ADCO | ADCH4 | ADCH3 | ADCH2 | ADCH1 | ADCHU | | | (ADSCR) | Reset: | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | | Read: | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | AD0 | | \$003D | Analog-to-Digital Data
Register (ADR) | Write: | | | | | | | | | | | riegister (ADIT) | Reset: | | • | • | Indetermina | te after reset | | | | | | | Read: | 4 D IV (0 | ADI)/4 | 4 D IV (0 | ADIOLIC | 0 | 0 | 0 | 0 | | \$003E | Analog-to-Digital Input Clock
Register (ADCLK) | Write: | ADIV2 | ADIV1 | ADIV0 | ADICLK | R | R | R | R | | | riegistei (ADOLIT) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | | | | | | | | | | \$003F | Unimplemented | Write: | | | | | | | | | | | | Reset: | | | | | | | | | | | | Read: | Б | | Б | Б | Б | - | BW | Б | | \$FE00 | SIM Break Status Register (SBSR) | Write: | R | R | R | R | R | R | NOTE | R | | | (SBSH) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Not | e: Writing a logic 0 clears SBSV | ٧. | | | | | | | | | | | | Read: | POR | PIN | COP | ILOP | ILAD | MODRST | LVI | 0 | | \$FE01 | SIM Reset Status Register (SRSR) | Write: | | | | | | | | | | | (011011) | POR: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | | | | | | | | | | \$FE02 | Unimplemented | Write: | | | | | | | | | | | | Reset: | | | | | | | | | | | | Read: | DOTE | | 5 | | - | Б | Б | - | | \$FE03 | SIM Break Flag Control
Register (SBFCR) | Write: | BCFE | R | R | R | R | R | R | R | | | negislei (SDFUR) | Reset: | 0 | 1 | 1 | 1 | ı | 1 | | | | | | | | = Unimplem | nented | R = Reserve | ed | U = Una | affected | | Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|--|--------|--------|--------|-------|------|--------|--------|--------|--------| | | | Read: | IF6 | IF5 | IF4 | IF3 | IF2 | IF1 | 0 | 0 | | \$FE04 | Interrupt Status Register 1
(INT1) | Write: | R | R | R | R | R | R | R | R | | | () | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | IF14 | IF13 | IF12 | IF11 | IF10 | IF9 | IF8 | IF7 | | \$FE05 | Interrupt Status Register 2
(INT2) | Write: | R | R | R | R | R | R | R | R | | | (/ | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | IF16 | IF15 | | \$FE06 | Interrupt Status Register 3 (INT3) | Write: | R | R | R | R | R | R | R | R | | | (1110) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | F1.4011.T | Read: | R | R | R | R | R | R | R | R | | \$FE07 | FLASH Test Control
Register (FLTCR) | Write: | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | | | riogiotor (i 21011) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | FLACILO L. I.B | Read: | 0 | 0 | 0 | 0 | HVEN | MASS | ERASE | PGM | | \$FE08 | FLASH Control Register
(FLCR) | Write: | | | | | IIVLIN | IVIAGG | LINAGE | 1 GIVI | | | (. =0) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Dunale Addunan Danistas Histor | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$FE09 | Break Address Register High (BRKH) | Write: | Dit 10 | 14 | 10 | 12 | | 10 | , | Dit 0 | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Proof Address Degister Low | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$FE0A | Break Address Register Low (BRKL) | Write: | DIC 1 | · · | J | 7 | Ü | | | Dit 0 | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Dread Chatria and Cantral | Read: | BRKE | BRKA | 0 | 0 | 0 | 0 | 0 | 0 | | \$FE0B | Break Status and Control
Register (BRKSCR)
 Write: | DITINE | Dillot | | | | | | | | | g (= , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | LVIOUT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$FE0C | LVI Status Register (LVISR) | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | FLACIL Discis Dustant | Read: | BPR7 | BPR6 | BPR5 | BPR4 | BPR3 | BPR2 | BPR1 | BPR0 | | \$FF7E | FLASH Block Protect
Register (FLBPR) [†] | Write: | | DITIO | DITIO | DITT | Di Tio | DI 112 | | טו וט | | | | Reset: | U | U | U | U | U | U | U | U | | | | | | | | | | | | | Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Memory Map** # 2.7 Vector Addresses **Table 2-1. Vector Addresses** | Vector Priority | Vector | Address | Vector | |-----------------|-----------------|---------|---------------------------------------| | Lowest | IE16 | \$FFDC | Timebase Vector (High) | | | IF16 | \$FFDD | Timebase Vector (Low) | | ↑ | 1545 | \$FFDE | ADC Conversion Complete Vector (High) | | | IF15 | \$FFDF | ADC Conversion Complete Vector (Low) | | | 154.4 | \$FFE0 | Keyboard Vector (High) | | | IF14 | \$FFE1 | Keyboard Vector (Low) | | | IF13 | \$FFE2 | SCI Transmit Vector (High) | | | 1113 | \$FFE3 | SCI Transmit Vector (Low) | | | IF12 | \$FFE4 | SCI Receive Vector (High) | | | 1512 | \$FFE5 | SCI Receive Vector (Low) | | | IF11 | \$FFE6 | SCI Error Vector (High) | | | 1511 | \$FFE7 | SCI Error Vector (Low) | | | IF10 | \$FFE8 | SPI Transmit Vector (High) | | | IFIU | \$FFE9 | SPI Transmit Vector (Low) | | | IFO | \$FFEA | SPI Receive Vector (High) | | | IF9 | \$FFEB | SPI Receive Vector (Low) | | | IF8 | \$FFEC | TIM2 Overflow Vector (High) | | | IFO | \$FFED | TIM2 Overflow Vector (Low) | | | IF7 | \$FFEE | Reserved | | | IF7 | \$FFEF | Reserved | | | IF6 | \$FFF0 | TIM2 Channel 0 Vector (High) | | | IFO | \$FFF1 | TIM2 Channel 0 Vector (Low) | | | IF5 | \$FFF2 | TIM1 Overflow Vector (High) | | | IFS | \$FFF3 | TIM1 Overflow Vector (Low) | | | IF4 | \$FFF4 | TIM1 Channel 1 Vector (High) | | | IF 4 | \$FFF5 | TIM1 Channel 1 Vector (Low) | | | IF3 | \$FFF6 | TIM1 Channel 0 Vector (High) | | | IFS | \$FFF7 | TIM1 Channel 0 Vector (Low) | | | IF2 | \$FFF8 | PLL Vector (High) | | | 11-2 | \$FFF9 | PLL Vector (Low) | | | IF1 | \$FFFA | IRQ Vector (High) | | | 111-1 | \$FFFB | IRQ Vector (Low) | | | | \$FFFC | SWI Vector (High) | | | | \$FFFD | SWI Vector (Low) | | , | | \$FFFE | Reset Vector (High) | | Highest | | \$FFFF | Reset Vector (Low) | # Chapter 3 Low-Power Modes ### 3.1 Introduction The MCU may enter two low-power modes: wait mode and stop mode. They are common to all HC08 MCUs and are entered through instruction execution. This section describes how each module acts in the low-power modes. #### 3.1.1 Wait Mode The WAIT instruction puts the MCU in a low-power standby mode in which the CPU clock is disabled but the bus clock continues to run. Power consumption can be further reduced by disabling the LVI module and/or the timebase module through bits in the CONFIG register. (See Chapter 8 Configuration Register (CONFIG).) ## 3.1.2 Stop Mode Stop mode is entered when a STOP instruction is executed. The CPU clock is disabled and the bus clock is disabled if the OSCSTOPENB bit in the CONFIG register is at a logic 0. (See Chapter 8 Configuration Register (CONFIG).) # 3.2 Analog-to-Digital Converter (ADC) #### 3.2.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing the WAIT instruction. ## 3.2.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry. #### **Low-Power Modes** # 3.3 Break Module (BRK) #### 3.3.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if the BW bit in the break status register is set. ## 3.3.2 Stop Mode The break module is inactive in stop mode. The STOP instruction does not affect break module register states. # 3.4 Central Processor Unit (CPU) #### 3.4.1 Wait Mode The WAIT instruction: - Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. - Disables the CPU clock ## 3.4.2 Stop Mode The STOP instruction: - Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. - Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. # 3.5 Clock Generator Module (CGM) #### 3.5.1 Wait Mode The CGM remains active in wait mode. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive applications can disengage the PLL without turning it off. Applications that require the PLL to wake the MCU from wait mode also can deselect the PLL output without turning off the PLL. ## 3.5.2 Stop Mode If the OSCSTOPEN bit in the CONFIG register is cleared (default), then the STOP instruction disables the CGM (oscillator and phase-locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT). If the OSCSTOPEN bit in the CONFIG register is set, then the phase locked loop is shut off, but the oscillator will continue to operate in stop mode. # 3.6 Computer Operating Properly Module (COP) #### 3.6.1 Wait Mode The COP remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. ## 3.6.2 Stop Mode Stop mode turns off the COPCLK input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. The STOP bit in the configuration register (CONFIG) enables the STOP instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the STOP bit. # 3.7 External Interrupt Module (IRQ) #### 3.7.1 Wait Mode The IRQ module remains active in wait mode. Clearing the IMASK bit in the IRQ status and control register enables IRQ CPU interrupt requests to bring the MCU out of wait mode. ## 3.7.2 Stop Mode The IRQ module remains active in stop mode. Clearing the IMASK bit in the IRQ status and control register enables IRQ CPU interrupt requests to bring the MCU out of stop mode. # 3.8 Keyboard Interrupt Module (KBI) #### 3.8.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. ### 3.8.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. # 3.9 Low-Voltage Inhibit Module (LVI) #### 3.9.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. ### **Low-Power Modes** ## 3.9.2 Stop Mode If enabled, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode. ## 3.10 Serial Communications Interface Module (SCI) ### 3.10.1 Wait Mode The SCI module remains active in wait mode. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. ## **3.10.2 Stop Mode** The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI module operation resumes after the MCU exits stop mode. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. ## 3.11 Serial Peripheral Interface Module (SPI) ## 3.11.1 Wait Mode The SPI module remains active in wait mode. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction. ### **3.11.2 Stop Mode** The SPI module is inactive in stop mode. The STOP instruction does not affect SPI register states. SPI operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is aborted, and the SPI is reset. # 3.12 Timer Interface Module (TIM1 and TIM2) ## 3.12.1 Wait Mode The TIM remains active in wait mode. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. ## **3.12.2 Stop Mode** The TIM is inactive in stop mode. The STOP instruction does not affect register states or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. ## 3.13 Timebase Module (TBM) #### 3.13.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption
by stopping the timebase before enabling the WAIT instruction. ## **3.13.2 Stop Mode** The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction. # 3.14 Exiting Stop Mode These events restart the system clocks and load the program counter with the reset vector or with an interrupt vector: - External reset A 0 on the RST pin resets the MCU and loads the program counter with the contents of locations \$FFFE and \$FFFF. - External interrupt A high-to-low transition on an external interrupt pin loads the program counter with the contents of locations: - \$FFFA and \$FFFB; IRQ pin - \$FFDE and \$FFDF; keyboard interrupt pins - Low-voltage inhibit (LVI) reset A power supply voltage below the LVI_{tripf} voltage resets the MCU and loads the program counter with the contents of locations \$FFFE and \$FFFF. - Break interrupt A break interrupt loads the program counter with the contents of locations \$FFFC and \$FFFD. - Timebase module (TBM) interrupt A TBM interrupt loads the program counter with the contents of locations \$FFDC and \$FFDD when the timebase counter has rolled over. This allows the TBM to generate a periodic wakeup from stop mode. Upon exit from stop mode, the system clocks begin running after an oscillator stabilization delay. A 12-bit stop recovery counter inhibits the system clocks for 4096 CGMXCLK cycles after the reset or external interrupt. #### **Low-Power Modes** The short stop recovery bit, SSREC, in the configuration register controls the oscillator stabilization delay during stop recovery. Setting SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32 CGMXCLK cycles. ## NOTE Use the full stop recovery time (SSREC = 0) in applications that use an external crystal. # **Chapter 4 Resets and Interrupts** ## 4.1 Introduction Resets and interrupts are responses to exceptional events during program execution. A reset re-initializes the MCU to its startup condition. An interrupt vectors the program counter to a service routine. ## 4.2 Resets A reset immediately returns the MCU to a known startup condition and begins program execution from a user-defined memory location. ## 4.2.1 Effects #### A reset: - Immediately stops the operation of the instruction being executed - Initializes certain control and status bits - Loads the program counter with a user-defined reset vector address from locations \$FFFE and \$FFFF, \$FEFE and \$FFFF in monitor mode - Selects CGMXCLK divided by four as the bus clock #### 4.2.2 External Reset A logic 0 applied to the \overline{RST} pin for a time, t_{IRL} , generates an external reset. An external reset sets the PIN bit in the SIM reset status register. #### 4.2.3 Internal Reset #### Sources: - Power-on reset (POR) - Computer operating properly (COP) - Low-power reset circuits - Illegal opcode - Illegal address All internal reset sources pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external devices. The MCU is held in reset for an additional 32 CGMXCLK cycles after releasing the RST pin. 43 #### **Resets and Interrupts** ### 4.2.3.1 Power-On Reset A power-on reset is an internal reset caused by a positive transition on the V_{DD} pin. V_{DD} at the POR must go completely to 0 V to reset the MCU. This distinguishes between a reset and a POR. The POR is not a brown-out detector, low-voltage detector, or glitch detector. #### A power-on reset: - Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096 CGMXCLK cycles - Drives the RST pin low during the oscillator stabilization delay - Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay - Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator stabilization delay - Sets the POR bit in the SIM reset status register and clears all other bits in the register 1. PORRST is an internally generated power-on reset pulse. Figure 4-1. Power-On Reset Recovery #### 4.2.3.2 COP Reset A COP reset is an internal reset caused by an overflow of the COP counter. A COP reset sets the COP bit in the system integration module (SIM) reset status register. To clear the COP counter and prevent a COP reset, write any value to the COP control register at location \$FFFF. ## 4.2.3.3 Low-Voltage Inhibit Reset A low-voltage inhibit (LVI) reset is an internal reset caused by a drop in the power supply voltage to the LVI trip voltage, V_{TRIPF} . ### An LVI reset: - Holds the clocks to the CPU and modules inactive for an oscillator stabilization delay of 4096 CGMXCLK cycles after the power supply voltage rises to V_{TRIPF} - Drives the RST pin low for as long as V_{DD} is below V_{TRIPF} and during the oscillator stabilization delay - Releases the RST pin 32 CGMXCLK cycles after the oscillator stabilization delay - Releases the CPU to begin the reset vector sequence 64 CGMXCLK cycles after the oscillator stabilization delay - Sets the LVI bit in the SIM reset status register ## 4.2.3.4 Illegal Opcode Reset An illegal opcode reset is an internal reset caused by an opcode that is not in the instruction set. An illegal opcode reset sets the ILOP bit in the SIM reset status register. If the stop enable bit, STOP, in the mask option register is a logic 0, the STOP instruction causes an illegal opcode reset. ## 4.2.3.5 Illegal Address Reset An illegal address reset is an internal reset caused by opcode fetch from an unmapped address. An illegal address reset sets the ILAD bit in the SIM reset status register. A data fetch from an unmapped address does not generate a reset. ## 4.2.4 SIM Reset Status Register This read-only register contains flags to show reset sources. All flag bits are automatically cleared following a read of the register. Reset service can read the SIM reset status register to clear the register after power-on reset and to determine the source of any subsequent reset. The register is initialized on powerup as shown with the POR bit set and all other bits cleared. During a POR or any other internal reset, the \overline{RST} pin is pulled low. After the pin is released, it will be sampled 32 XCLK cycles later. If the pin is not above a V_{IH} at that time, then the PIN bit in the SRSR may be set in addition to whatever other bits are set. #### NOTE Only a read of the SIM reset status register clears all reset flags. After multiple resets from different sources without reading the register, multiple flags remain set. #### **Resets and Interrupts** Figure 4-2. SIM Reset Status Register (SRSR) ## POR — Power-On Reset Flag - 1 = Power-on reset since last read of SRSR - 0 = Read of SRSR since last power-on reset ## PIN — External Reset Flag - $1 = \text{External reset via } \overline{\text{RST}} \text{ pin since last read of SRSR}$ - 0 = POR or read of SRSR since last external reset ## **COP** — Computer Operating Properly Reset Bit - 1 = Last reset caused by timeout of COP counter - 0 = POR or read of SRSR ## ILOP — Illegal Opcode Reset Bit - 1 = Last reset caused by an illegal opcode - 0 = POR or read of SRSR ## ILAD — Illegal Address Reset Bit - 1 = Last reset caused by an opcode fetch from an illegal address - 0 = POR or read of SRSR ## **MODRST** — Monitor Mode Entry Module Reset Bit - 1 = Last reset caused by monitor mode entry when vector locations \$FFFE and \$FFFF are \$FF after POR while $\overline{IRQ} = V_{DD}$ - 0 = POR or read of SRSR #### LVI — Low-Voltage Inhibit Reset Bit - 1 = Last reset caused by low-power supply voltage - 0 = POR or read of SRSR # 4.3 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. An interrupt does not stop the operation of the instruction being executed, but begins when the current instruction completes its operation. ## 4.3.1 Effects ## An interrupt: - Saves the CPU registers on the stack. At the end of the interrupt, the RTI instruction recovers the CPU registers from the stack so that normal processing can resume. - Sets the interrupt mask (I bit) to prevent additional interrupts. Once an interrupt is latched, no other interrupt can take precedence, regardless of its priority. - Loads the program counter with a user-defined vector address ^{*}High byte of index register is not stacked. Figure 4-3. Interrupt Stacking Order Freescale Semiconductor 47 MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Resets and Interrupts** After every instruction, the CPU checks all pending interrupts if the I bit is not set. If more than one interrupt is pending when an instruction is done, the highest priority interrupt is serviced first. In the example shown in Figure 4-4, if an interrupt is pending upon exit from the interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. Figure 4-4. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. #### NOTE To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, save the H register and then restore it prior to exiting the routine. ## 4.3.2 Sources The sources in Table 4-1 can generate CPU interrupt requests. **Table 4-1. Interrupt Sources** | Source | Flag | Mask ⁽¹⁾ | INT Register
Flag | Priority ⁽²⁾
| Vector
Address | |---------------------------|------|---------------------|----------------------|-------------------------|-------------------| | Reset | None | None | None | 0 | \$FFFE—\$FFFF | | SWI instruction | None | None | None | 0 | \$FFFC—\$FFFD | | ĪRQ pin | IRQF | IMASK1 | IF1 | 1 | \$FFFA—\$FFFB | | CGM (PLL) | PLLF | PLLIE | IF2 | 2 | \$FFF8-\$FFF9 | | TIM1 channel 0 | CH0F | CH0IE | IF3 | 3 | \$FFF6-\$FFF7 | | TIM1 channel 1 | CH1F | CH1IE | IF4 | 4 | \$FFF4-\$FFF5 | | TIM1 overflow | TOF | TOIE | IF5 | 5 | \$FFF2-\$FFF3 | | TIM2 channel 0 | CH0F | CH0IE | IF6 | 6 | \$FFF0-\$FFF1 | | TIM2 overflow | TOF | TOIE | IF8 | 8 | \$FFEC-\$FFED | | SPI receiver full | SPRF | SPRIE | IF9 | 9 | \$FFEA-\$FFEB | | SPI overflow | OVRF | ERRIE | | | | | SPI mode fault | MODF | ERRIE | | | | | SPI transmitter empty | SPTE | SPTIE | IF10 | 10 | \$FFE8-\$FFE9 | | SCI receiver overrun | OR | ORIE | IF11 | 11 | \$FFE6-\$FFE7 | | SCI noise fag | NF | NEIE | | | | | SCI framing error | FE | FEIE | | | | | SCI parity error | PE | PEIE | | | | | SCI receiver full | SCRF | SCRIE | IF12 | 12 | \$FFE4-\$FFE5 | | SCI input idle | IDLE | ILIE | | | | | SCI transmitter empty | SCTE | SCTIE | IF13 | 13 | \$FFE2-\$FFE3 | | SCI transmission complete | TC | TCIE | | | | | Keyboard pin | KEYF | IMASKK | IF14 | 14 | \$FFDE-\$FFDF | | ADC conversion complete | COCO | AIEN | IF15 | 15 | \$FFDE-\$FFDF | | Timebase | TBIF | TBIE | IF16 | 16 | \$FFDC-\$FFDD | ^{1.} The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. 0 = highest priority ### **Resets and Interrupts** ## 4.3.2.1 SWI Instruction The software interrupt instruction (SWI) causes a non-maskable interrupt. ### NOTE A software interrupt pushes PC onto the stack. An SWI does **not** push PC – 1, as a hardware interrupt does. Figure 4-5. Interrupt Processing MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 4.3.2.2 Break Interrupt The break module causes the CPU to execute an SWI instruction at a software-programmable break point. ## 4.3.2.3 TRQ Pin A logic 0 on the IRQ1 pin latches an external interrupt request. ## 4.3.2.4 CGM (Clock Generator Module) The CGM can generate a CPU interrupt request every time the phase-locked loop circuit (PLL) enters or leaves the locked state. When the LOCK bit changes state, the PLL flag (PLLF) is set. The PLL interrupt enable bit (PLLIE) enables PLLF CPU interrupt requests. LOCK is in the PLL bandwidth control register. PLLF is in the PLL control register. #### 4.3.2.5 TIM1 (Timer Interface Module 1) TIM1 CPU interrupt sources: - TIM1 overflow flag (TOF) The TOF bit is set when the TIM1 counter value rolls over to \$0000 after matching the value in the TIM1 counter modulo registers. The TIM1 overflow interrupt enable bit, TOIE, enables TIM1 overflow CPU interrupt requests. TOF and TOIE are in the TIM1 status and control register. - TIM1 channel flags (CH1F–CH0F) The CHxF bit is set when an input capture or output compare occurs on channel x. The channel x interrupt enable bit, CHxIE, enables channel x TIM1 CPU interrupt requests. CHxF and CHxIE are in the TIM1 channel x status and control register. ## 4.3.2.6 TIM2 (Timer Interface Module 2) TIM2 CPU interrupt sources: - TIM2 overflow flag (TOF) The TOF bit is set when the TIM2 counter value rolls over to \$0000 after matching the value in the TIM2 counter modulo registers. The TIM2 overflow interrupt enable bit, TOIE, enables TIM2 overflow CPU interrupt requests. TOF and TOIE are in the TIM2 status and control register. - TIM2 channel flag (CH0F) The CH0F bit is set when an input capture or output compare occurs on channel 0. The channel 0 interrupt enable bit, CH0IE, enables channel 0 TIM2 CPU interrupt requests. CH0F and CH0IE are in the TIM2 channel 0 status and control register. ## 4.3.2.7 SPI (Serial Peripheral Interface) SPI CPU interrupt sources: - SPI receiver full bit (SPRF) The SPRF bit is set every time a byte transfers from the shift register to the receive data register. The SPI receiver interrupt enable bit, SPRIE, enables SPRF CPU interrupt requests. SPRF is in the SPI status and control register and SPRIE is in the SPI control register. - SPI transmitter empty (SPTE) The SPTE bit is set every time a byte transfers from the transmit data register to the shift register. The SPI transmit interrupt enable bit, SPTIE, enables SPTE CPU interrupt requests. SPTE is in the SPI status and control register and SPTIE is in the SPI control register. #### **Resets and Interrupts** - Mode fault bit (MODF) The MODF bit is set in a slave SPI if the SS pin goes high during a transmission with the mode fault enable bit (MODFEN) set. In a master SPI, the MODF bit is set if the SS pin goes low at any time with the MODFEN bit set. The error interrupt enable bit, ERRIE, enables MODF CPU interrupt requests. MODF, MODFEN, and ERRIE are in the SPI status and control register. - Overflow bit (OVRF) The OVRF bit is set if software does not read the byte in the receive data register before the next full byte enters the shift register. The error interrupt enable bit, ERRIE, enables OVRF CPU interrupt requests. OVRF and ERRIE are in the SPI status and control register. ## 4.3.2.8 SCI (Serial Communications Interface) #### SCI CPU interrupt sources: - SCI transmitter empty bit (SCTE) SCTE is set when the SCI data register transfers a character to the transmit shift register. The SCI transmit interrupt enable bit, SCTIE, enables transmitter CPU interrupt requests. SCTE is in SCI status register 1. SCTIE is in SCI control register 2. - Transmission complete bit (TC) TC is set when the transmit shift register and the SCI data register are empty and no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, enables transmitter CPU interrupt requests. TC is in SCI status register 1. TCIE is in SCI control register 2. - SCI receiver full bit (SCRF) SCRF is set when the receive shift register transfers a character to the SCI data register. The SCI receive interrupt enable bit, SCRIE, enables receiver CPU interrupts. SCRF is in SCI status register 1. SCRIE is in SCI control register 2. - Idle input bit (IDLE) IDLE is set when 10 or 11 consecutive logic 1s shift in from the RxD pin. The idle line interrupt enable bit, ILIE, enables IDLE CPU interrupt requests. IDLE is in SCI status register 1. ILIE is in SCI control register 2. - Receiver overrun bit (OR) OR is set when the receive shift register shifts in a new character before the previous character was read from the SCI data register. The overrun interrupt enable bit, ORIE, enables OR to generate SCI error CPU interrupt requests. OR is in SCI status register 1. ORIE is in SCI control register 3. - Noise flag (NF) NF is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, enables NF to generate SCI error CPU interrupt requests. NF is in SCI status register 1. NEIE is in SCI control register 3. - Framing error bit (FE) FE is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, enables FE to generate SCI error CPU interrupt requests. FE is in SCI status register 1. FEIE is in SCI control register 3. - Parity error bit (PE) PE is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, enables PE to generate SCI error CPU interrupt requests. PE is in SCI status register 1. PEIE is in SCI control register 3. ## 4.3.2.9 KBD0-KBD4 Pins A 0 on a keyboard interrupt pin latches an external interrupt request. ## 4.3.2.10 ADC (Analog-to-Digital Converter) When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. The COCO/IDMAS bit is not used as a conversion complete flag when interrupts are enabled. ## 4.3.2.11 TBM (Timebase Module) The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit. ## 4.3.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 4-2 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. **Table 4-2. Interrupt Source Flags** | Interrupt Source | Interrupt Status Register Flag | |-------------------------|--------------------------------| | Reset | _ | | SWI instruction | _ | | IRQ pin | IF1 | | CGM (PLL) | IF2 | | TIM1 channel 0 | IF3 | | TIM1 channel 1 | IF4 | | TIM1 overflow | IF5 | | TIM2 channel 0 | IF6 | | Reserved | IF7 | | TIM2 overflow | IF8 | | SPI receive | IF9 | | SPI transmit | IF10 | | SCI error | IF11 | | SCI receive | IF12 | | SCI transmit | IF13 | | Keyboard | IF14 | | ADC conversion complete | IF15 | | Timebase | IF16 | Freescale Semiconductor 53 MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Resets and Interrupts** ## 4.3.3.1 Interrupt Status Register 1 Address: \$FE04 Bit 7 6 5 4 3 2 1 Bit 0 IF1 IF6 IF5 IF4 IF3 IF2 Read: 0 0 R R R R R R R R Write: Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 4-6. Interrupt Status Register 1 (INT1) ## IF6-IF1 — Interrupt Flags 6-1 These flags indicate the presence of interrupt requests from the sources shown in Table 4-2. - 1 = Interrupt request present - 0 = No interrupt request present ## Bit 1 and Bit 0 — Always read 0 ## 4.3.3.2 Interrupt Status Register 2 Figure 4-7. Interrupt Status Register 2 (INT2) ### IF14-IF8 — Interrupt Flags 14-7 These flags indicate the presence of interrupt requests from the sources shown in Table 4-2. - 1 = Interrupt request present - 0 = No interrupt request present
Bit 0 — Always reads 0 #### 4.3.3.3 Interrupt Status Register 3 Figure 4-8. Interrupt Status Register 3 (INT3) ### IF16-IF15 — Interrupt Flags 16-15 This flag indicates the presence of an interrupt request from the source shown in Table 4-2. - 1 = Interrupt request present - 0 = No interrupt request present ### Bits 7–2 — Always read 0 # Chapter 5 Analog-to-Digital Converter (ADC) ## 5.1 Introduction This section describes the 8-bit analog-to-digital converter (ADC). For further information regarding analog-to-digital converters on Freescale microcontrollers, please consult the *HC08 ADC Reference Manual*, ADCRM/AD. ## 5.2 Features Features of the ADC module include: - Six channels with multiplexed input - Linear successive approximation with monotonicity - 8-bit resolution - Single or continuous conversion - Conversion complete flag or conversion complete interrupt - Selectable ADC clock ## 5.3 Functional Description The ADC provides six pins for sampling external sources at pins PTB5/ATD5–PTB0/ATD0. An analog multiplexer allows the single ADC converter to select one of six ADC channels as ADC voltage in (V_{ADIN}) . V_{ADIN} is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 5-1. #### 5.3.1 ADC Port I/O Pins PTB5/ATD5—PTB0/ATD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin in use by the ADC will return a 0 if the corresponding DDR bit is a 0. If the DDR bit is a 1, the value in the port data latch is read. 55 #### **Analog-to-Digital Converter (ADC)** Figure 5-1. ADC Block Diagram ## 5.3.2 Voltage Conversion When the input voltage to the ADC equals V_{REFH} , the ADC converts the signal to \$FF (full scale). If the input voltage equals V_{REFL} , the ADC converts it to \$00. Input voltages between V_{REFH} and V_{REFL} are a straight-line linear conversion. All other input voltages will result in \$FF, if greater than V_{REFH} . #### NOTE Inside the ADC module, the reference voltage, V_{REFH} is connected to the ADC analog power V_{DDAD} ; and V_{REFL} is connected to the ADC analog ground V_{DDAD} . Therefore, the ADC input voltage should not exceed the analog supply voltages For operation, V_{DDAD} should be tied to the same potential as V_{DD} via separate traces ## 5.3.3 Conversion Time Sixteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1 MHz, then one conversion will take 16 μs to complete. But since the ADC can run almost completely asynchronously to the bus clock, (for example, the ADC is configured to derive its internal clock from CGMXCLK and the bus clock is being derived from the PLL within the CGM MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 [CGMOUT]), this 16- μ s conversion can take up to 17 μ s to complete. This worst-case could occur if the write to the ADSCR happened directly after the rising edge of the ADC internal clock causing the conversion to wait until the next rising edge of the ADC internal clock. With a 1-MHz ADC internal clock, the maximum sample rate is 59 kHz to 62 kHz. Refer to 23.12 ADC Characteristics. Conversion Time = $$\frac{16 \text{ to } 17 \text{ ADC Clock Cycles}}{\text{ADC Clock Frequency}}$$ Number of Bus Cycles = Conversion Time x Bus Frequency #### 5.3.4 Conversion In continuous conversion mode, the ADC data register will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after the first conversion and will stay set until the next write of the ADC status and control register or the next read of the ADC data register. In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs between writes to the ADSCR. ## 5.3.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. See Chapter 23 Electrical Specifications for accuracy information. ## 5.4 Interrupts When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. ## 5.5 Low-Power Modes The WAIT and STOP instruction can put the MCU in low power-consumption standby modes. #### 5.5.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing the WAIT instruction. ## 5.5.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. **Analog-to-Digital Converter (ADC)** ## 5.6 I/O Signals The ADC module has six pins shared with port B, PTB5/AD5-PTB0/ATD0. ## 5.6.1 ADC Analog Power Pin (V_{DDAD})/ADC Voltage Reference High Pin (V_{REFH}) The ADC analog portion uses V_{DDAD} as its power pin. Connect the V_{DDAD} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDAD} for good results. #### NOTE For maximum noise immunity, route V_{DDAD} carefully and place bypass capacitors as close as possible to the package. # 5.6.2 ADC Analog Ground Pin (V_{SSAD})/ADC Voltage Reference Low Pin (V_{REFL}) The ADC analog portion uses V_{SSAD} as its ground pin. Connect the V_{SSAD} pin to the same voltage potential as V_{SS} . ## 5.6.3 ADC Voltage In (V_{ADIN}) V_{ADIN} is the input voltage signal from one of the six ADC channels to the ADC module. ## 5.7 I/O Registers These I/O registers control and monitor ADC operation: - ADC status and control register (ADSCR) - ADC data register (ADR) - ADC clock register (ADCLK) ## 5.7.1 ADC Status and Control Register Function of the ADC status and control register (ADSCR) is described here. Figure 5-2. ADC Status and Control Register (ADSCR) ## **COCO** — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed except in the continuous conversion mode where it is set after the first conversion. This bit is cleared whenever the ADSCR is written or whenever the ADR is read. If the AIEN bit is a logic 1, the COCO is a read/write bit which selects the CPU to service the ADC interrupt request. Reset clears this bit. - 1 = Conversion completed (AIEN = 0) - 0 = Conversion not completed (AIEN = 0), or CPU interrupt (AIEN = 1) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit. - 1 = ADC interrupt enabled - 0 = ADC interrupt disabled #### ADCO — ADC Continuous Conversion Bit When this bit is set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. - 1 = Continuous ADC conversion - 0 = One ADC conversion ### ADCH4-ADCH0 — ADC Channel Select Bits ADCH4–ADCH0 form a 5-bit field which is used to select one of 16 ADC channels. Only six channels, AD5–AD0, are available on this MCU. The channels are detailed in Table 5-1. Care should be taken when using a port pin as both an analog and digital input simultaneously to prevent switching noise from corrupting the analog signal. See Table 5-1. The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not being used. #### NOTE Recovery from the disabled state requires one conversion cycle to stabilize. The voltage levels supplied from internal reference nodes, as specified in Table 5-1, are used to verify the operation of the ADC converter both in production test and for user applications. | ADCH4 | ADCH3 | ADCH2 | ADCH1 | ADCH0 | Input Select | |----------|----------|----------|----------|----------|-------------------| | 0 | 0 | 0 | 0 | 0 | PTB0/ATD0 | | 0 | 0 | 0 | 0 | 1 | PTB1/ATD1 | | 0 | 0 | 0 | 1 | 0 | PTB2/ATD2 | | 0 | 0 | 0 | 1 | 1 | PTB3/ATD3 | | 0 | 0 | 1 | 0 | 0 | PTB4/ATD4 | | 0 | 0 | 1 | 0 | 1 | PTB5/ATD5 | | 0 | 0 | 1 | 1 | 0 | Reserved | | 0 | 0 | 1 | 1 | 1 | Reserved | | \ | \ | \ | \ | \ | Reserved | | 1 | 1 | 0 | 1 | 1 | Reserved | | 1 | 1 | 1 | 0 | 0 | Reserved | | 1 | 1 | 1 | 0 | 1 | V _{REFH} | | 1 | 1 | 1 | 1 | 0 | V _{REFL} | | 1 | 1 | 1 | 1 | 1 | ADC power off | **Table 5-1. Mux Channel Select** NOTE: If an unknown channel is selected it should be made clear what value the user will read from the ADC Data Register, unknown or reserved is not specific enough. **Analog-to-Digital Converter (ADC)** ## 5.7.2 ADC Data Register One 8-bit result register, ADC data register (ADR), is
provided. This register is updated each time an ADC conversion completes. Figure 5-3. ADC Data Register (ADR) ## 5.7.3 ADC Clock Register The ADC clock register (ADCLK) selects the clock frequency for the ADC. Figure 5-4. ADC Clock Register (ADCLK) ## ADIV2-ADIV0 — ADC Clock Prescaler Bits ADIV2—ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 5-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz. Table 5-2. ADC Clock Divide Ratio | ADIV2 | ADIV1 | ADIV0 | ADC Clock Rate | |-------|-------|-------|----------------------| | 0 | 0 | 0 | ADC input clock ÷ 1 | | 0 | 0 | 1 | ADC input clock ÷ 2 | | 0 | 1 | 0 | ADC input clock ÷ 4 | | 0 | 1 | 1 | ADC input clock ÷ 8 | | 1 | Х | Х | ADC input clock ÷ 16 | X = don't care ## ADICLK — ADC Input Clock Select Bit ADICLK selects either the bus clock or CGMXCLK as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source. If the external clock (CGMXCLK) is equal to or greater than 1 MHz, CGMXCLK can be used as the clock source for the ADC. If CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as the clock source. As long as the internal ADC clock is at approximately 1 MHz, correct operation can be guaranteed. - 1 = Internal bus clock - 0 = External clock (CGMXCLK) $\frac{\text{fxclk or bus frequency}}{\text{ADIV2-ADIV0}} = 1 \text{ MHz}$ #### NOTE During the conversion process, changing the ADC clock will result in an incorrect conversion. **Analog-to-Digital Converter (ADC)** # Chapter 6 Break Module (BRK) ## 6.1 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. ## 6.2 Features Features of the break module include: - Accessible input/output (I/O) registers during the break interrupt - CPU-generated break interrupts - Software-generated break interrupts - COP disabling during break interrupts ## 6.3 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the SIM. The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode). The following events can cause a break interrupt to occur: - A CPU-generated address (the address in the program counter) matches the contents of the break address registers. - Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 6-1 shows the structure of the break module. ## 6.3.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. #### **Break Module (BRK)** Figure 6-1. Break Module Block Diagram Figure 6-2. I/O Register Summary ## 6.3.2 CPU During Break Interrupts The CPU starts a break interrupt by: - Loading the instruction register with the SWI instruction - Loading the program counter with \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## 6.3.3 TIMI and TIM2 During Break Interrupts A break interrupt stops the timer counters and inhibits input captures. ## 6.3.4 COP During Break Interrupts The COP is disabled during a break interrupt when V_{TST} is present on the \overline{RST} pin. ### 6.4 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. #### 6.4.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set. See Chapter 3 Low-Power Modes. Clear the BW bit by writing logic 0 to it. ## 6.4.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. ## 6.5 Break Module Registers These registers control and monitor operation of the break module: - Break status and control register (BRKSCR) - Break address register high (BRKH) - Break address register low (BRKL) - SIM break status register (SBSR) - SIM break flag control register (SBFCR) ## 6.5.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Figure 6-3. Break Status and Control Register (BRKSCR) #### **BRKE** — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. - 1 = Breaks enabled on 16-bit address match - 0 = Breaks disabled on 16-bit address match MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 **Break Module (BRK)** #### **BRKA** — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. - 1 = (When read) Break address match - 0 = (When read) No break address match ## 6.5.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Figure 6-4. Break Address Register High (BRKH) Figure 6-5. Break Address Register Low (BRKL) ### 6.5.3 Break Status Register The break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt. Figure 6-6. SIM Break Status Register (SBSR) #### BW — Break Wait Bit This read/write bit is set when a break interrupt causes an exit from wait mode. Clear BW by writing a logic 0 to it. Reset clears BW. - 1 = Break interrupt during wait mode - 0 = No break interrupt during wait mode BW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. ## 6.5.4 Break Flag Control Register The break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Figure 6-7. SIM Break Flag Control Register (SBFCR) ## **BCFE** — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. - 1 = Status bits clearable during break - 0 = Status bits not clearable during break **Break Module (BRK)** # **Chapter 7 Clock Generator Module (CGMC)** ## 7.1 Introduction This section describes the clock generator module. The CGMC generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGMC also generates the base clock signal, CGMOUT, which is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. In user mode, CGMOUT is the clock from which the SIM derives the system clocks, including the bus clock, which is at a frequency of CGMOUT/2. In monitor mode, PTC3 determines the bus clock. The PLL is a fully functional frequency generator designed for use with crystals or ceramic resonators. The PLL can generate an 8-MHz bus frequency using a 32-kHz crystal. ## 7.2 Features Features of the CGMC include: - Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference - Low-frequency crystal operation with low-power operation and high-output frequency resolution - Programmable prescaler for power-of-two increases in frequency - Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation - Automatic bandwidth control mode for low-jitter operation - Automatic frequency lock detector - CPU interrupt on entry or exit from locked condition - Configuration register bit to allow oscillator operation during stop mode # 7.3 Functional Description The CGMC consists of three major submodules: - Crystal oscillator circuit The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK. - Phase-locked loop (PLL) The PLL generates the programmable VCO frequency clock, CGMVCLK. - Base clock selector circuit This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from either CGMOUT or CGMXCLK. Figure 7-1 shows the structure of the CGMC. ### **Clock Generator Module (CGMC)** Figure 7-1. CGMC Block Diagram ## 7.3.1 Crystal Oscillator Circuit The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration module (SIM) or the OSCSTOPENB bit in the CONFIG register enable the crystal oscillator circuit. The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock. CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the
external clock to the OSC1 pin and let the OSC2 pin float. ## 7.3.2 Phase-Locked Loop Circuit (PLL) The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually. #### 7.3.3 PLL Circuits The PLL consists of these circuits: - Voltage-controlled oscillator (VCO) - Reference divider - Frequency prescaler - Modulo VCO frequency divider - Phase detector - Loop filter - Lock detector The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGM/XFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, f_{VRS} . Modulating the voltage on the CGM/XFC pin changes the frequency within this range. By design, f_{VRS} is equal to the nominal center-of-range frequency, f_{NOM} , (38.4 kHz) times a linear factor, L, and a power-of-two factor, E, or $(L \times 2^E)f_{NOM}$. CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency, f_{RCLK} , and is fed to the PLL through a programmable modulo reference divider, which divides f_{RCLK} by a factor, R. The divider's output is the final reference clock, CGMRDV, running at a frequency, $f_{RDV} = f_{RCLK}/R$. With an external crystal (30 kHz-100 kHz), always set R = 1 for specified performance. With an external high-frequency clock source, use R to divide the external frequency to between 30 kHz and 100 kHz. The VCO's output clock, CGMVCLK, running at a frequency, f_{VCLK} , is fed back through a programmable prescale divider and a programmable modulo divider. The prescaler divides the VCO clock by a power-of-two factor P and the modulo divider reduces the VCO clock by a factor, N. The dividers' output is the VCO feedback clock, CGMVDV, running at a frequency, $f_{VDV} = f_{VCLK}/(N \times 2^P)$. (See 7.3.6 Programming the PLL for more information.) #### **Clock Generator Module (CGMC)** The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to CGM/XFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in 7.3.4 Acquisition and Tracking Modes. The value of the external capacitor and the reference frequency determine the speed of the corrections and the stability of the PLL. The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final reference frequency, f_{RDV}. The circuit determines the mode of the PLL and the lock condition based on this comparison. ## 7.3.4 Acquisition and Tracking Modes The PLL filter is manually or automatically configurable into one of two operating modes: - Acquisition mode In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL startup or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 7.5.2 PLL Bandwidth Control Register.) - Tracking mode In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 7.3.8 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set. ### 7.3.5 Manual and Automatic PLL Bandwidth Modes The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. Automatic mode is recommended for most users. In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 7.5.2 PLL Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (during PLL startup, usually) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 7.3.8 Base Clock Selector Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. (See Interrupts for information and precautions on using interrupts.) The following conditions apply when the PLL is in automatic bandwidth control mode: - The ACQ bit (see 7.5.2 PLL Bandwidth Control Register) is a read-only indicator of the mode of the filter. (See 7.3.4 Acquisition and Tracking Modes.) - The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 7.8 Acquisition/Lock Time Specifications for more information.) - The LOCK bit is a read-only indicator of the locked state of the PLL. - The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 7.8 Acquisition/Lock Time Specifications for more information.) - CPU interrupts can occur if enabled (PLLIE = 1) when the PLL's lock condition changes, toggling the LOCK bit. (See 7.5.1 PLL Control Register.) The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below f_{BUSMAX} . The following conditions apply when in manual mode: - ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual mode, the ACQ bit must be clear. - Before entering tracking mode (ACQ = 1), software must wait a given time, t_{ACQ} (see 7.8 Acquisition/Lock Time Specifications), after turning on the PLL by setting PLLON in the PLL control register (PCTL). - Software must wait a given time, t_{AL}, after entering tracking mode before selecting the PLL as the clock source to CGMOUT (BCS = 1). - The LOCK bit is disabled. - CPU interrupts from the CGMC are disabled. #### 7.3.6 Programming the PLL The following procedure shows how to program the PLL. #### NOTE The round function in the following equations means that the real number should be rounded to the nearest integer number. - 1. Choose the desired bus frequency, f_{BUSDES}. - 2. Calculate the desired VCO frequency (four times the desired bus frequency). $$f_{VCLKDES} = 4 \times f_{BUSDES}$$ Choose a practical PLL (crystal) reference frequency, f_{RCLK}, and the reference clock divider, R. Typically, the reference crystal is 32.768 kHz and R = 1. Frequency errors to the PLL are corrected at a rate of f_{RCLK}/R . For stability and lock time reduction, this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate. The relationship between the VCO frequency, f_{VCLK} , and the reference frequency, f_{RCLK} , is $$f_{VCLK} = \frac{2^P N}{R} (f_{RCLK})$$ P, the power of two multiplier, and N, the range multiplier, are integers. In cases where desired bus frequency has some tolerance, choose f_{RCLK} to a value determined either by other module requirements (such as modules which are clocked by CGMXCLK), cost requirements, or ideally, as high as the specified range allows. See Chapter 23 Electrical Specifications. Choose the reference divider, R = 1. After choosing N and P, the actual bus frequency can be determined using equation in 2 above. When the tolerance on the bus frequency is tight, choose f_{RCLK} to an integer divisor of f_{BUSDES} , and R = 1. If f_{RCLK} cannot meet this requirement, use the following equation to solve for R with practical choices of f_{RCLK} , and choose the f_{RCLK} that gives the lowest R. $$R = round \left[R_{MAX} \times \left\{ \left(\frac{f_{VCLKDES}}{f_{RCLK}} \right) - integer \left(\frac{f_{VCLKDES}}{f_{RCLK}} \right) \right\} \right]$$ 4. Select a VCO frequency multiplier, N. $$N = round \left(\frac{R \times f_{VCLKDES}}{f_{RCLK}} \right)$$ Reduce N/R to the lowest possible R. 5. If N is $< N_{max}$, use P = 0. If N $> N_{max}$, choose P using this table: | Current N Value | Р | |---|---| | 0 < N ≤ N _{max} | 0 | | $N_{max} < N \le N_{max} \times 2$ | 1 | | $N_{\text{max}} \times 2 < N \le N_{\text{max}} \times 4$ | 2 | | $N_{max} \times 4 < N \le N_{max} \times 8$ | 3 | Then recalculate N: $$N = round \left(\frac{R \times f_{VCLKDES}}{f_{RCLK} \times 2^{P}} \right)$$ 6. Calculate and verify the adequacy of the VCO and bus frequencies f_{VCLK} and f_{BUS} . $$f_{VCLK} = (2^P \times N/R) \times f_{RCLK}$$ $f_{BUS} = (f_{VCLK})/4$ 7. Select the VCO's power-of-two range multiplier E, according to this table: | Frequency Range | E | |---|---| | 0 < f _{VCLK} < 8 MHz | 0 | | 9,830,400 ≤ f _{VCLK} < 16 MHz | 1 | | 19,660,800 ≤ f _{VCLK} < 32 MHz | 2 | NOTE: Do not program E to a value of 3. 8. Select a VCO linear range multiplier, L, where f_{NOM} = 38.4 kHz $$L = round \left(\frac{f_{VCLK}}{2^{E} \times f_{NOM}} \right)$$ 9. Calculate and verify the adequacy of the VCO
programmed center-of-range frequency, f_{VRS}. The center-of-range frequency is the midpoint between the minimum and maximum frequencies attainable by the PLL. $$f_{VRS} = (L \times 2^{E})f_{NOM}$$ For proper operation, $$\left|f_{VRS} - f_{VCLK}\right| \le \frac{f_{NOM} \times 2^E}{2}$$ 10. Verify the choice of P, R, N, E, and L by comparing f_{VCLK} to f_{VRS} and f_{VCLKDES}. For proper operation, f_{VCLK} must be within the application's tolerance of f_{VCLKDES}, and f_{VRS} must be as close as possible to f_{VCLK}. #### NOTE Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU. - 11. Program the PLL registers accordingly: - a. In the PRE bits of the PLL control register (PCTL), program the binary equivalent of P. - b. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E. - c. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high (PMSH), program the binary equivalent of N. - d. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L. - e. In the PLL reference divider select register (PMDS), program the binary coded equivalent of R. Table 7-1 provides numeric examples (numbers are in hexadecimal notation): **Table 7-1. Numeric Example** | f _{BUS} | f _{RCLK} | R | N | Р | E | L | |------------------|-------------------|---|-----|---|---|----| | 2.0 MHz | 32.768 kHz | 1 | F5 | 0 | 0 | D1 | | 2.4576 MHz | 32.768 kHz | 1 | 12C | 0 | 1 | 80 | | 2.5 MHz | 32.768 kHz | 1 | 132 | 0 | 1 | 83 | | 4.0 MHz | 32.768 kHz | 1 | 1E9 | 0 | 1 | D1 | | 4.9152 MHz | 32.768 kHz | 1 | 258 | 0 | 2 | 80 | | 5.0 MHz | 32.768 kHz | 1 | 263 | 0 | 2 | 82 | | 7.3728 MHz | 32.768 kHz | 1 | 384 | 0 | 2 | C0 | | 8.0 MHz | 32.768 kHz | 1 | 3D1 | 0 | 2 | D0 | #### 7.3.7 Special Programming Exceptions The programming method described in 7.3.6 Programming the PLL does not account for three possible exceptions. A value of 0 for R, N, or L is meaningless when used in the equations given. To account for these exceptions: - A 0 value for R or N is interpreted exactly the same as a value of 1. - A 0 value for L disables the PLL and prevents its selection as the source for the base clock. (See 7.3.8 Base Clock Selector Circuit.) #### 7.3.8 Base Clock Selector Circuit This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK). The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base clock. #### 7.3.9 CGMC External Connections In its typical configuration, the CGMC requires up to nine external components. Five of these are for the crystal oscillator and two or four are for the PLL. The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 7-2. Figure 7-2 shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: - Crystal, X₁ - Fixed capacitor, C₁ - Tuning capacitor, C₂ (can also be a fixed capacitor) - Feedback resistor, R_R - Series resistor, R_S The series resistor (R_S) is included in the diagram to follow strict Pierce oscillator guidelines. Refer to the crystal manufacturer's data for more information regarding values for C1 and C2. Figure 7-2 also shows the external components for the PLL: - Bypass capacitor, C_{RYP} - Filter network Routing should be done with great care to minimize signal cross talk and noise. See 23.8.1 CGM Component Specifications for capacitor and resistor values. Note: Filter network in box can be replaced with a 0.47 µF capacitor, but will degrade stability. Figure 7-2. CGMC External Connections ## 7.4 I/O Signals The following paragraphs describe the CGMC I/O signals. #### 7.4.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier. ## 7.4.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier. ## 7.4.3 External Filter Capacitor Pin (CGMXFC) The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is connected to this pin. (See Figure 7-2.) #### NOTE To prevent noise problems, the filter network should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the network. ## 7.4.4 PLL Analog Power Pin (V_{DDA}) V_{DDA} is a power pin used by the analog portions of the PLL. Connect the V_{DDA} pin to the same voltage potential as the V_{DD} pin. #### NOTE Route V_{DDA} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. ## 7.4.5 PLL Analog Ground Pin (V_{SSA}) V_{SSA} is a ground pin used by the analog portions of the PLL. Connect the V_{SSA} pin to the same voltage potential as the V_{SS} pin. #### NOTE Route V_{SSA} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. ## 7.4.6 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and PLL. #### 7.4.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB) OSCSTOPENB is a bit in the CONFIG register that enables the oscillator to continue operating during stop mode. If this bit is set, the Oscillator continues running during stop mode. If this bit is not set (default), the oscillator is controlled by the SIMOSCEN signal which will disable the oscillator during stop mode. ## 7.4.8 Crystal Output Frequency Signal (CGMXCLK) CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (f_{XCLK}) and comes directly from the crystal oscillator circuit. Figure 7-2 shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be unstable at startup. #### 7.4.9 CGMC Base Clock Output (CGMOUT) CGMOUT is the clock output of the CGMC. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two. ## 7.4.10 CGMC CPU Interrupt (CGMINT) CGMINT is the interrupt signal generated by the PLL lock detector. ## 7.5 CGMC Registers These registers control and monitor operation of the CGMC: - PLL control register (PCTL) (See 7.5.1 PLL Control Register.) - PLL bandwidth control register (PBWC) (See 7.5.2 PLL Bandwidth Control Register.) - PLL multiplier select register high (PMSH) (See 7.5.3 PLL Multiplier Select Register High.) - PLL multiplier select register low (PMSL) (See 7.5.4 PLL Multiplier Select Register Low.) - PLL VCO range select register (PMRS) (See 7.5.5 PLL VCO Range Select Register.) - PLL reference divider select register (PMDS) (See 7.5.6 PLL Reference Divider Select Register.) Figure 7-3 is a summary of the CGMC registers. | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|---|-----------------|-------|-------------|-------|------|------------|--------|------|--------| | \$0036 | PLL Control Register
(PCTL) | Read:
Write: | PLLIE | PLLF | PLLON | BCS | PRE1 | PRE0 | VPR1 | VPR0 | | | (1 012) | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | DIL D. L. III O. L. I | Read: | AUTO | LOCK | ACQ | 0 | 0 | 0 | 0 | R | | \$0037 | PLL Bandwidth Control
Register (PBWC) | Write: | AUTO | | ACQ | | | | | n | | | riogisto: (i zirro) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | D. I. M. III. II. O. I III. I | Read: | 0 | 0 | 0 | 0 | MUL11 | MUL10 | MUL9 | MUL8 | | \$0038 | PLL Multiplier Select High
Register (PMSH) | Write: | | | | | WIOLII | WIOLIU | MOL9 | IVIULO | | | riogistor (rimeri) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0039 | PLL Multiplier Select Low
Register (PMSL) | Read:
Write: | MUL7 | MUL6 | MUL5 | MUL4 | MUL3 | MUL2 | MUL1 | MUL0 | | | ricgister (riviol) | Reset: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | \$003A | PLL VCO Select Range
Register (PMRS) | Read:
Write: | VRS7 | VRS6 | VRS5 | VRS4 | VRS3 | VRS2 | VRS1 | VRS0 | | | riogistor (rivirio) | Reset: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | DDCa | DDC0 | RDS1 | DDC0 | | \$003B | PLL Reference Divider
Select Register (PMDS) | Write: | | | | | RDS3 | RDS2 | ופטא | RDS0 | | | 23.000 Togistor (TMDO) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | NOTEC: | | | | = Unimpleme | ented | R | = Reserved | | | | #### NOTES: - 1. When AUTO = 0, PLLIE is forced clear and is read-only. - 2. When AUTO = 0, PLLF and LOCK read as clear. - 3. When AUTO = 1, \overline{ACQ} is read-only. - 4. When PLLON = 0 or VRS7:VRS0 = \$0, BCS is forced clear and is read-only. - 5. When
PLLON = 1, the PLL programming register is read-only. - 6. When BCS = 1, PLLON is forced set and is read-only. Figure 7-3. CGMC I/O Register Summary MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 7.5.1 PLL Control Register The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits. Figure 7-4. PLL Control Register (PCTL) #### PLLIE — PLL Interrupt Enable Bit This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE bit. - 1 = PLL interrupts enabled - 0 = PLL interrupts disabled #### PLLF — PLL Interrupt Flag Bit This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit. - 1 = Change in lock condition - 0 = No change in lock condition #### NOTE Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit. #### PLLON — PLL On Bit This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 7.3.8 Base Clock Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up. 1 = PLL on 0 = PLL off #### **BCS** — Base Clock Select Bit This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGMC output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. (See 7.3.8 Base Clock Selector Circuit.) Reset clears the BCS bit. - 1 = CGMVCLK divided by two drives CGMOUT - 0 = CGMXCLK divided by two drives CGMOUT #### NOTE PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. (See 7.3.8 Base Clock Selector Circuit.) #### PRE1 and PRE0 — Prescaler Program Bits These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See 7.3.3 PLL Circuits and 7.3.6 Programming the PLL.) PRE1 and PRE0 cannot be written when the PLLON bit is set. Reset clears these bits. #### NOTE The value of P is normally 0 when using a 32.768-kHz crystal as the reference. | PRE1 and PRE0 | Р | Prescaler Multiplier | |---------------|---|----------------------| | 00 | 0 | 1 | | 01 | 1 | 2 | | 10 | 2 | 4 | Table 7-2. PRE 1 and PRE0 Programming #### VPR1 and 0 — VCO Power-of-Two Range Select Bits These read/write bits control the VCO's hardware power-of-two range multiplier E that, in conjunction with L (See 7.3.3 PLL Circuits, 7.3.6 Programming the PLL, and 7.5.5 PLL VCO Range Select Register.) controls the hardware center-of-range frequency, f_{VRS}. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits. | VPR1 and VPR0 | E | VCO Power-of-Two
Range Multiplier | |---------------|------------------|--------------------------------------| | 00 | 0 | 1 | | 01 | 1 | 2 | | 10 | 2 | 4 | | 11 | 3 ⁽¹⁾ | 8 | Table 7-3. VPR1 and VPR0 Programming ^{1.} Do not program E to a value of 3. #### 7.5.2 PLL Bandwidth Control Register The PLL bandwidth control register (PBWC): - Selects automatic or manual (software-controlled) bandwidth control mode - Indicates when the PLL is locked - In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode - In manual operation, forces the PLL into acquisition or tracking mode Figure 7-5. PLL Bandwidth Control Register (PBWC) #### **AUTO** — Automatic Bandwidth Control Bit This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the \overline{ACQ} bit before turning on the PLL. Reset clears the AUTO bit. - 1 = Automatic bandwidth control - 0 = Manual bandwidth control #### LOCK — Lock Indicator Bit When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as 0 and has no meaning. The write one function of this bit is reserved for test, so this bit must *always* be written a 0. Reset clears the LOCK bit. - 1 = VCO frequency correct or locked - 0 = VCO frequency incorrect or unlocked #### **ACQ** — Acquisition Mode Bit When the AUTO bit is set, \overline{ACQ} is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, \overline{ACQ} is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode. - 1 = Tracking mode - 0 = Acquisition mode #### 7.5.3 PLL Multiplier Select Register High The PLL multiplier select register high (PMSH) contains the programming information for the high byte of the modulo feedback divider. Figure 7-6. PLL Multiplier Select Register High (PMSH) #### MUL11-MUL8 — Multiplier Select Bits These read/write bits control the high byte of the modulo feedback divider that selects the VCO frequency multiplier N. (See 7.3.3 PLL Circuits and 7.3.6 Programming the PLL.) A value of \$0000 in the multiplier select registers configures the modulo feedback divider the same as a value of \$0001. Reset initializes the registers to \$0040 for a default multiply value of 64. #### NOTE The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). #### PMSH[7:4] — Unimplemented Bits These bits have no function and always read as logic 0s. ## 7.5.4 PLL Multiplier Select Register Low The PLL multiplier select register low (PMSL) contains the programming information for the low byte of the modulo feedback divider. Figure 7-7. PLL Multiplier Select Register Low (PMSL) #### MUL7-MUL0 — Multiplier Select Bits These read/write bits control the low byte of the modulo feedback divider that selects the VCO frequency multiplier, N. (See 7.3.3 PLL Circuits and 7.3.6 Programming the PLL.) MUL7–MUL0 cannot be written when the PLLON bit in the PCTL is set. A value of \$0000 in the multiplier select registers configures the modulo feedback divider the same as a value of \$0001. Reset initializes the register to \$40 for a default multiply value of 64. #### NOTE The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 7.5.5 PLL VCO Range Select Register #### NOTE PMRS may be called PVRS on other HC08 derivatives. The PLL VCO range select register (PMRS) contains the programming information required for the hardware configuration of the VCO. Figure 7-8. PLL VCO Range Select Register (PMRS) #### VRS7-VRS0 — VCO Range Select Bits These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with E (see 7.3.3 PLL Circuits, 7.3.6 Programming the PLL, and 7.5.1 PLL Control Register), controls the hardware center-of-range frequency, f_{VRS}. VRS7–VRS0 cannot be written when the PLLON bit in the PCTL is set. (See 7.3.7 Special Programming Exceptions.) A value of \$00 in the VCO range select register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 7.3.8 Base Clock Selector Circuit and 7.3.7 Special Programming Exceptions.). Reset initializes the register to \$40 for a default range multiply value of 64. #### NOTE The VCO range select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The PLL VCO range select register must be programmed correctly. Incorrect programming can result in failure of the PLL to achieve lock. #### 7.5.6 PLL Reference Divider Select Register #### NOTE PMDS may be called PRDS on other HC08 derivatives. The PLL reference divider select register (PMDS) contains the programming information for the modulo reference divider. Figure 7-9. PLL Reference Divider Select Register (PMDS) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### RDS3-RDS0 — Reference Divider Select Bits These read/write bits control the modulo reference divider that selects the reference division factor, R. (See 7.3.3 PLL Circuits and 7.3.6 Programming the PLL.) RDS7–RDS0 cannot be written when the PLLON bit in the PCTL is set. A value of \$00 in the reference divider select register configures the reference divider the same as a value of \$01. (See 7.3.7 Special Programming Exceptions.) Reset initializes the register to \$01 for a default divide value of 1. #### NOTE The reference divider select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1). The default divide value of 1 is recommended for all applications. #### PMDS7-PMDS4 — Unimplemented Bits These bits have no function
and always read as logic 0s. ## 7.6 Interrupts When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as logic 0. Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations. #### NOTE Software can select the CGMVCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit. ## 7.7 Special Modes The WAIT instruction puts the MCU in low power-consumption standby modes. #### 7.7.1 Wait Mode The WAIT instruction does not affect the CGMC. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power. Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost. #### 7.7.2 Stop Mode If the OSCSTOPENB bit in the CONFIG register is cleared (default), then the STOP instruction disables the CGMC (oscillator and phase locked loop) and holds low all CGMC outputs (CGMXCLK, CGMOUT, and CGMINT). If the STOP instruction is executed with the VCO clock, CGMVCLK, divided by two driving CGMOUT, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal clock, CGMXCLK, divided by two as the source of CGMOUT. When the MCU recovers from STOP, the crystal clock divided by two drives CGMOUT and BCS remains clear. If the OSCSTOPENB bit in the CONFIG register is set, then the phase locked loop is shut off but the oscillator will continue to operate in stop mode. #### 7.7.3 CGMC During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 19.7.3 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit. ## 7.8 Acquisition/Lock Time Specifications The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times. ## 7.8.1 Acquisition/Lock Time Definitions Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percentage of the step input or when the output settles to the desired value plus or minus a percentage of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz \pm 50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a -100-kHz noise hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz \pm 5 kHz. Five kHz = 5% of the 100-kHz step input. Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error. #### 7.8.2 Parametric Influences on Reaction Time Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time. The most critical parameter which affects the reaction times of the PLL is the reference frequency, f_{RDV}. This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is under user control via the choice of crystal frequency f_{XCLK} and the R value programmed in the reference divider. (See 7.3.3 PLL Circuits, 7.3.6 Programming the PLL, and 7.5.6 PLL Reference Divider Select Register.) Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. (See 7.8.3 Choosing a Filter.) Also important is the operating voltage potential applied to V_{DDA} . The power supply potential alters the characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL. Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination. #### 7.8.3 Choosing a Filter As described in 7.8.2 Parametric Influences on Reaction Time, the external filter network is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage. Figure 7-10 shows two types of filter circuits. In low-cost applications, where stability and reaction time of the PLL are not critical, the three component filter network of Figure 7-10 (B) can be replaced by a single capacitor, C_F , shown in Figure 7-10 (A). Refer to Table 7-4 for recommended filter components at various reference frequencies. For reference frequencies between the values listed in the table, extrapolate to the nearest common capacitor value. In general, a slightly larger capacitor provides more stability at the expense of increased lock time. Figure 7-10. PLL Filter **Table 7-4. Example Filter Component Values** | f _{RCLK} | C _{F1} | C _{F2} | R _{F1} | C _F | |-------------------|-----------------|-----------------|-----------------|----------------| | 32 kHz | 0.15 μF | 15 nF | 2 K | 0.22 μF | | 40 kHz | 0.12 μF | 12 nF | 2 K | 0.18 μF | | 50 kHz | 0.10 μF | 10 nF | 2 K | 0.18 μF | | 60 kHz | 82 nF | 8.2 nF | 2 K | 0.12 μF | | 70 kHz | 68 nF | 6.8 nF | 2 K | 0.12 μF | | 80 kHz | 56 nF | 5.6 nF | 2 K | 0.1 μF | | 90 kHz | 56 nF | 5.6 nF | 2 K | 0.1 μF | | 100 kHz | 47 nF | 4.7 nF | 2 K | 82 nF | # **Chapter 8 Configuration Register (CONFIG)** #### 8.1 Introduction This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers enable or disable these options: - Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles) - COP timeout period (262,128 or 8176 CGMXCLK cycles) - STOP instruction - Computer operating properly module (COP) - Low-voltage inhibit (LVI) module control and voltage trip point selection - Enable/disable the oscillator (OSC) during stop mode ## 8.2 Functional Description The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration registers are located at \$001E and \$001F. The configuration register
may be read at anytime. #### NOTE To ensure correct operation of the MCU under all operating conditions, the user must write data \$1C to address \$0033 immediately after reset. This is to ensure proper termination of an unused module within the MCU. #### NOTE On a FLASH device, the options except LVI5OR3 are one-time writeable by the user after each reset. The LVI5OR3 bit is one-time writeable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writeable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 8-1 and Figure 8-2. Figure 8-1. Configuration Register 2 (CONFIG2) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Configuration Register (CONFIG)** Note: LVI5OR3 bit is only reset via POR (power-on reset) Figure 8-2. Configuration Register 1 (CONFIG1) #### **OSCSTOPENB— Oscillator Stop Mode Enable Bar Bit** OSCSTOPENB enables the oscillator to continue operating during stop mode. Setting the OSCSTOPENB bit allows the oscillator to operate continuously even during stop mode. This is useful for driving the timebase module to allow it to generate periodic wakeup while in stop mode. (See Clock Generator Module (CGM) subsection Stop Mode.) - 1 = Oscillator enabled to operate during stop mode - 0 = Oscillator disabled during stop mode (default) #### SCIBDSRC — SCI Baud Rate Clock Source Bit SCIBDSRC controls the clock source used for the SCI. The setting of this bit affects the frequency at which the SCI operates. - 1 = Internal data bus clock used as clock source for SCI - 0 = External oscillator used as clock source for SCI #### COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. See Chapter 9 Computer Operating Properly (COP). - 1 = COP timeout period = 8176 CGMXCLK cycles - 0 = COP timeout period = 262,128 CGMXCLK cycles #### LVISTOP — LVI Enable in Stop Mode Bit When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. See Stop Mode. - 1 = LVI enabled during stop mode - 0 = LVI disabled during stop mode #### LVIRSTD — LVI Reset Disable Bit LVIRSTD disables the reset signal from the LVI module. See Chapter 14 Low-Voltage Inhibit (LVI). - 1 = LVI module resets disabled - 0 = LVI module resets enabled #### LVIPWRD — LVI Power Disable Bit LVIPWRD disables the LVI module. See Chapter 14 Low-Voltage Inhibit (LVI). - 1 = LVI module power disabled - 0 = LVI module power enabled #### LVI5OR3 — LVI 5V or 3V Operating Mode Bit LVI5OR3 selects the voltage operating mode of the LVI module. See Chapter 14 Low-Voltage Inhibit (LVI). The voltage mode selected for the LVI should match the operating V_{DD}. See Chapter 23 Electrical Specifications for the LVI's voltage trip points for each of the modes. - 1 = LVI operates in 5V mode. - 0 = LVI operates in 3V mode. #### SSREC — Short Stop Recovery Bit MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay. - 1 = Stop mode recovery after 32 CGMXCLK cycles - 0 = Stop mode recovery after 4096 CGMXCLKC cycles #### NOTE Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal oscillator, do not set the SSREC bit. When the LVISTOP is enabled, the system stabilization time for power on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the enable time for the LVI. There is no period where the MCU is not protected from a low power condition. However, when using the short stop recovery configuration option, the 32-CGMXCLK delay is less than the LVI's turn-on time and there exists a period in startup where the LVI is not protecting the MCU. #### **STOP** — **STOP** Instruction Enable Bit STOP enables the STOP instruction. - 1 = STOP instruction enabled - 0 = STOP instruction treated as illegal opcode #### COPD — COP Disable Bit COPD disables the COP module. See Chapter 9 Computer Operating Properly (COP) - 1 = COP module disabled - 0 = COP module enabled **Configuration Register (CONFIG)** # **Chapter 9 Computer Operating Properly (COP)** #### 9.1 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register. ## 9.2 Functional Description Figure 9-1 shows the structure of the COP module. Figure 9-1. COP Block Diagram #### **Computer Operating Properly (COP)** The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176 CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration register. With a 8176 CGMXCLK cycle overflow option, a 32.768-kHz crystal gives a COP timeout period of 250 ms. Writing any value to location \$FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler. #### NOTE Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the reset status register (RSR). In monitor mode, the COP is disabled if the \overline{RST} pin or the \overline{IRQ} is held at V_{TST} . During the break state, V_{TST} on the \overline{RST} pin disables the COP. #### NOTE Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. ## 9.3 I/O Signals The following paragraphs describe the signals shown in Figure 9-1. #### 9.3.1 CGMXCLK CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency. #### 9.3.2 STOP Instruction The STOP instruction clears the COP prescaler. #### 9.3.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector. #### 9.3.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up. #### 9.3.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. #### 9.3.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 9.3.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See Chapter 8 Configuration Register (CONFIG). ## 9.3.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See Chapter 8 Configuration Register (CONFIG). ## 9.4 COP Control Register The COP control register is located at address \$FFFF and overlaps the reset vector. Writing any value to \$FFFF clears the COP counter and starts a new timeout period. Reading location \$FFFF returns the low byte of the reset vector. Figure 9-2. COP Control Register (COPCTL) ## 9.5 Interrupts The COP does not generate CPU interrupt requests. #### 9.6 Monitor Mode When monitor mode is entered with V_{TST} on the \overline{IRQ} pin, the COP is disabled as long as V_{TST} remains on the \overline{IRQ} pin or the \overline{RST} pin. When monitor mode is entered by having blank reset vectors and not having V_{TST} on the \overline{IRQ} pin, the COP is automatically disabled until a POR occurs. #### 9.7 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. #### 9.7.1 Wait Mode The COP remains active during wait mode. If COP is enabled, a reset will occur at COP timeout. #### 9.7.2 Stop Mode Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. #### **Computer Operating Properly (COP)** To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction disabled, execution of a STOP instruction results in an illegal opcode reset. ## 9.8 COP Module During Break Mode The COP is disabled during a break interrupt when V_{TST} is present on the \overline{RST} pin. ## **Chapter 10 Central Processing Unit (CPU)** The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual* (document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. #### 10.1 Features Features of the CPU include: - Object code fully upward-compatible with M68HC05 Family - 16-bit stack pointer with stack manipulation instructions - 16-bit index register with x-register manipulation instructions - 8-MHz CPU internal bus frequency - 64-Kbyte program/data memory space - 16 addressing modes - Memory-to-memory data moves without using accumulator - Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions - Enhanced binary-coded decimal (BCD) data handling - Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes - Low-power stop and wait modes ## 10.2 CPU Registers Figure
10-1 shows the five CPU registers. CPU registers are not part of the memory map. ## **Central Processing Unit (CPU)** Figure 10-1. CPU Registers #### 10.2.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Figure 10-2. Accumulator (A) #### 10.2.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Figure 10-3. Index Register (H:X) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 10.2.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to \$00FF. The reset stack pointer (RSP) instruction sets the least significant byte to \$FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Figure 10-4. Stack Pointer (SP) #### NOTE The location of the stack is arbitrary and may be relocated anywhere in random-access memory (RAM). Moving the SP out of page 0 (\$0000 to \$00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. #### 10.2.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at \$FFFE and \$FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Figure 10-5. Program Counter (PC) **Central Processing Unit (CPU)** #### 10.2.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the functions of the condition code register. Figure 10-6. Condition Code Register (CCR) #### V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. - 1 = Overflow - 0 = No overflow #### H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. - 1 = Carry between bits 3 and 4 - 0 = No carry between bits 3 and 4 #### I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. - 1 = Interrupts disabled - 0 = Interrupts enabled #### **NOTE** To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). #### N — Negative Flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. - 1 = Negative result - 0 = Non-negative result #### Z — Zero Flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of \$00. - 1 = Zero result - 0 = Non-zero result #### C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. - 1 = Carry out of bit 7 - 0 = No carry out of bit 7 ## 10.3 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the *CPU08 Reference Manual* (document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. #### 10.4 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. #### 10.4.1 Wait Mode The WAIT instruction: - Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. - Disables the CPU clock #### **10.4.2 Stop Mode** The STOP instruction: - Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. - Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. ## 10.5 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: - Loading the instruction register with the SWI instruction - Loading the program counter with \$FFFC:\$FFFD or with \$FEFC:\$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. #### **Central Processing Unit (CPU)** A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. ## 10.6 Instruction Set Summary Table 10-1 provides a summary of the M68HC08 instruction set. Table 10-1. Instruction Set Summary (Sheet 1 of 6) | Source | Operation | Description | | | Eff
n (| | | | Address
Mode | Opcode | | es | |--|--|---|---|---|------------|---|---|---|--|--|---|--------------------------------------| | Form | oporation | Becomplien | ٧ | Н | ı | N | Z | С | Add | Opc | Operand | Cycles | | ADC #opr
ADC opr
ADC opr,X
ADC opr,X
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP | Add with Carry | $A \leftarrow (A) + (M) + (C)$ | ţ | ţ | _ | 1 | 1 | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A9
B9
C9
D9
E9
F9
9EE9
9ED9 | ii
dd
hh II
ee ff
ff
ff
ee ff | 23443245 | | ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X
ADD opr,SP
ADD opr,SP | Add without Carry | A ← (A) + (M) | 1 | 1 | _ | 1 | 1 | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | AB
BB
CB
DB
EB
FB
9EEB
9EDB | | 2
3
4
4
3
2
4
5 | | AIS #opr | Add Immediate Value (Signed) to SP | SP ← (SP) + (16 « M) | _ | _ | _ | - | - | _ | IMM | A7 | ii | 2 | | AIX #opr | Add Immediate Value (Signed) to H:X | H:X ← (H:X) + (16 « M) | _ | - | _ | - | - | _ | IMM | AF | ii | 2 | | AND #opr
AND opr
AND opr,X
AND opr,X
AND opr,X
AND X
AND opr,SP
AND opr,SP | Logical AND | A ← (A) & (M) | 0 | | _ | ‡ | ‡ | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A4
B4
C4
D4
E4
F4
9EE4
9ED4 | ii
dd
hh II
ee ff
ff
ff
ee ff | 23443245 | | ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X
ASL opr,SP | Arithmetic Shift Left
(Same as LSL) | C ← 0 b0 b0 | î | _ | _ | 1 | 1 | 1 | DIR
INH
INH
IX1
IX
SP1 | 38
48
58
68
78
9E68 | dd
ff
ff | 4
1
1
4
3
5 | | ASR opr
ASRA
ASRX
ASR opr,X
ASR opr,X
ASR opr,SP | Arithmetic Shift Right | b7 b0 | 1 | _ | _ | ‡ | 1 | ‡ | DIR
INH
INH
IX1
IX
SP1 | 37
47
57
67
77
9E67 | dd
ff
ff | 4
1
1
4
3
5 | | BCC rel | Branch if Carry Bit Clear | $PC \leftarrow (PC) + 2 + rel? (C) = 0$ | _ | _ | _ | _ | - | _ | REL | 24 | rr | 3 | | BCLR n, opr | Clear Bit n in M | Mn ← 0 | _ | _ | - | _ | ı | _ | DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7) | 11
13
15
17
19
1B
1D
1F | dd
dd
dd
dd
dd
dd
dd
dd | 4
4
4
4
4
4
4 | | BCS rel | Branch if Carry Bit Set (Same as BLO) | PC ← (PC) + 2 + rel? (C) = 1 | _ | _ | _ | _ | _ | _ |
REL | 25 | rr | 3 | | BEQ rel | Branch if Equal | $PC \leftarrow (PC) + 2 + rel? (Z) = 1$ | _ | - | _ | _ | _ | _ | REL | 27 | rr | 3 | | BGE opr | Branch if Greater Than or Equal To (Signed Operands) | $PC \leftarrow (PC) + 2 + rel? (N \oplus V) = 0$ | _ | - | _ | _ | _ | _ | REL | 90 | rr | 3 | | BGT opr | Branch if Greater Than (Signed Operands) | $PC \leftarrow (PC) + 2 + rel ? (Z) (N \oplus V) = 0$ | _ | - | - | _ | _ | _ | REL | 92 | rr | 3 | MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## Table 10-1. Instruction Set Summary (Sheet 2 of 6) | Source | Operation | Description | | | | ect | | | Address
Mode | Opcode | Operand | les | |--|---|--|---|---|---|----------|---|---|--|--|--|---------------------------------------| | Form | Орогиион | Boompton | ٧ | Н | I | N | Z | С | Add | Opc | Ope | Cycles | | BHCC rel | Branch if Half Carry Bit Clear | $PC \leftarrow (PC) + 2 + rel? (H) = 0$ | - | - | _ | - | - | ı | REL | 28 | rr | 3 | | BHCS rel | Branch if Half Carry Bit Set | $PC \leftarrow (PC) + 2 + rel? (H) = 1$ | - | - | _ | _ | - | _ | REL | 29 | rr | 3 | | BHI rel | Branch if Higher | $PC \leftarrow (PC) + 2 + rel? (C) (Z) = 0$ | - | - | _ | _ | - | _ | REL | 22 | rr | 3 | | BHS rel | Branch if Higher or Same
(Same as BCC) | $PC \leftarrow (PC) + 2 + rel? (C) = 0$ | _ | _ | _ | ı | _ | ı | REL | 24 | rr | 3 | | BIH rel | Branch if IRQ Pin High | $PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 1$ | - | - | _ | - | _ | ı | REL | 2F | rr | 3 | | BIL rel | Branch if IRQ Pin Low | $PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 0$ | - | - | - | - | - | - | REL | 2E | rr | 3 | | BIT #opr
BIT opr
BIT opr,X
BIT opr,X
BIT,X
BIT opr,SP
BIT opr,SP | Bit Test | (A) & (M) | 0 | _ | _ | ‡ | 1 | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A5
B5
C5
D5
E5
F5
9EE5
9ED5 | ii
dd
hh II
ee ff
ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | BLE opr | Branch if Less Than or Equal To (Signed Operands) | $PC \leftarrow (PC) + 2 + rel?(Z) \mid (N \oplus V) = 1$ | - | - | _ | - | - | - | REL | 93 | rr | 3 | | BLO rel | Branch if Lower (Same as BCS) | $PC \leftarrow (PC) + 2 + rel? (C) = 1$ | _ | _ | _ | _ | _ | - | REL | 25 | rr | 3 | | BLS rel | Branch if Lower or Same | $PC \leftarrow (PC) + 2 + rel? (C) (Z) = 1$ | _ | _ | _ | _ | _ | - | REL | 23 | rr | 3 | | BLT opr | Branch if Less Than (Signed Operands) | PC ← (PC) + 2 + <i>rel</i> ? (N ⊕ V) =1 | _ | _ | - | _ | - | - | REL | 91 | rr | 3 | | BMC rel | Branch if Interrupt Mask Clear | $PC \leftarrow (PC) + 2 + rel? (I) = 0$ | _ | _ | _ | - | _ | _ | REL | 2C | rr | 3 | | BMI rel | Branch if Minus | PC ← (PC) + 2 + rel? (N) = 1 | _ | _ | _ | - | _ | _ | REL | 2B | rr | 3 | | BMS rel | Branch if Interrupt Mask Set | PC ← (PC) + 2 + rel? (I) = 1 | - | - | - | - | - | - | REL | 2D | rr | 3 | | BNE rel | Branch if Not Equal | $PC \leftarrow (PC) + 2 + rel? (Z) = 0$ | _ | _ | _ | - | _ | - | REL | 26 | rr | 3 | | BPL rel | Branch if Plus | $PC \leftarrow (PC) + 2 + rel? (N) = 0$ | - | - | - | - | - | - | REL | 2A | rr | 3 | | BRA rel | Branch Always | PC ← (PC) + 2 + rel | _ | _ | _ | - | _ | - | REL | 20 | rr | 3 | | BRCLR n,opr,rel | Branch if Bit <i>n</i> in M Clear | PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 0 | _ | _ | _ | ı | _ | ‡ | DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7) | 01
03
05
07
09
0B
0D
0F | dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | BRN rel | Branch Never | PC ← (PC) + 2 | - | _ | - | 1 | - | - | REL | 21 | rr | 3 | | BRSET n,opr,rel | Branch if Bit <i>n</i> in M Set | PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 1 | _ | _ | _ | I | _ | ‡ | DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7) | 00
02
04
06
08
0A
0C
0E | dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr | 55555555 | | BSET n,opr | Set Bit <i>n</i> in M | Mn ← 1 | _ | _ | _ | ı | _ | _ | DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7) | 10
12
14
16
18
1A
1C
1E | dd
dd
dd
dd
dd
dd
dd
dd | 4
4
4
4
4
4
4 | | BSR rel | Branch to Subroutine | $\begin{array}{c} PC \leftarrow (PC) + 2; push (PCL) \\ SP \leftarrow (SP) - 1; push (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$ | _ | _ | _ | - | _ | - | REL | AD | rr | 4 | ## **Central Processing Unit (CPU)** Table 10-1. Instruction Set Summary (Sheet 3 of 6) | Source | Operation | Description | | | | ec
CC | | | ress | Opcode | Operand | es | |---|----------------------------------|--|---|---|---|----------|---|---|---|--|---|--------------------------------------| | Form | Operation | Description | ٧ | Н | I | N | z | С | Address
Mode | Opc | Ope | Cycles | | CBEQ opr,rel
CBEQA #opr,rel
CBEQX #opr,rel
CBEQ opr,X+,rel
CBEQ X+,rel
CBEQ opr,SP,rel | Compare and Branch if Equal | $\begin{array}{c} PC \leftarrow (PC) + 3 + rel \ ? \ (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel \ ? \ (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel \ ? \ (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel \ ? \ (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel \ ? \ (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel \ ? \ (A) - (M) = \$00 \\ \end{array}$ | _ | _ | - | - | - | _ | DIR
IMM
IMM
IX1+
IX+
SP1 | 31
41
51
61
71 | dd rr
ii rr
ii rr
ff rr
rr
ff rr | 5
4
4
5
4
6 | | CLC | Clear Carry Bit | C ← 0 | _ | _ | - | - | - | 0 | INH | 98 | | 1 | | CLI | Clear Interrupt Mask | I ← 0 | _ | - | 0 | - | - | - | INH | 9A | | 2 | | CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP | Clear | M ← \$00
A ← \$00
X ← \$00
H ← \$00
M ← \$00
M ← \$00
M ← \$00 | 0 | ı | _ | 0 | 1 | _ | DIR
INH
INH
INH
IX1
IX
SP1 | 3F
4F
5F
8C
6F
7F
9E6F | dd
ff
ff | 3
1
1
3
2
4 | | CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP,X
CMP opr,SP
CMP opr,SP | Compare A with M | (A) – (M) | ţ | _ | _ | ţ | ‡ | ‡ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A1
B1
C1
D1
E1
F1
9EE1
9ED1 | ii
dd
hh II
ee ff
ff
ff
ee ff | 2 3 4 4 3 2 4 5 | | COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP | Complement (One's Complement) | $\begin{array}{c} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$ | 0 | ı | _ | ‡ | ‡ | 1 | DIR
INH
INH
IX1
IX
SP1 | 33
43
53
63
73
9E63 | dd
ff
ff | 4
1
1
4
3
5 | | CPHX #opr
CPHX opr | Compare H:X with M | (H:X) – (M:M + 1) | 1 | - | - | 1 | 1 | ţ | IMM
DIR | 65
75 | ii ii+1
dd | 3
4 | | CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP | Compare X with M | (X) – (M) | ţ | _ | _ | 1 | ‡ | ‡ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A3
B3
C3
D3
E3
F3
9EE3
9ED3 | | 2
3
4
4
3
2
4
5 | | DAA | Decimal Adjust A | (A) ₁₀ | U | - | - | 1 | 1 | 1 | INH | 72 | | 2 | | DBNZ opr,rel
DBNZA rel
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel | Decrement and Branch if Not Zero | $\begin{array}{l} A \leftarrow (A)-1 \text{ or } M \leftarrow (M)-1 \text{ or } X \leftarrow (X)-1 \\ PC \leftarrow (PC)+3+rel? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+rel? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+rel? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+3+rel? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+rel? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+4+rel? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+4+rel? \text{ (result)} \neq 0 \end{array}$ | - | _ | _ | - | _ | - | DIR
INH
INH
IX1
IX
SP1 | 3B
4B
5B
6B
7B
9E6B | dd rr
rr
rr
ff rr
rr
ff rr | 5
3
3
5
4
6 | | DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP | Decrement | $\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$ | ţ | - | _ | ‡ | ‡ | _ | DIR
INH
INH
IX1
IX
SP1 | 3A
4A
5A
6A
7A
9E6A | dd
ff
ff | 4
1
1
4
3
5 | | DIV | Divide | A ← (H:A)/(X)
H ← Remainder |
- | - | _ | _ | 1 | ‡ | INH | 52 | | 7 | | EOR #opr
EOR opr
EOR opr,
EOR opr,X
EOR opr,X
EOR,X
EOR opr,SP
EOR opr,SP | Exclusive OR M with A | $A \leftarrow (A \oplus M)$ | 0 | l | _ | 1 | ‡ | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A8
B8
C8
D8
E8
F8
9EE8
9ED8 | | 2
3
4
4
3
2
4
5 | ## MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## Table 10-1. Instruction Set Summary (Sheet 4 of 6) | Source | Operation | Description | | | | ec
CC | | | Address
Mode | Opcode | Operand | les | |--|-------------------------------------|---|---|---|---|----------|----|----------|---|--|----------------------------|--------------------------------------| | Form | | 23334 | ٧ | Н | ı | N | z | С | Add | Opc | Ope | Cycles | | INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP | Increment | $\begin{array}{l} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$ | ‡ | _ | _ | 1 | ‡ | _ | DIR
INH
INH
IX1
IX
SP1 | 3C
4C
5C
6C
7C
9E6C | dd
ff
ff | 4
1
1
4
3
5 | | JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X | Jump | PC ← Jump Address | | _ | | - | - | - | DIR
EXT
IX2
IX1
IX | BC
CC
DC
EC
FC | dd
hh II
ee ff
ff | 2 3 4 3 2 | | JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X | Jump to Subroutine | PC \leftarrow (PC) + n (n = 1, 2, or 3)
Push (PCL); SP \leftarrow (SP) – 1
Push (PCH); SP \leftarrow (SP) – 1
PC \leftarrow Unconditional Address | _ | _ | _ | _ | _ | _ | DIR
EXT
IX2
IX1
IX | BD
CD
DD
ED
FD | dd
hh II
ee ff
ff | 4
5
6
5
4 | | LDA #opr
LDA opr
LDA opr,X
LDA opr,X
LDA opr,X
LDA opr,SP
LDA opr,SP | Load A from M | A ← (M) | 0 | _ | _ | 1 | ‡ | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A6
B6
C6
D6
E6
F6
9EE6
9ED6 | | 2
3
4
4
3
2
4
5 | | LDHX #opr
LDHX opr | Load H:X from M | H:X ← (M:M + 1) | 0 | - | _ | 1 | 1 | - | IMM
DIR | 45
55 | ii jj
dd | 3 4 | | LDX #opr
LDX opr
LDX opr,X
LDX opr,X
LDX opr,X
LDX opr,SP
LDX opr,SP
LDX opr,SP | Load X from M | X ← (M) | 0 | _ | _ | ţ | 1 | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | AE
BE
CE
DE
EE
FE
9EEE
9EDE | | 23443245 | | LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X
LSL opr,SP | Logical Shift Left
(Same as ASL) | C ← 0 b7 b0 | Î | _ | _ | 1 | 1 | ‡ | DIR
INH
INH
IX1
IX
SP1 | 38
48
58
68
78
9E68 | dd
ff
ff | 4
1
1
4
3
5 | | LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X
LSR opr,SP | Logical Shift Right | 0 - C b7 b0 | 1 | ı | _ | 0 | 1 | 1 | DIR
INH
INH
IX1
IX
SP1 | 34
44
54
64
74
9E64 | dd
ff
ff | 4 1 1 4 3 5 | | MOV opr,opr
MOV opr,X+
MOV #opr,opr
MOV X+,opr | Move | $(M)_{Destination} \leftarrow (M)_{Source}$
$H:X \leftarrow (H:X) + 1 (IX+D, DIX+)$ | 0 | _ | - | ţ | Į. | - | DD
DIX+
IMD
IX+D | 4E
5E
6E
7E | dd dd
dd
ii dd
dd | 5
4
4
4 | | MUL | Unsigned multiply | $X:A \leftarrow (X) \times (A)$ | - | 0 | _ | _ | _ | 0 | INH | 42 | | 5 | | NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X
NEG opr,SP | Negate (Two's Complement) | $\begin{array}{l} M \leftarrow -(M) = \$00 - (M) \\ A \leftarrow -(A) = \$00 - (A) \\ X \leftarrow -(X) = \$00 - (X) \\ M \leftarrow -(M) = \$00 - (M) \\ M \leftarrow -(M) = \$00 - (M) \end{array}$ | 1 | _ | _ | ţ | 1 | ‡ | DIR
INH
INH
IX1
IX
SP1 | 30
40
50
60
70
9E60 | dd
ff
ff | 4
1
1
4
3
5 | | NOP | No Operation | None | - | _ | _ | _ | _ | _ | INH | 9D | | 1 | | NSA | Nibble Swap A | $A \leftarrow (A[3:0]:A[7:4])$ | - | - | _ | _ | - | - | INH | 62 | | 3 | ## **Central Processing Unit (CPU)** Table 10-1. Instruction Set Summary (Sheet 5 of 6) | Source | Operation | Description | | | Eff | | | | Address
Mode | Opcode | Operand | es | |--|---|---|------------|---|-----|----|---|---|---|--|---|--------------------------------------| | Form | operation | Boompaon | ٧ | Н | I | N | Z | С | Add | odc | Эре | Cycles | | ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X
ORA opr,SP
ORA opr,SP | Inclusive OR A and M | A ← (A) (M) | 0 | _ | _ | 1 | Î | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | AA
BA
CA
DA
EA
FA
9EEA
9EDA | ii
dd
hh II
ee ff
ff | 23443245 | | PSHA | Push A onto Stack | Push (A); $SP \leftarrow (SP) - 1$ | - | - | _ | - | - | - | INH | 87 | | 2 | | PSHH | Push H onto Stack | Push (H); SP ← (SP) – 1 | - | - | _ | - | - | - | INH | 8B | | 2 | | PSHX | Push X onto Stack | Push (X); SP ← (SP) – 1 | T- | - | _ | - | - | _ | INH | 89 | | 2 | | PULA | Pull A from Stack | $SP \leftarrow (SP + 1); Pull (A)$ | - | - | _ | - | - | - | INH | 86 | | 2 | | PULH | Pull H from Stack | SP ← (SP + 1); Pull (H) | - | - | _ | - | - | - | INH | 8A | | 2 | | PULX | Pull X from Stack | $SP \leftarrow (SP + 1); Pull(X)$ | - | - | - | - | - | - | INH | 88 | | 2 | | ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP | Rotate Left through Carry | b7 b0 | t | _ | _ | 1 | 1 | 1 | DIR
INH
INH
IX1
IX
SP1 | 39
49
59
69
79
9E69 | dd
ff
ff | 4
1
1
4
3
5 | | ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP | Rotate Right through Carry | b7 b0 | 1 | _ | _ | 1 | 1 | 1 | DIR
INH
INH
IX1
IX
SP1 | 36
46
56
66
76
9E66 | dd
ff
ff | 4
1
1
4
3
5 | | RSP | Reset Stack Pointer | SP ← \$FF | - | - | - | - | - | - | INH | 9C | | 1 | | RTI | Return from Interrupt | $\begin{array}{l} SP \leftarrow (SP) + 1; Pull (CCR) \\ SP \leftarrow (SP) + 1; Pull (A) \\ SP \leftarrow (SP) + 1; Pull (X) \\ SP \leftarrow (SP) + 1; Pull (PCH) \\ SP \leftarrow (SP) + 1; Pull (PCL) \end{array}$ | ţ | ‡ | ţ | 1 | ţ | 1 | INH | 80 | | 7 | | RTS | Return from Subroutine | $SP \leftarrow SP + 1$; Pull (PCH)
$SP \leftarrow SP + 1$; Pull (PCL) | - | - | _ | - | - | - | INH | 81 | | 4 | | SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC,X
SBC opr,SP
SBC opr,SP | Subtract with Carry | $A \leftarrow (A) - (M) - (C)$ | Į. | _ | _ | Į. | î | ţ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A2
B2
C2
D2
E2
F2
9EE2
9ED2 | ii
dd
hh II
ee ff
ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | SEC | Set Carry Bit | C ← 1 | _ | _ | _ | _ | _ | 1 | INH | 99 | | 1 | | SEI | Set Interrupt Mask | I ← 1 | - | _ | 1 | _ | _ | - | INH | 9B | | 2 | | STA opr
STA opr,
STA opr,X
STA opr,X
STA,X
STA opr,SP
STA opr,SP | Store A in M | $M \leftarrow (A)$ | 0 | _ | _ | 1 | 1 | _ | DIR
EXT
IX2
IX1
IX
SP1
SP2 | B7
C7
D7
E7
F7
9EE7
9ED7 | dd
hh II
ee ff
ff
ff
ee ff | 3
4
4
3
2
4
5 | | STHX opr | Store H:X in M | (M:M + 1) ← (H:X) | 0 | _ | _ | ‡ | 1 | - | DIR | 35 | dd | 4 | | STOP | Enable Interrupts, Stop Processing,
Refer to MCU Documentation | I ← 0; Stop Processing | - | - | 0 | _ | _ | - | INH | 8E | | 1 | | STX opr
STX opr
STX opr,X
STX opr,X
STX ,X
STX ,X
STX opr,SP
STX opr,SP | Store X in M | $M \leftarrow (X)$ | 0 | _ | _ | 1 | 1 | _ | DIR
EXT
IX2
IX1
IX
SP1
SP2 | BF
CF
DF
EF
FF
9EEF
9EDF | | 3
4
4
3
2
4
5 | ## Table 10-1. Instruction Set Summary (Sheet 6 of 6) | Source | Operation | Description | Effect
on CCF | | | | | | Address
Mode | Opcode | Operand | les | |--|---|---|------------------|---|---|---|---|----------|---|--|----------------|----------------------------| | Form | Сропанон | 2000.,ро | ٧ | Н | I | N | Z | С | Add | Opc | ope | Cycles | | SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP | Subtract | $A \leftarrow (A) - (M)$ | 1 | _ | | ‡ | 1 | ‡ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A0
B0
C0
D0
E0
F0
9EE0
9ED0 | | 23443245 | | SWI | $ \begin{array}{c} PC \leftarrow (PC) + 1; \ Push \ (PCL) \\ SP \leftarrow (SP) - 1; \ Push \ (PCH) \\ SP \leftarrow (SP) - 1; \ Push \
(X) \\ SP \leftarrow (SP) - 1; \ Push \ (A) \\ SP \leftarrow (SP) - 1; \ Push \ (CCR) \\ SP \leftarrow (SP) - 1; \ I \leftarrow 1 \\ PCH \leftarrow \ Interrupt \ Vector \ High \ Byte \\ PCL \leftarrow \ Interrupt \ Vector \ Low \ Byte \\ \end{array} $ | | | | | | | | INH | 83 | | 9 | | TAP | Transfer A to CCR | CCR ← (A) | 1 | 1 | 1 | 1 | 1 | 1 | INH | 84 | | 2 | | TAX | Transfer A to X | X ← (A) | - | - | - | - | - | _ | INH | 97 | | 1 | | TPA | Transfer CCR to A | A ← (CCR) | - | - | - | - | - | _ | INH | 85 | | 1 | | TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP | Test for Negative or Zero | (A) – \$00 or (X) – \$00 or (M) – \$00 | 0 | - | _ | ţ | t | _ | DIR
INH
INH
IX1
IX
SP1 | 3D
4D
5D
6D
7D
9E6D | dd
ff
ff | 3
1
1
3
2
4 | | TSX | Transfer SP to H:X | H:X ← (SP) + 1 | - | - | _ | - | - | - | INH | 95 | | 2 | | TXA | Transfer X to A | A ← (X) | - | - | _ | - | - | - | INH | 9F | | 1 | | TXS | Transfer H:X to SP | (SP) ← (H:X) – 1 | - | - | _ | _ | _ | - | INH | 94 | | 2 | | WAIT | Enable Interrupts; Wait for Interrupt | I bit ← 0; Inhibit CPU clocking until interrupted | - | _ | 0 | _ | _ | _ | INH | 8F | | 1 | | Α | Accumulator | n | Any bit | |----------|---|--------------|---| | С | Carry/borrow bit | opr | Operand (one or two bytes) | | CCR | Condition code register | PC | Program counter | | dd | Direct address of operand | PCH | Program counter high byte | | dd rr | Direct address of operand and relative offset of branch instruction | | Program counter low byte | | DD | Direct to direct addressing mode | REL | Relative addressing mode | | DIR | Direct addressing mode | rel | Relative program counter offset byte | | DIX+ | Direct to indexed with post increment addressing mode | rr | Relative program counter offset byte | | ee ff | High and low bytes of offset in indexed, 16-bit offset addressing | SP1 | - · · · · · · · · · · · · · · · · · · · | | EXT | Extended addressing mode | SP2 | | | ff | Offset byte in indexed, 8-bit offset addressing | SP | Stack pointer | | Н | Half-carry bit | U | Undefined | | Н | Index register high byte | V | Overflow bit | | hh II | High and low bytes of operand address in extended addressing | Χ | Index register low byte | | <u>!</u> | Interrupt mask | Z | Zero bit | | ii
 | Immediate operand byte | & | Logical AND | | IMD | Immediate source to direct destination addressing mode | 1_ | Logical OR | | IMM | Immediate addressing mode | \oplus | Logical EXCLUSIVE OR | | INH | Inherent addressing mode | () | Contents of | | IX | Indexed, no offset addressing mode | -() | Negation (two's complement) | | IX+ | Indexed, no offset, post increment addressing mode | # | Immediate value | | IX+D | Indexed with post increment to direct addressing mode | ** | Sign extend | | IX1 | Indexed, 8-bit offset addressing mode | \leftarrow | Loaded with | | IX1+ | Indexed, 8-bit offset, post increment addressing mode | ? | If | | IX2 | Indexed, 16-bit offset addressing mode | : | Concatenated with | | M | Memory location | 1 | Set or cleared | | N | Negative bit | _ | Not affected | ## 10.7 Opcode Map See Table 10-2. ## Table 10-2. Opcode Map | ĺ | Bit Manii | anipulation Branch Read-Modify-Write Control Register/Memory | | | | | | | | | | | | | | | | | | |------------|----------------------|--|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------| | | DIR | DIR | REL | DIR | INH | INH | IX1 | SP1 | IX | INH | INH | IMM | DIR | EXT | IX2 | SP2 | IX1 | SP1 | IX | | MSB
LSB | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9E6 | 7 | 8 | 9 | A | В | С | D | 9ED | E | 9EE | F | | 0 | | BSET0
2 DIR | | | 1
NEGA
1 INH | 1
NEGX
1 INH | 4
NEG
2 IX1 | | 3
NEG
1 IX | 7
RTI
1 INH | | | | | SUB
3 IX2 | 5
SUB
4 SP2 | | 4
SUB
3 SP1 | SUB
1 IX | | 1 | | 2 DIR | 3
BRN
2 REL | 5
CBEQ
3 DIR | | 4
CBEQX
3 IMM | 5
CBEQ
3 IX1+ | 6
CBEQ
4 SP1 | CBEQ
2 IX+ | 4
RTS
1 INH | | | | 4
CMP
3 EXT | | 5
CMP
4 SP2 | | 4
CMP
3 SP1 | CMP
1 IX | | 2 | 5
BRSET1
3 DIR | | 3
BHI
2 REL | | 5
MUL
1 INH | 7
DIV
1 INH | 3
NSA
1 INH | | 2
DAA
1 INH | | 3
BGT
2 REL | SBC
2 IMM | | | | 5
SBC
4 SP2 | | 4
SBC
3 SP1 | SBC
1 IX | | 3 | | 2 DIR | 3
BLS
2 REL | | COMA
1 INH | COMX
1 INH | | 5
COM
3 SP1 | COM
1 IX | 9
SWI
1 INH | | | | | | 5
CPX
4 SP2 | | 4
CPX
3 SP1 | CPX
1 IX | | 4 | | 2 DIR | | 4
LSR
2 DIR | | 1
LSRX
1 INH | | 5
LSR
3 SP1 | 3
LSR
1 IX | 2
TAP
1 INH | | 2
AND
2 IMM | | | | 5
AND
4 SP2 | | 4
AND
3 SP1 | 2
AND
1 IX | | 5 | | 2 DIR | | | 3
LDHX
3 IMM | 4
LDHX
2 DIR | 3
CPHX
3 IMM | | 4
CPHX
2 DIR | 1
TPA
1 INH | 2
TSX
1 INH | | | | | 5
BIT
4 SP2 | | 4
BIT
3 SP1 | 2
BIT
1 IX | | 6 | | BSET3
2 DIR | | 4
ROR
2 DIR | 1
RORA
1 INH | 1
RORX
1 INH | | 5
ROR
3 SP1 | 3
ROR
1 IX | 2
PULA
1 INH | | 2
LDA
2 IMM | | | 4
LDA
3 IX2 | 5
LDA
4 SP2 | | 4
LDA
3 SP1 | 2
LDA
1 IX | | 7 | | 4
BCLR3
2 DIR | | 4
ASR
2 DIR | 1
ASRA
1 INH | 1
ASRX
1 INH | | 5
ASR
3 SP1 | 3
ASR
1 IX | 2
PSHA
1 INH | 1
TAX
1 INH | AIS
2 IMM | | 4
STA
3 EXT | 4
STA
3 IX2 | 5
STA
4 SP2 | | 4
STA
3 SP1 | STA
1 IX | | 8 | | 4
BSET4
2 DIR | 3
BHCC
2 REL | 4
LSL
2 DIR | 1
LSLA
1 INH | 1
LSLX
1 INH | 4
LSL
2 IX1 | 5
LSL
3 SP1 | 3
LSL
1 IX | PULX
1 INH | 1
CLC
1 INH | EOR
2 IMM | | 4
EOR
3 EXT | 4
EOR
3 IX2 | 5
EOR
4 SP2 | 3
EOR
2 IX1 | 4
EOR
3 SP1 | EOR
1 IX | | 9 | | 2 DIR | 3
BHCS
2 REL | | 1
ROLA
1 INH | 1
ROLX
1 INH | | 5
ROL
3 SP1 | 3
ROL
1 IX | PSHX
1 INH | | 2
ADC
2 IMM | | | | 5
ADC
4 SP2 | | 4
ADC
3 SP1 | ADC
1 IX | | Α | | | | | DECA
1 INH | | | 5
DEC
3 SP1 | 3
DEC
1 IX | 2
PULH
1 INH | | ORA
2 IMM | | | | 5
ORA
4 SP2 | | 4
ORA
3 SP1 | ORA
1 IX | | В | 3 DIR | 2 DIR | | | 3
DBNZA
2 INH | 3
DBNZX
2 INH | 5
DBNZ
3 IX1 | 6
DBNZ
4 SP1 | 4
DBNZ
2 IX | 2
PSHH
1 INH | 2
SEI
1 INH | 2
ADD
2 IMM | | | | 5
ADD
4 SP2 | | 4
ADD
3 SP1 | 2
ADD
1 IX | | С | | | | | | INCX
INDH | | 5
INC
3 SP1 | INC
1 IX | 1
CLRH
1 INH | 1
RSP
1 INH | | 2
JMP
2 DIR | | | | 3
JMP
2 IX1 | | JMP
1 IX | | D | _ | 4
BCLR6
2 DIR | | 3
TST
2 DIR | | 1
TSTX
1 INH | | 4
TST
3 SP1 | 2
TST
1 IX | | 1
NOP
1 INH | | | | | | 5
JSR
2 IX1 | | JSR
1 IX | | E | | 4
BSET7
2 DIR | | | 5
MOV
3 DD | 4
MOV
2 DIX+ | 4
MOV
3 IMD | | 4
MOV
2 IX+D | STOP
1 INH | * | 2
LDX
2 IMM | | 4
LDX
3 EXT | | 5
LDX
4 SP2 | | 4
LDX
3 SP1 | 2
LDX
1 IX | | F | 5
BRCLR7
3 DIR | 4
BCLR7
2 DIR | 3
BIH
2 REL | 3
CLR
2 DIR | 1
CLRA
1 INH | 1
CLRX
1 INH | 3
CLR
2 IX1 | 4
CLR
3 SP1 | 2
CLR
1 IX | 1
WAIT
1 INH | 1
TXA
1 INH | AIX
2 IMM | 3
STX
2 DIR | 4
STX
3 EXT | 4
STX
3 IX2 | 5
STX
4 SP2 | 3
STX
2 IX1 | 4
STX
3 SP1 | STX
1 IX | INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset IX2 Indexed, 16-Bit Offset IX2 Indexed, 16-Bit Offset IX2 Indexed, 16-Bit Offset IX3 Indexed, 16-Bit Offset IX4 Indexed, 16-Bit Offset IX5 Indexed, 16-Bit Offset IX6 Indexed, 16-Bit Offset IX7 Indexed, 16-Bit Offset IX8 Indexed, No In Low Byte of Opcode in Hexadecimal | MSB
LSB | 0 | High Byte of Opcode in Hexadecimal | |------------|----------------------|--| | 0 | 5
BRSET0
3 DIR | Cycles
Opcode Mnemonic
Number of Bytes / Addressing Mode | DD Direct-Direct IMD Immediate-Direct IX: IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment # Chapter 11 Flash Memory #### 11.1 Introduction This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program, erase, and read operations are enabled through the use of an internal charge pump. # 11.2 Functional Description The FLASH memory is an array of 7,680 bytes for the MC68HC908GR8 or 4,096 bytes for the MC68HC908GR4 with an additional 36 bytes of user vectors and one byte used for block protection. *An erased bit reads as 1 and a programmed bit reads as a 0.* The program and erase operations are facilitated through control bits in the Flash Control Register (FLCR). Details for these operations appear later in this section. The FLASH is organized internally as a 8192-word by 8-bit CMOS page erase, byte (8-bit) program Embedded Flash Memory. Each page consists of 64 bytes. The page erase operation erases all words within a page. A page is composed of two adjacent rows. The address ranges for the user memory and vectors are as follows: - \$E000-\$FDFF; user memory for the MC68HC908GR8 \$EE00-\$FDFF; user memory for the MC68HC908GR4. - \$FF7E; FLASH block protect
register. - \$FE08; FLASH control register. - \$FFDC-\$FFFF; these locations are reserved for user-defined interrupt and reset vectors. #### NOTE A security feature prevents viewing of the FLASH contents. (1) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users. Flash Memory # 11.3 FLASH Control Register The FLASH control register (FLCR) controls FLASH program and erase operations. Figure 11-1. FLASH Control Register (FLCR) #### **HVEN** — High-Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. - 1 = High voltage enabled to array and charge pump on - 0 = High voltage disabled to array and charge pump off #### MASS — Mass Erase Control Bit Setting this read/write bit configures the 8K byte FLASH array for mass erase operation. - 1 = MASS erase operation selected - 0 = MASS erase operation unselected #### **ERASE** — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. - 1 = Erase operation selected - 0 = Erase operation unselected #### **PGM** — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. - 1 = Program operation selected - 0 = Program operation unselected # 11.4 FLASH Page Erase Operation Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory. A page consists of 64 consecutive bytes starting from addresses \$XX00, \$XX40, \$XX80, or \$XXC0. The user interrupt vector area also forms a page. Any FLASH memory page can be erased alone. - 1. Set the ERASE bit, and clear the MASS bit in the FLASH control register. - 2. Read the FLASH block protect register. - 3. Write any data to any FLASH address within the page address range desired. - Wait for a time, t_{nvs} (min. 10μs) - 5. Set the HVEN bit. - 6. Wait for a time, t_{Frase} (min. 1ms) - 7. Clear the ERASE bit. - Wait for a time, t_{nvh} (min. 5μs) - 9. Clear the HVEN bit. - 10. After a time, t_{rcv} (typ. 1 μ s), the memory can be accessed again in read mode. #### NOTE While these operations must be performed in the order shown, other unrelated operations may occur between the steps. # 11.5 FLASH Mass Erase Operation Use this step-by-step procedure to erase entire FLASH memory: - 1. Set both the ERASE bit, and the MASS bit in the FLASH control register. - 2. Read from the FLASH block protect register. - 3. Write any data to any FLASH address⁽¹⁾ within the FLASH memory address range. - 4. Wait for a time, t_{nvs} (min. 10μs) - Set the HVEN bit. - 6. Wait for a time, t_{MErase} (min. 4ms) - 7. Clear the ERASE and MASS bits. #### NOTE Mass erase is disabled whenever any block is protected (FLBPR does not equal \$FF). - 8. Wait for a time, t_{nvhl} (min. 100μs) - 9. Clear the HVEN bit. - 10. After a time, t_{rcv} (typical 1 μ s), the memory can be accessed again in read mode. #### NOTE Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. # 11.6 FLASH Program/Read Operation Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses \$XX00, \$XX20, \$XX40, \$XX60, \$XX80, \$XXA0, \$XXC0, and \$XXE0. During the programming cycle, make sure that all addresses being written fit within one of the ranges specified above. Attempts to program addresses in different row ranges in one programming cycle will fail. Use this step-by-step procedure to program a row of FLASH memory (Figure 11-2 is a flowchart representation): #### NOTE Only bytes which are currently \$FF may be programmed. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ^{1.} When in Monitor mode, with security sequence failed see Chapter 15 Monitor ROM (MON), write to the FLASH block protect register instead of any FLASH address. #### Flash Memory - 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. - 2. Read from the FLASH block protect register. - 3. Write any data to any FLASH address within the row address range desired. - 4. Wait for a time, t_{nvs} (min. 10μs). - 5. Set the HVEN bit. - 6. Wait for a time, t_{pqs} (min. $5\mu s$). - 7. Write data to the FLASH address to be programmed. - 8. Wait for a time, t_{PBOG} (min. 30μs). - 9. Repeat step 7 and 8 until all the bytes within the row are programmed. - 10. Clear the PGM bit.* - 11. Wait for a time, t_{nvh} (min. 5μs). - 12. Clear the HVEN bit. - 13. After time, t_{rev} (typical 1μ s), the memory can be accessed in read mode again. This program sequence is repeated throughout the memory until all data is programmed. #### NOTE Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Care must be taken within the FLASH array memory space such as the COP control register (COPCTL) at \$FFFF. #### NOTE It is highly recommended that interrupts be disabled during program/erase operations. #### NOTE Do not exceed t_{PROG} maximum or t_{HV} maximum. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase. t_{HV} must satisfy this condition: $$t_{NVS} + t_{NVH} + t_{PGS} + (t_{PROG} \times 32) \le t_{HV} \text{ maximum}$$ Refer to 23.16 Memory Characteristics. #### NOTE The time between programming the FLASH address change (step 7 to step 7), or the time between the last FLASH programmed to clearing the PGM bit (step 7 to step 10) must not exceed the maximum programming time, t_{PROG} maximum. #### **CAUTION** Be cautious when programming the FLASH array to ensure that non-FLASH locations are not used as the address that is written to when selecting either the desired row address range in step 3 of the algorithm or the byte to be programmed in step 7 of the algorithm. This applies particularly to \$FFD4-\$FFDF. Figure 11-2. FLASH Programming Flowchart MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Flash Memory #### 11.7 FLASH Block Protection Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting a block of memory from unintentional erase or program operations due to system malfunction. This protection is done by using of a FLASH Block Protect Register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory (\$FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations. #### NOTE In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit When the FLBPR is programmed with all 0s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1s), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory with address ranges as shown in FLASH Block Protect Register. Once the FLBPR is programmed with a value other than \$FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is disabled whenever any block is protected (FLBPR does not equal \$FF). The presence of a V_{TST} on the \overline{IRQ} pin will bypass the block protection so that all of the memory included in the block protect register is open for program and erase operation. #### NOTE The FLASH block protect register is not protected with special hardware or software. Therefore, if this page is not protected by FLBPR, the register is erased by either a page or mass erase operation. ## 11.7.1 FLASH Block Protect Register The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory. U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory. Figure 11-3. FLASH Block Protect Register (FLBPR) ## BPR[7:0] — FLASH Block Protect Bits These eight bits represent bits [13:6] of a 16-bit memory address. Bits [15:14] are 1s and bits [5:0] are 0s. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at \$FFFF. With this mechanism, the protect start address can be \$XX00, \$XX40, \$XX80, and \$XXC0 (64 bytes page boundaries) within the FLASH memory. Figure 11-4. FLASH Block Protect Start Address Examples of protect start address: Table 11-1. Examples of Protect Start Address | BPR[7:0] | Start of Address of Protect Range | |---------------------------|---| | \$80 | The entire FLASH memory is protected. | | \$81 (1000 0001) | \$E040 (1 110 0000 01 00 0000) | | \$82 (1000 0010) | \$E080 (1 110 0000 10 00 0000) | | | and so on | | \$FE (1111 1110) | \$FF80 (1 111 1111 10 00 0000) | | \$FF | The
entire FLASH memory is not protected. | Note: The end address of the protected range is always \$FFFF. #### 11.8 Wait Mode Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on Standby Mode. #### 11.9 STOP Mode Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The STOP instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on Standby Mode #### NOTE Standby Mode is the power saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum. **Flash Memory** MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # Chapter 12 External Interrupt (IRQ) #### 12.1 Introduction The IRQ (external interrupt) module provides a maskable interrupt input. #### 12.2 Features Features of the IRQ module include: - A dedicated external interrupt pin (IRQ) - IRQ interrupt control bits - Hysteresis buffer - Programmable edge-only or edge and level interrupt sensitivity - Automatic interrupt acknowledge - Internal pullup resistor # 12.3 Functional Description A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 12-1 shows the structure of the IRO module. Interrupt signals on the \overline{IRQ} pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: - Vector fetch A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. - Software clear Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. - Reset A reset automatically clears the interrupt latch. The external interrupt pin is falling-edge-triggered out of reset and is software-configurable to be either falling-edge or falling-edge and low-level-triggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. When an interrupt pin is edge-triggered only (MODE = 0), the interrupt remains set until a vector fetch, software clear, or reset occurs. #### **External Interrupt (IRQ)** Figure 12-1. IRQ Module Block Diagram Figure 12-2. IRQ I/O Register Summary When an interrupt pin is both falling-edge and low-level-triggered, the interrupt remains set until both of the following occur: - Vector fetch or software clear - Return of the interrupt pin to high level The vector fetch or software clear may occur before or after the interrupt pin returns to high level. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear. #### NOTE The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. ### 12.4 IRQ Pin A falling edge on the \overline{IRQ} pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the \overline{IRQ} pin is both falling-edge-sensitive and low-level-sensitive. With MODE set, both of the following actions must occur to clear IRQ: - Vector fetch or software clear A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations \$FFFA and \$FFFB. - Return of the IRQ pin to a high level As long as the IRQ pin is at a low level, IRQ remains active. The vector fetch or software clear and the return of the \overline{IRQ} pin to a high level may occur in any order. The interrupt request remains pending as long as the \overline{IRQ} pin is low. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ pin. #### NOTE When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. # 12.5 IRQ Module During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. See Chapter 6 Break Module (BRK). To allow software to clear the IRQ latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect CPU interrupt flags during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags. #### External Interrupt (IRQ) # 12.6 IRQ Status and Control Register The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR: - Shows the state of the IRQ flag - Clears the IRQ latch - Masks IRQ interrupt request - Controls triggering sensitivity of the IRQ interrupt pin Figure 12-3. IRQ Status and Control Register (INTSCR) #### IRQF — IRQ Flag Bit This read-only status bit is high when the IRQ interrupt is pending. - $1 = \overline{IRQ}$ interrupt pending - $0 = \overline{IRQ}$ interrupt not pending #### ACK — IRQ Interrupt Request Acknowledge Bit Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK. #### IMASK — IRQ Interrupt Mask Bit Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. - 1 = IRQ interrupt requests disabled - 0 = IRQ interrupt requests enabled #### MODE — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. - $1 = \overline{IRQ}$ interrupt requests on falling edges and low levels - $0 = \overline{IRQ}$ interrupt requests on falling edges only # Chapter 13 Keyboard Interrupt (KBI) #### 13.1 Introduction The keyboard interrupt module (KBI) provides four independently maskable external interrupts which are accessible via PTA0-PTA3. When a port pin is enabled for keyboard interrupt function, an internal pullup device is also enabled on the pin. #### 13.2 Features - Four keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask - Hysteresis buffers - Programmable edge-only or edge- and level- interrupt sensitivity - Exit from low-power modes - I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s) # 13.3 Functional Description Writing to the KBIE3–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A low level applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. Figure 13-1. Keyboard Module Block Diagram MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Keyboard Interrupt (KBI)** | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |-----------------|--|--------|-------|------------|-------|------|-------|--------|----------|--------| | Keyboard Status | Read: | 0 | 0 | 0 | 0 | KEYF | 0 | IMASKK | MODEK | | | \$001A | and Control Register | Write: | | | | | | ACKK | IIVIASKK | WIODER | | | (INTKBSCR) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | KDIEO | KDIEO | KDIE4 | KDIEO | | \$001B | Keyboard Interrupt Enable
Register (INTKBIER) | Write: | | | | | KBIE3 | KBIE2 | KBIE1 | KBIE0 | | | riogistor (ii viribiliti) | Reset: | | | • | | 0 | 0 | 0 | 0 | | | | | | = Unimplem | ented | | | | | | Figure 13-2. I/O Register Summary A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. - If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. - If the keyboard interrupt is falling-edge and low-level sensitive, an interrupt request is present as long as any keyboard interrupt pin is
low and the pin is keyboard interrupt enabled. If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request: - Vector fetch or software clear A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a 1 to the ACKK bit in the keyboard status and control register (INTKBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations \$FFE0 and \$FFE1. - Return of all enabled keyboard interrupt pins to a high level As long as any enabled keyboard interrupt pin is low, the keyboard interrupt remains set. The vector fetch or software clear and the return of all enabled keyboard interrupt pins to a high level may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays low. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. #### NOTE Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a 0 for software to read the pin. # 13.4 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: - 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. - 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. - 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. - 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt is: - 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. - 2. Write 1s to the appropriate port A data register bits. - 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. #### 13.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. #### 13.5.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. #### **13.5.2 Stop Mode** The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. # 13.6 Keyboard Module During Break Interrupts The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Keyboard Interrupt (KBI)** To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. See 13.7.1 Keyboard Status and Control Register. # 13.7 I/O Registers These registers control and monitor operation of the keyboard module: - Keyboard status and control register (INTKBSCR) - Keyboard interrupt enable register (INTKBIER) #### 13.7.1 Keyboard Status and Control Register The keyboard status and control register: - Flags keyboard interrupt requests - Acknowledges keyboard interrupt requests - Masks keyboard interrupt requests - Controls keyboard interrupt triggering sensitivity Figure 13-3. Keyboard Status and Control Register (INTKBSCR) #### Bits 7-4 — Not used These read-only bits always read as logic 0s. #### **KEYF** — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. - 1 = Keyboard interrupt pending - 0 = No keyboard interrupt pending #### ACKK — Keyboard Acknowledge Bit Writing a 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. #### IMASKK — Keyboard Interrupt Mask Bit Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. - 1 = Keyboard interrupt requests masked - 0 = Keyboard interrupt requests not masked #### **MODEK** — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. - 1 = Keyboard interrupt requests on falling edges and low levels - 0 = Keyboard interrupt requests on falling edges only ## 13.7.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register enables or disables each port A pin to operate as a keyboard interrupt pin. Figure 13-4. Keyboard Interrupt Enable Register (INTKBIER) #### KBIE3-KBIE0 — Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. - 1 = PTAx pin enabled as keyboard interrupt pin - 0 = PTAx pin not enabled as keyboard interrupt pin **Keyboard Interrupt (KBI)** MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # Chapter 14 Low-Voltage Inhibit (LVI) #### 14.1 Introduction This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the V_{DD} pin and can force a reset when the V_{DD} voltage falls below the LVI trip falling voltage, V_{TRIPF} . #### 14.2 Features Features of the LVI module include: - Programmable LVI reset - Selectable LVI trip voltage - Programmable stop mode operation # 14.3 Functional Description Figure 14-1 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor V_{DD} voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when V_{DD} falls below the trip point voltage, V_{TRIPF} . Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5V or 3V trip point bit, LVISOR3, enables V_{TRIPF} to be configured for 5V operation. Clearing the LVI5OR3 bit enables V_{TRIPF} to be configured for 3V operation. The actual trip points are shown in Chapter 23 Electrical Specifications. #### NOTE After a power-on reset (POR) the LVI's default mode of operation is 3 V. If a 5V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5V operation. Note that this must be done after every POR since the default will revert back to 3V mode after each POR. If the V_{DD} supply is below the 5V mode trip voltage but above the 3V mode trip voltage when POR is released, the part will operate because V_{TRIPF} defaults to 3V mode after a POR. So, in a 5V system care must be taken to ensure that V_{DD} is above the 5V mode trip voltage after POR is released. If the user requires 5V mode and sets the LVI5OR3 bit after a POR while the V_{DD} supply is not above the V_{TRIPR} for 5V mode, the MCU will immediately go into reset. The LVI in this case will hold the part in reset until either V_{DD} goes above the rising 5V trip point, V_{TRIPR} , which will release reset or V_{DD} decreases to approximately 0 V which will re-trigger the POR and reset the trip point to 3V operation. #### Low-Voltage Inhibit (LVI) LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration register (CONFIG). See Chapter 8 Configuration Register (CONFIG) for details of the LVI's configuration bits. Once an LVI reset occurs, the MCU remains in reset until V_{DD} rises above a voltage, V_{TRIPR} , which causes the MCU to exit reset. See 19.3.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction between the SIM and the LVI. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR). An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices. Figure 14-1. LVI Module Block Diagram Figure 14-2. LVI I/O Register Summary #### 14.3.1 Polled LVI Operation In
applications that can operate at V_{DD} levels below the V_{TRIPF} level, software can monitor V_{DD} by polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be 0 to enable the LVI module, and the LVIRSTD bit must be 1 to disable LVI resets. #### 14.3.2 Forced Reset Operation In applications that require V_{DD} to remain above the V_{TRIPF} level, enabling LVI resets allows the LVI module to reset the MCU when V_{DD} falls below the V_{TRIPF} level. In the configuration register, the LVIPWRD and LVIRSTD bits must be cleared to enable the LVI module and to enable LVI resets. ### 14.3.3 Voltage Hysteresis Protection Once the LVI has triggered (by having V_{DD} fall below V_{TRIPF}), the LVI will maintain a reset condition until V_{DD} rises above the rising trip point voltage, V_{TRIPR} . This prevents a condition in which the MCU is continually entering and exiting reset if V_{DD} is approximately equal to V_{TRIPF} . V_{TRIPR} is greater than V_{TRIPF} by the hysteresis voltage, V_{HYS} . MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 14.3.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5V or 3V protection. #### NOTE The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (V_{TRIPF} [5 V] or V_{TRIPF} [3 V]) may be lower than this. (See Chapter 23 Electrical Specifications for the actual trip point voltages.) # 14.4 LVI Status Register The LVI status register (LVISR) indicates if the V_{DD} voltage was detected below the V_{TRIPF} level. Figure 14-3. LVI Status Register (LVISR) #### LVIOUT — LVI Output Bit This read-only flag becomes set when the V_{DD} voltage falls below the V_{TRIPF} trip voltage. See Table 14-1. Reset clears the LVIOUT bit. Table 14-1. LVIOUT Bit Indication | V _{DD} | LVIOUT | |--------------------------------------|----------------| | V _{DD} > V _{TRIPR} | 0 | | $V_{DD} < V_{TRIPF}$ | 1 | | $V_{TRIPF} < V_{DD} < V_{TRIPR}$ | Previous value | # 14.5 LVI Interrupts The LVI module does not generate interrupt requests. #### 14.6 Low-Power Modes The STOP and WAIT instructions put the MCU in low power-consumption standby modes. #### 14.6.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. #### **14.6.2 Stop Mode** If enabled in stop mode (LVISTOP bit in the configuration register is set), the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Low-Voltage Inhibit (LVI) # Chapter 15 Monitor ROM (MON) #### 15.1 Introduction This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, V_{TST}, as long as vector addresses \$FFFE and \$FFFF are blank, thus reducing the hardware requirements for in-circuit programming. #### 15.2 Features Features of the monitor ROM include: - Normal user-mode pin functionality - One pin dedicated to serial communication between monitor ROM and host computer - Standard mark/space non-return-to-zero (NRZ) communication with host computer - Execution of code in RAM or FLASH - FLASH memory security feature⁽¹⁾ - · FLASH memory programming interface - Enhanced PLL (phase-locked loop) option to allow use of external 32.768-kHz crystal to generate internal frequency of 2.4576 MHz - 310 byte monitor ROM code size (\$FE20 to \$FF55) - Monitor mode entry without high voltage, V_{TST}, if reset vector is blank (\$FFFE and \$FFFF contain \$FF) - Standard monitor mode entry if high voltage, V_{TST}, is applied to IRQ # 15.3 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 15-1 shows an example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users. #### Monitor ROM (MON) #### Notes: - 1. SW2, SW3, and SW4: Position C Enter monitor mode using external oscillator. SW2, SW3, and SW4: Position D — Enter monitor mode using external XTAL and internal PLL. 2. See Table 15-1. Monitor Mode Signal Requirements and Options for IRQ voltage level requirements. Figure 15-1. Monitor Mode Circuit MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 The monitor code has been updated from previous versions to allow enabling the PLL to generate the internal clock, provided the reset vector is blank, when the device is being clocked by a low-frequency crystal. This addition, which is enabled when \overline{IRQ} is held low out of rest, is intended to support serial communication/ programming at 9600 baud in monitor mode by stepping up the external frequency (assumed to be 32.768 kHz) by a fixed amount to generate the desired internal frequency (2.4576 MHz). Since this feature is enabled only when \overline{IRQ} is held low out of reset, it cannot be used when the reset vector is not blank because entry into monitor mode in this case requires V_{TST} on \overline{IRQ} . ### 15.3.1 Entering Monitor Mode Table 15-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one of the following sets of conditions is met: - 1. If \$FFFE and \$FFFF contain values not cared: - The external clock is 9.8304 MHz - $\overline{IRQ} = V_{TST}$ (PLL off) - 2. If \$FFFE and \$FFFF contain \$FF, blank state: - The external clock is 9.8304 MHz - $\overline{IRQ} = V_{DD}$ (this can be implemented through the internal \overline{IRQ} pullup; PLL off) - 3. If \$FFFE and \$FFFF contain \$FF, blank state: - The external clock is 32.768 kHz (crystal) - IRQ = V_{SS} (this setting initiates the PLL to boost the external 32.768 kHz to an internal bus frequency of 2.4576 MHz) If entering monitor mode with V_{TST} applied on \overline{IRQ} (condition set 1), the CGMOUT frequency is equal to the CGMXCLK frequency and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. If entering monitor mode without high voltage applied on \overline{IRQ} (condition set 2 or 3, where applied voltage is either V_{DD} or V_{SS}), then all port B pin requirements and conditions, are not in effect. This is to reduce circuit requirements when performing in-circuit programming. #### NOTE If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a voltage, V_{TST} , to \overline{IRQ} must be used to enter monitor mode. The COP module is disabled in monitor mode based on these conditions: - If monitor mode was entered as a result of the reset vector being blank (condition set 2 or 3), the COP is always disabled regardless of the state of IRQ or RST. - If monitor mode was entered with V_{TST} on IRQ (condition set 1), then the COP is disabled as long as V_{TST} is applied to either IRQ or RST. The second condition states that as long as V_{TST} is maintained on the \overline{IRQ} pin after entering monitor mode, or if V_{TST} is applied to \overline{RST} after the initial reset to get into monitor mode (when V_{TST} was applied to \overline{IRQ}), then the COP will be disabled. In the latter situation, after V_{TST} is applied to the \overline{RST} pin, V_{TST} can be removed from the \overline{IRQ} pin in the interest of freeing the \overline{IRQ} for normal functionality in monitor mode. #### **Monitor ROM (MON)** **Table 15-1. Monitor Mode Signal Requirements and Options** | 100 | DEGET | \$FFFE/ | 5 | DTDO | DTD4 | External | 20110117 | Bus | 000 | Co | For Serial
Communication | | Comment | | |------------------------------|---|---------------|----------|------|------|----------------------|---------------|---------------|----------|------|-----------------------------|---------------------------------|--|--| | ĪRQ | RESET | \$FFFF | PLL | PTB0 | PIBI | Clock ⁽¹⁾ | CGMOUT | Freq | СОР | PTA0 | PTA1 | Baud
Rate ^{(2) (3)} | Comment | | | Х | GND | х | х | х | х | х | 0 | 0 | Disabled | х | х | 0 | No operation until reset goes high | | | | V _{DD} | | | | | | | | | 1 | 0 | 9600 | PTB0 and PTB1 | | | V _{TST} | or
V _{TST} | Х | OFF | 1 | 0 | 9.8304
MHz | 4.9152
MHz | 2.4576
MHz | Disabled | Х | 1 | DNA | voltages only required if $\overline{IRQ} = V_{TST}$ | | | | | | | | | 9.8304 | 4.9152 | 2.4576 | | 1 | 0 | 9600 | External | | | V _{DD} | V _{DD} | \$FFFF | OFF | Х | Х | MHz | MHz | MHz | Disabled | Х | 1 | DNA | frequency always
divided by 4 | | | | | | | | | 32.768 | 4.9152 | 2.4576 | | 1 | 0 | 9600 | PLL enabled | | | GND | V _{DD} | \$FFFF | ON | Х | Х | kHz | MHz | MHz | Disabled | Х | 1 | DNA | (BCS set) in monitor code | | | V _{DD}
or
GND | V _{TST} | \$FFFF | OFF | x
| х | х | _ | _ | Enabled | x | x | _ | Enters user
mode — will
encounter an
illegal address
reset | | | V _{DD}
or
GND | V _{DD}
or
V _{TST} | Not
\$FFFF | OFF | Х | Х | Х | _ | _ | Enabled | Х | х | _ | Enters
user mode | | ^{1.} External clock is derived by a 32.768 kHz crystal or a 9.8304 MHz off-chip oscillator Figure 15-2 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x V_{DD} voltage is applied to the \overline{IRQ} pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four. Enter monitor mode with pin configuration shown in Figure 15-1 by pulling \overline{RST} low and then high. The rising edge of \overline{RST} latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command. #### NOTE The PTA1 pin must remain at logic 0 for 24 bus cycles after the \overline{RST} pin goes high to enter monitor mode properly. ^{2.} PTA0 = 1 if serial communication; PTA0 = X if parallel communication ^{3.} PTA1 = $0 \rightarrow$ serial, PTA1 = $1 \rightarrow$ parallel communication for security code entry ^{4.} DNA = does not apply, X = don't care Figure 15-2. Low-Voltage Monitor Mode Entry Flowchart In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the \$FE page instead of the \$FF page and allow code execution from the internal monitor firmware instead of user code. #### NOTE Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset. Pulling RST low will not exit monitor mode in this situation. Table 15-2 summarizes the differences between user mode and monitor mode. | | Functions | | | | | | | | | |---------|-------------------------|------------------------|-------------------------|------------------------|-----------------------|----------------------|--|--|--| | Modes | Reset
Vector
High | Reset
Vector
Low | Break
Vector
High | Break
Vector
Low | SWI
Vector
High | SWI
Vector
Low | | | | | User | \$FFFE | \$FFFF | \$FFFC | \$FFFD | \$FFFC | \$FFFD | | | | | Monitor | \$FEFE | \$FEFF | \$FEFC | \$FEFD | \$FEFC | \$FEFD | | | | **Table 15-2. Mode Differences** Monitor ROM (MON) #### 15.3.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical. Figure 15-3. Monitor Data Format #### 15.3.3 Break Signal A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal. Figure 15-4. Break Transaction #### 15.3.4 Baud Rate The communication baud rate is controlled by the crystal frequency upon entry into monitor mode. The divide by ratio is 1024. If monitor mode was entered with V_{DD} on \overline{IRQ} , then the divide by ratio is also set at 1024. If monitor mode was entered with V_{SS} on \overline{IRQ} , then the internal PLL steps up the external frequency, presumed to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor mode entry require that the reset vector is blank. Table 15-3 lists external frequencies required to achieve a standard baud rate of 9600 BPS. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 23.6 5.0 V Control Timing and 23.7 3.0 V Control Timing for this limit. **Table 15-3. Monitor Baud Rate Selection** | External Frequency | ĪRQ | Internal
Frequency | Baud Rate
(BPS) | |--------------------|------------------|-----------------------|--------------------| | 9.8304 MHz | V _{TST} | 2.4576 MHz | 9600 | | 9.8304 MHz | V_{DD} | 2.4576 MHz | 9600 | | 32.768 kHz | V _{SS} | 2.4576 MHz | 9600 | MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 15.3.5 Commands The monitor ROM firmware uses these commands: - READ (read memory) - WRITE (write memory) - IREAD (indexed read) - **IWRITE** (indexed write) - READSP (read stack pointer) - RUN (run user program) The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command. Wait one bit time after each echo before sending the next byte. - 1 = Echo delay, 2 bit times - 2 = Data return delay, 2 bit times 3 = Cancel command delay, 11 bit times - 4 = Wait 1 bit time before sending next byte. - Figure 15-5. Read Transaction #### Notes: - 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times - 3 = Wait 1 bit time before sending next byte. Figure 15-6. Write Transaction #### Monitor ROM (MON) A brief description of each monitor mode command is given in Table 15-4 through Table 15-9. Table 15-4. READ (Read Memory) Command Table 15-5. WRITE (Write Memory) Command Table 15-6. IREAD (Indexed Read) Command MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Table 15-7. IWRITE (Indexed Write) Command | Description | Write to last address accessed + 1 | | | | | | | | | |---------------|---|--|--|--|--|--|--|--|--| | Operand | Single data byte | | | | | | | | | | Data Returned | None | | | | | | | | | | Opcode | \$19 | | | | | | | | | | | Command Sequence | | | | | | | | | | | FROM HOST VIWRITE VIWRITE V DATA ECHO | | | | | | | | | A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64K byte memory map. Table 15-8. READSP (Read Stack Pointer) Command | Description | Reads stack pointer | | | | | | | | |------------------|--|--|--|--|--|--|--|--| | Operand | None | | | | | | | | | Data Returned | Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order | | | | | | | | | Opcode | \$0C | | | | | | | | | Command Sequence | | | | | | | | | | | FROM HOST VREADSP READSP SP HIGH LOW RETURN | | | | | | | | Table 15-9. RUN (Run User Program) Command MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### Monitor ROM (MON) The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6. Figure 15-7. Stack Pointer at Monitor Mode Entry # 15.4 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6—\$FFFD. Locations \$FFF6—\$FFFD contain user-defined data. #### NOTE Do not leave locations \$FFF6-\$FFFD blank. For security reasons, they should be programmed even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations \$FFF6—\$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 15-8.) Upon power-on reset, if the received bytes of the security code do not match the data at locations \$FFF6-\$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command. #### NOTE The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address \$40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device can be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH mode can also be bulk erased by executing an erase routine that was downloaded into internal RAM. The bulk erase operation clears the security code locations so that all eight security bytes become \$FF (blank). MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 - totes: 1 = Echo delay, approximately 2 bit times 2 = Data return delay, approximately 2 bit times 4 = Wait 1 bit time before sending next byte 5 = Wait until the monitor ROM runs Figure 15-8. Monitor Mode Entry Timing **Monitor ROM (MON)** # Chapter 16 Input/Output Ports (I/O) #### 16.1 Introduction Twenty one (21) bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices if
configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode. #### NOTE Connect any unused I/O pins to an appropriate logic level, either V_{DD} or V_{SS} . Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Not all port pins are bonded out in all packages. Care should be taken to make any unbonded port pins an output to prevent them from being floating inputs. | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | |--------|----------------------------------|--------|---------------------------|------------|-------|-----------|------------|-------|-------|-------|--| | | | Read: | 0 | 0 | 0 | 0 | PTA3 | PTA2 | PTA1 | PTA0 | | | \$0000 | Port A Data Register
(PTA) | Write: | | | | | FIAS | FIAZ | FIAI | FIAU | | | | , | Reset: | | | | Unaffecte | d by reset | | | | | | | | Read: | 0 | 0 | PTB5 | PTB4 | PTB3 | PTB2 | PTB1 | PTB0 | | | \$0001 | Port B Data Register
(PTB) | Write: | | | FIDO | FID4 | FIDS | FID2 | FIDI | FIDU | | | | (* '-) | Reset: | eset: Unaffected by reset | | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | PTC1 | PTC0 | | | | \$0002 | Port C Data Register
(PTC) | Write: | | | | | | | 1101 | 1 100 | | | | (* / | Reset: | | | | Unaffecte | d by reset | | | | | | | | Read: | 0 | PTD6 | PTD5 | PTD4 | PTD3 | PTD2 | PTD1 | PTD0 | | | \$0003 | Port D Data Register
(PTD) | Write: | | PIDO | פטוץ | P1D4 | PIDS | PIDZ | PIDI | PIDU | | | | () | Reset: | : Unaffected by reset | | | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | DDRA3 | DDDAG | DDRA1 | DDDAO | | | \$0004 | Data Direction Register A (DDRA) | Write: | | | | | DDRAS | DDRA2 | DURAT | DDRA0 | | | | (33.11) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | = Unimplem | ented | | | | | | | Figure 16-1. I/O Port Register Summary # Input/Output Ports (I/O) | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | |--------|---|--------|-------|-------------|---------|-----------|-----------------|----------|---------|---------|--|--|--| | | | Read: | 0 | 0 | DDRB5 | DDRB4 | DDRB3 | DDRB2 | DDRB1 | DDRB0 | | | | | \$0005 | Data Direction Register B (DDRB) | Write: | | | מחחם | DDND4 | סטחטט | DUNDZ | ו פחטט | DDUDO | | | | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | DDRC1 | DDRC0 | | | | | \$0006 | Data Direction Register C (DDRC) | Write: | | | | | | | DDNCT | DDNOU | | | | | | (==::=) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Read: | 0 | DDRD6 | DDRD5 | DDRD4 | DDRD3 | DDRD2 | DDRD1 | DDRD0 | | | | | \$0007 | Data Direction Register D (DDRD) | Write: | | DUNDO | DDRDS | DDRD4 | טטאטט | DDRDZ | וטאטו | טטאטט | | | | | | (==::=) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | DTE4 | DTEO | | | | | \$0008 | Port E Data Register
(PTE) | Write: | | | | | | | PTE1 | PTE0 | | | | | | (1.12) | Reset: | | | • | Unaffecte | d by reset | | | | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | DDDE4 | DDDE0 | | | | | \$000C | Data Direction Register E (DDRE) | Write: | | | | | | | DDRE1 | DDRE0 | | | | | | (55112) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Read: | 0 | 0 | 0 | 0 | DTABLIES | DTABLIES | DTABLIE | DTADUE | | | | | \$000D | Port A Input Pullup Enable
Register (PTAPUE) | Write: | | | | | PTAPUE3 | PTAPUE2 | PTAPUE1 | PTAPUE0 | | | | | | riogister (i 17 ii 52) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | DTODUE | DTODUE | | | | | \$000E | Port C Input Pullup Enable
Register (PTCPUE) | Write: | | | | | | | PTCPUE1 | PTCPUE0 | | | | | | riogister (Fron GE) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | Read: | 0 | DEDDUE | DEDDUE | DEDDUE | DTDDUE | DTDDUE | DTDDUE | DTDDUE | | | | | \$000F | Port D Input Pullup Enable
Register (PTDPUE) | Write: | | PTDPUE6 | PTDPUE5 | PTDPUE4 | PTDPUE3 | PTDPUE2 | PTDPUE1 | PTDPUE0 | | | | | | riogister (i TDI OL) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | = Unimpleme | ented | | = Unimplemented | | | | | | | Figure 16-1. I/O Port Register Summary (Continued) Table 16-1. Port Control Register Bits Summary | Port | Bit | DDR | Module Control | | Pin | |------|-----|-------|----------------|-------------|------------| | | 0 | DDRA0 | | KBIE0 | PTA0/KBD0 | | Α | 1 | DDRA1 | | KBIE1 | PTA1/KBD1 | | | 2 | DDRA2 | | KBIE2 | PTA2/KBD2 | | | 3 | DDRA3 | KDD | KBIE3 | PTA3/KBD3 | | | _ | _ | KBD | _ | _ | | | _ | _ | | _ | _ | | | _ | _ | | _ | _ | | | _ | _ | | _ | _ | | | 0 | DDRB0 | | CH0 | PTB0/ATD0 | | | 1 | DDRB1 | | CH1 | PTB1/ATD1 | | | 2 | DDRB2 | | CH2 | PTB2/ATD2 | | B | 3 | DDRB3 | ADC | CH3 | PTB3/ATD3 | | В | 4 | DDRB4 | ADC - | CH4 | PTB4/ATD4 | | | 5 | DDRB5 | | CH5 | PTB5/ATD5 | | | _ | _ | - | _ | _ | | | _ | _ | | _ | _ | | | 0 | DDRC0 | | | PTC0 | | | 1 | DDRC1 | | | PTC1 | | | _ | _ | | | _ | | С | _ | _ | | | _ | | | _ | _ | | | _ | | | _ | _ | | | _ | | | _ | _ | | | _ | | | 0 | DDRD0 | | | PTD0/SS | | | 1 | DDRD1 | QDI | SPE | PTD1/MISO | | | 2 | DDRD2 | SPI |) OPE | PTD2/MOSI | | D | 3 | DDRD3 | | | PTD3/SPSCK | | J D | 4 | DDRD4 | TIM1 | ELS0B:ELS0A | PTD4/T1CH0 | | | 5 | DDRD5 | I IIVI I | ELS1B:ELS1A | PTD5/T1CH1 | | | 6 | DDRD6 | TIMO | ELS0B:ELS0A | PTD6/T2CH0 | | | _ | _ | TIM2 | | _ | | _ | 0 | DDRE0 | SCI | ENCO | PTE0/TxD | | E | 1 | DDRE1 | SCI | ENSCI | PTE1/RxD | Input/Output Ports (I/O) # 16.2 Port A Port A is an 4-bit special-function port that shares all four of its pins with the keyboard interrupt (KBI) module. Port A also has software configurable pullup devices if configured as an input port. # 16.2.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the four port A pins. Figure 16-2. Port A Data Register (PTA) #### PTA3-PTA0 — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. #### **KBD3-KBD0** — Keyboard Inputs The keyboard interrupt enable bits, KBIE3–KBIE0, in the keyboard interrupt control register (KBICR) enable the port A pins as external interrupt pins. See Chapter 13 Keyboard Interrupt (KBI). # 16.2.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer. Figure 16-3. Data Direction Register A (DDRA) # DDRA3-DDRA0 — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA3–DDRA0, configuring all port A pins as inputs. - 1 = Corresponding port A pin configured as output - 0 = Corresponding port A pin configured as input #### NOTE Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 16-4 shows the port A I/O logic. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Figure 16-4. Port A I/O Circuit When bit DDRAx is a 1, reading address \$0000 reads the PTAx data latch. When bit DDRAx is a 0, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-2 summarizes the operation of the port A pins. | PTAPUE Bit | DDRA Bit | PTA Bit | I/O Pin Mode | Accesses to DDRA | Access | es to PTA | |------------|----------|------------------|---------------------------------------|------------------|-----------|--------------------------| | PTAPUE BIL | DUNA BIL | PIADIL | /O FIII Mode | Read/Write | Read | Write | | 1 | 0 | X ⁽¹⁾ | Input, V _{DD} ⁽⁴⁾ | DDRA3-DDRA0 | Pin | PTA3-PTA0 ⁽³⁾ | | 0 | 0 | Х | Input, Hi-Z ⁽²⁾ | DDRA3-DDRA0 | Pin | PTA3-PTA0 ⁽³⁾ | | Х | 1 | Х | Output | DDRA3-DDRA0 | PTA3-PTA0 | PTA3-PTA0 | **Table 16-2. Port A Pin Functions** # NOTES: - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. - 4. I/O pin pulled up to V_{DD} by internal pullup device # 16.2.3 Port A Input Pullup Enable Register The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each of the four port A pins. Each bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRA is configured for output mode. #### Input/Output Ports (I/O) Figure 16-5. Port A Input Pullup Enable Register (PTAPUE) # PTAPUE3-PTAPUE0 — Port A Input Pullup Enable Bits These writeable bits are software programmable to enable pullup devices on an input port bit. - 1 = Corresponding port A pin configured to have internal pullup - 0 = Corresponding port A pin has internal pullup disconnected # 16.3 Port B Port B is a 6-bit special-function port that shares all six of its pins with the analog-to-digital converter (ADC) module. # 16.3.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the six port pins. Figure 16-6. Port B Data Register (PTB) #### PTB5-PTB0 — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. # AD5-AD0 — Analog-to-Digital Input Bits AD5-AD0 are pins used for the input channels to the analog-to-digital converter module. The channel select bits in the ADC status and control register define which port B pin will be used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry. #### NOTE Care must be taken when reading port B while applying analog voltages to AD5–AD0 pins. If
the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTBx/ADx pin, while PTB is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. PTB4 and 5 are not available in a 28-pin DIP and SOIC package MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # 16.3.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer. Figure 16-7. Data Direction Register B (DDRB) # DDRB5-DDRB0 — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB5-DDRB0], configuring all port B pins as inputs. - 1 = Corresponding port B pin configured as output - 0 = Corresponding port B pin configured as input #### NOTE Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. #### NOTE For those devices packaged in a 28-pin DIP and SOIC package, PTB5,4 are not connected. Set DDRB5,4 to a 1 to configure PTB5,4 as outputs. Figure 16-8 shows the port B I/O logic. Figure 16-8. Port B I/O Circuit When bit DDRBx is a 1, reading address \$0001 reads the PTBx data latch. When bit DDRBx is a 0, reading address \$0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-3 summarizes the operation of the port B pins. # Input/Output Ports (I/O) Table 16-3. Port B Pin Functions | DDRB Bit | PTB Bit | I/O Pin Mode | Accesses to DDRB | Accesses to PTB | | | |----------|------------------|----------------------------|------------------|-----------------|--------------------------|--| | DDRB BIL | PID DIL | I/O FIII WOULE | Read/Write | Read | Write | | | 0 | X ⁽¹⁾ | Input, Hi-Z ⁽²⁾ | DDRB5-DDRB0 | Pin | PTB5-PTB0 ⁽³⁾ | | | 1 | Х | Output | DDRB5-DDRB0 | PTB5-PTB0 | PTB5-PTB0 | | #### Notes: - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. # 16.4 Port C Port C is a 2-bit, general-purpose bidirectional I/O port. Port C also has software configurable pullup devices if configured as an input port. # 16.4.1 Port C Data Register The port C data register (PTC) contains a data latch for each of the two port C pins. Figure 16-9. Port C Data Register (PTC) #### PTC1-PTC0 — Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data. # NOTE PTC is not available in a 28-pin DIP and SOIC package # 16.4.2 Data Direction Register C Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a 0 disables the output buffer. Figure 16-10. Data Direction Register C (DDRC) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # DDRC1-DDRC0 — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC1–DDRC0, configuring all port C pins as inputs. - 1 = Corresponding port C pin configured as output - 0 = Corresponding port C pin configured as input #### NOTE Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 16-11 shows the port C I/O logic. #### NOTE For those devices packaged in a 28-pin DIP and SOIC package, PTC1,0 are not connected. Set DDRC1,0 to a 1 to configure PTC1,0 as outputs. Figure 16-11. Port C I/O Circuit When bit DDRCx is a 1, reading address \$0002 reads the PTCx data latch. When bit DDRCx is a 0, reading address \$0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-4 summarizes the operation of the port C pins. | Table 1 | 16-4 | Port (| : Pin | Functions | |---------|------|--------|-------|------------------| | | | | | | | ĺ | PTCPUE Bit | DDRC Bit | PTC Bit | I/O Pin Mode | Accesses to DDRC | Accesses to PTC | | | |---|------------|----------|------------------|---------------------------------------|------------------|-----------------|--------------------------|--| | | PICPUE BIL | DDNC BIL | PICBIL | Read/Write | | Read | Write | | | | 1 | 0 | X ⁽¹⁾ | Input, V _{DD} ⁽⁴⁾ | DDRC1-DDRC0 | Pin | PTC1-PTC0 ⁽³⁾ | | | | 0 | 0 | Х | Input, Hi-Z ⁽²⁾ | DDRC1-DDRC0 | Pin | PTC1-PTC0 ⁽³⁾ | | | ĺ | Х | 1 | Х | Output | DDRC1-DDRC0 | PTC1-PTC0 | PTC1-PTC0 | | #### Notes: - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. - 4. I/O pin pulled up to V_{DD} by internal pullup device. # MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Input/Output Ports (I/O) # 16.4.3 Port C Input Pullup Enable Register The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each of the two port C pins. Each bit is individually configurable and requires that the data direction register, DDRC, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRC is configured for output mode. Figure 16-12. Port C Input Pullup Enable Register (PTCPUE) # PTCPUE1-PTCPUE0 — Port C Input Pullup Enable Bits These writeable bits are software programmable to enable pullup devices on an input port bit. - 1 = Corresponding port C pin configured to have internal pullup - 0 = Corresponding port C pin internal pullup disconnected # 16.5 Port D Port D is an 7-bit special-function port that shares four of its pins with the serial peripheral interface (SPI) module and three of its pins with two timer interface (TIM1 and TIM2) modules. Port D also has software configurable pullup devices if configured as an input port. # 16.5.1 Port D Data Register The port D data register (PTD) contains a data latch for each of the seven port D pins. Figure 16-13. Port D Data Register (PTD) # PTD6-PTD0 — Port D Data Bits These read/write bits are software-programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. # T2CH0 — Timer 2 Channel I/O Bits The PTD6/T2CH0 pin is the TIM2 input capture/output compare pin. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD6/T2CH0 pin is a timer channel I/O pin or a general-purpose I/O pin. See Chapter 22 Timer Interface Module (TIM). MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### T1CH1 and T1CH0 — Timer 1 Channel I/O Bits The PTD5/T1CH1-PTD4/T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB and ELSxA, determine whether the PTD5/T1CH1-PTD4/T1CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Chapter 22 Timer Interface Module (TIM). #### SPSCK — SPI Serial Clock The PTD3/SPSCK pin is the serial clock input of the SPI module. When the SPE bit is clear, the PTD3/SPSCK pin is available for general-purpose I/O. #### MOSI — Master Out/Slave In The PTD2/MOSI pin is the master out/slave in terminal of the SPI module. When the SPE bit is clear, the PTD2/MOSI pin is available for general-purpose I/O. #### MISO — Master In/Slave Out The PTD1/MISO pin is the master in/slave out terminal of the SPI module. When the SPI enable bit, SPE, is clear, the SPI module is disabled, and the PTD0/SS pin is available for general-purpose I/O. Data direction register D (DDRD) does not affect the data direction of port D pins that are being used by the SPI module. However, the DDRD bits always determine whether reading port D returns the states of the latches or the states of the pins. See Table 16-5. # SS — Slave Select The PTD0/SS pin is the slave select input of the SPI module. When the SPE bit is clear, or when the SPI master bit, SPMSTR, is set, the PTD0/SS pin is available for general-purpose I/O. When the SPI is enabled, the DDRB0 bit in data direction register B (DDRB) has no effect on the PTD0/SS pin. # 16.5.2 Data Direction Register D Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a 0 disables the output buffer. Figure 16-14. Data Direction Register D (DDRD) # DDRD6-DDRD0 — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD6–DDRD0, configuring all port D pins as inputs. - 1 = Corresponding port D pin configured as output - 0 = Corresponding port D pin configured as input #### NOTE Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. # Input/Output Ports (I/O) Figure 16-15 shows the port D I/O logic. Figure 16-15. Port D I/O Circuit When bit DDRDx is a 1, reading address \$0003 reads the PTDx data latch. When bit DDRDx is a 0, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-5 summarizes the operation of the port D pins. **Table 16-5. Port D Pin Functions** | PTDPUE Bit | DDRD Bit | PTD Bit | I/O Pin Mode | Accesses to DDRD | Access | es to PTD | |------------|----------|------------------|---------------------------------------|------------------|-----------|--------------------------| | FIDFOE BIL | DUND BIL | PIDBIL | I/O PIII Mode | Read/Write | Read | Write | | 1 | 0 | X ⁽¹⁾ | Input, V _{DD} ⁽⁴⁾ | DDRD6-DDRD0 | Pin | PTD6-PTD0 ⁽³⁾ | | 0 | 0 | Х | Input, Hi-Z ⁽²⁾ | DDRD6-DDRD0 | Pin | PTD6-PTD0 ⁽³⁾ | | Х | 1 | Χ | Output | DDRD6-DDRD0 | PTD6-PTD0 | PTD6-PTD0 | - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. 4. I/O pin pulled up to V_{DD} by
internal pullup device. # 16.5.3 Port D Input Pullup Enable Register The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each of the seven port D pins. Each bit is individually configurable and requires that the data direction register, DDRD, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRD is configured for output mode. Figure 16-16. Port D Input Pullup Enable Register (PTDPUE) ### PTDPUE6-PTDPUE0 — Port D Input Pullup Enable Bits These writeable bits are software programmable to enable pullup devices on an input port bit. - 1 = Corresponding port D pin configured to have internal pullup - 0 = Corresponding port D pin has internal pullup disconnected # 16.6 Port E Port E is a 2-bit special-function port that shares two of its pins with the serial communications interface (SCI) module. # 16.6.1 Port E Data Register The port E data register contains a data latch for each of the two port E pins. Figure 16-17. Port E Data Register (PTE) #### PTE1 and PTE0 — Port E Data Bits PTE1 and PTE0 are read/write, software programmable bits. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. #### NOTE Data direction register E (DDRE) does not affect the data direction of port E pins that are being used by the SCI module. However, the DDRE bits always determine whether reading port E returns the states of the latches or the states of the pins. See Table 16-6. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Input/Output Ports (I/O) # RxD — SCI Receive Data Input The PTE1/RxD pin is the receive data input for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE1/RxD pin is available for general-purpose I/O. See Chapter 18 Serial Communications Interface (SCI). ## TxD — SCI Transmit Data Output The PTE0/TxD pin is the transmit data output for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTE0/TxD pin is available for general-purpose I/O. See Chapter 18 Serial Communications Interface (SCI). # 16.6.2 Data Direction Register E Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a 0 disables the output buffer. Figure 16-18. Data Direction Register E (DDRE) # DDRE1 and DDRE0 — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE1 and DDRE0, configuring all port E pins as inputs. - 1 = Corresponding port E pin configured as output - 0 = Corresponding port E pin configured as input #### NOTE Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 16-19 shows the port E I/O logic. Figure 16-19. Port E I/O Circuit MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 157 When bit DDREx is a 1, reading address \$0008 reads the PTEx data latch. When bit DDREx is a 0, reading address \$0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 16-6 summarizes the operation of the port E pins. **Table 16-6. Port E Pin Functions** | DDRE Bit | PTE Bit | I/O Pin Mode | Accesses to DDRE | Access | es to PTE | |----------|------------------|----------------------------|------------------|-----------|--------------------------| | DDNE BIL | FIEDIL | I/O PIII Wode | Read/Write | Read | Write | | 0 | X ⁽¹⁾ | Input, Hi-Z ⁽²⁾ | DDRE1-DDRE0 | Pin | PTE1-PTE0 ⁽³⁾ | | 1 | Х | Output | DDRE1-DDRE0] | PTE1-PTE0 | PTE1-PTE0 | #### Notes: - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. Input/Output Ports (I/O) # **Chapter 17 Random-Access Memory (RAM)** # 17.1 Introduction This section describes the 384 bytes of RAM (random-access memory). # 17.2 Functional Description Addresses \$0040 through \$01BF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64K byte memory space. #### NOTE For correct operation, the stack pointer must point only to RAM locations. Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at \$00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. #### NOTE For M6805 compatibility, the H register is not stacked. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. #### NOTE Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. Random-Access Memory (RAM) # **Chapter 18 Serial Communications Interface (SCI)** # 18.1 Introduction This section describes the serial communications interface (SCI) module, which allows high-speed asynchronous communications with peripheral devices and other MCUs. # 18.2 Features Features of the SCI module include: - Full-duplex operation - Standard mark/space non-return-to-zero (NRZ) format - 32 programmable baud rates - Programmable 8-bit or 9-bit character length - Separately enabled transmitter and receiver - Separate receiver and transmitter CPU interrupt requests - Programmable transmitter output polarity - Two receiver wakeup methods: - Idle line wakeup - Address mark wakeup - Interrupt-driven operation with eight interrupt flags: - Transmitter empty - Transmission complete - Receiver full - Idle receiver input - Receiver overrun - Noise error - Framing error - Parity error - Receiver framing error detection - Hardware parity checking - 1/16 bit-time noise detection - Configuration register bit, SCIBDSRC, to allow selection of baud rate clock source # 18.3 Pin Name Conventions The generic names of the SCI I/O pins are: - RxD (receive data) - TxD (transmit data) SCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an SCI input or output reflects the name of the shared port pin. Table 18-1 shows the full names and the generic names of the SCI I/O pins. The generic pin names appear in the text of this chapter. **Table 18-1. Pin Name Conventions** | Generic Pin Names: | RxD | TxD | | |--------------------|---------|---------|--| | Full Pin Names: | PE1/RxD | PE0/TxD | | # 18.4 Functional Description Figure 18-1 shows the structure of the SCI module. The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC, of the CONFIG2 register (\$001E). Figure 18-1. SCI Module Block Diagram | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |---------|----------------------------------|-----------------|-------|------------|-------|-------------|------------|--------------|------|-------| | \$0013 | SCI Control Register 1
(SCC1) | Read:
Write: | LOOPS | ENSCI | TXINV | М | WAKE | ILTY | PEN | PTY | | | (000) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0014 | SCI Control Register 2
(SCC2) | Read:
Write: | SCTIE | TCIE | SCRIE | ILIE | TE | RE | RWU | SBK | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | R8 | T8 | R | R | ORIE | NEIE | FEIE | PEIE | | \$0015 | SCI Control Register 3 (SCC3) | Write: | | 10 | n | n | ONIE | INCIC | FEIE | FEIE | | | (2227) | Reset: | U | U | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | SCTE | TC | SCRF | IDLE | OR | NF | FE | PE | | \$0016 | SCI Status Register 1
(SCS1) | Write: | | | | | | | | | | | (/ | Reset: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | BKF | RPF | | \$0017 | SCI Status Register 2
(SCS2) | Write: | | | | | | | | | | | (===) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | \$0018 | SCI Data Register
(SCDR) | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | | (30511) | | Reset: | | | | Unaffecte | d by reset | | | | | \$0019 | | Read: | 0 | 0 | CCD4 | CCDO | Б | CCDO | COD4 | CCDO | | | SCI Baud Rate Register (SCBR) | Write: | | | SCP1 | SCP0 | R | SCR2 | SCR1 | SCR0 | | | (30211) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | = Unimplem | ented | R = Reserve | d | U = Unaffect | ted | | Figure 18-2. SCI I/O Register Summary # 18.4.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 18-3. Figure 18-3. SCI Data Formats MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # 18.4.2 Transmitter Figure 18-4 shows the structure of the SCI transmitter. The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC. Figure 18-4. SCI Transmitter # 18.4.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). #### 18.4.2.2 Character Transmission During an SCI transmission, the transmit shift register shifts a character out to the PE2/TxD pin. The SCI data register (SCDR) is the write-only buffer between the
internal data bus and the transmit shift register. To initiate an SCI transmission: - 1. Enable the SCI by writing a 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). - 2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). - 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3. - 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control automatically loads the transmit shift register with a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A 0 start bit automatically goes into the least significant bit position of the transmit shift register. A 1 stop bit goes into the most significant bit position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the PE2/TxD pin goes to the idle condition, high. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port E pins. #### 18.4.2.3 Break Characters Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one 1. The automatic 1 at the end of a break character guarantees the recognition of the start bit of the next character. The SCI recognizes a break character when a start bit is followed by eight or nine 0 data bits and a 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: - Sets the framing error bit (FE) in SCS1 - Sets the SCI receiver full bit (SCRF) in SCS1 - Clears the SCI data register (SCDR) - Clears the R8 bit in SCC3 - Sets the break flag bit (BKF) in SCS2 - May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # 18.4.2.4 Idle Characters For TXINV = 0, (output not inverted) a transmitted idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the PE2/TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted. #### NOTE When a break sequence is followed immediately by an idle character, this SCI design exhibits a condition in which the break character length is reduced by one half bit time. In this instance, the break sequence will consist of a valid start bit, eight or nine data bits (as defined by the M bit in SCC1) of 0 and one half data bit length of 0 in the stop bit position followed immediately by the idle character. To ensure a break character of the proper length is transmitted, always queue up a byte of data to be transmitted while the final break sequence is in progress. When queueing an idle character, return the TE bit to 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. A good time to toggle the TE bit for a queued idle character is when the SCTE bit becomes set and just before writing the next byte to the SCDR. # 18.4.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. See 18.8.1 SCI Control Register 1. # 18.4.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the SCI transmitter: - SCI transmitter empty (SCTE) The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. - Transmission complete (TC) The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests. #### 18.4.3 Receiver Figure 18-5 shows the structure of the SCI receiver. Figure 18-5. SCI Receiver Block Diagram # 18.4.3.1 Character Length The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7). MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 18.4.3.2 Character Reception During an SCI reception, the receive shift register shifts characters in from the PE1/RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request. # 18.4.3.3 Data Sampling The receiver samples the PE1/RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 18-6): - After every start bit - After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid 0) To locate the start bit, data recovery does an asynchronous search for a 0 preceded by three 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16. Figure 18-6. Receiver Data Sampling To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 18-2 summarizes the results of the start bit verification samples. Start Bit RT3, RT5, and RT7 Samples Noise Flag Verification 000 Yes 0 001 Yes 1 010 Yes 1 011 No 0 100 Yes 1 **Table 18-2. Start Bit Verification** MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 **Table 18-2. Start Bit Verification (Continued)** | RT3, RT5, and RT7 Samples | Start Bit
Verification | Noise Flag | |---------------------------|---------------------------|------------| | 101 | No | 0 | | 110 | No | 0 | | 111 | No | 0 | If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 18-3 summarizes the results of the data bit samples. **Table 18-3. Data Bit Recovery** | RT8, RT9, and RT10 Samples | Data Bit Determination | Noise Flag | |----------------------------|------------------------|------------| | 000 | 0 | 0 | | 001 | 0 | 1 | | 010 | 0 | 1 | | 011 | 1 | 1 | | 100 | 0 | 1 | | 101 | 1 | 1 | | 110 | 1 | 1 | | 111 | 1 | 0 | # **NOTE** The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 18-4 summarizes the results of the stop bit samples. Table 18-4. Stop Bit Recovery | RT8, RT9, and RT10
Samples | Framing
Error Flag | Noise Flag | |-------------------------------|-----------------------|------------| | 000 | 1 | 0 | | 001 | 1 | 1 | | 010 | 1 | 1 | | 011 | 0 | 1 | | 100 | 1 | 1 | | 101 | 0 | 1 | | 110 | 0 | 1 | | 111 | 0 | 0 | # 18.4.3.4 Framing Errors If the data recovery logic does not detect a 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 18.4.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment that is likely to occur. As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between
transmitter bit times and receiver bit times. #### 18.4.3.6 Slow Data Tolerance Figure 18-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10. Figure 18-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times \times 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 18-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times \times 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is $$\left| \frac{154 - 147}{154} \right| \times 100 = 4.54\%$$ For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times \times 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 18-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times \times 16 RT cycles + 3 RT cycles = 163 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is $$\left| \frac{170 - 163}{170} \right| \times 100 = 4.12\%$$ # 18.4.3.7 Fast Data Tolerance Figure 18-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10. Figure 18-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times \times 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 18-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times \times 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is $$\left| \frac{154 - 160}{154} \right| \times 100 = 3.90\%$$ For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times \times 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 18-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times \times 16 RT cycles = 176 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is $$\left| \frac{170 - 176}{170} \right| \times 100 = 3.53\%$$ #### 18.4.3.8 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the PE1/RxD pin can bring the receiver out of the standby state: Address mark — An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the - receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. - Idle input line condition When the WAKE bit is clear, an idle character on the PE1/RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. #### NOTE With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately. # 18.4.3.9 Receiver Interrupts The following sources can generate CPU interrupt requests from the SCI receiver: - SCI receiver full (SCRF) The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. - Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the PE1/RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests. # 18.4.3.10 Error Interrupts The following receiver error flags in SCS1 can generate CPU interrupt requests: - Receiver overrun (OR) The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. - Noise flag (NF) The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests. - Framing error (FE) The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. - Parity error (PE) The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests. # 18.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. #### 18.5.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. Refer to Chapter 3 Low-Power Modes for information on exiting wait mode. # **18.5.2 Stop Mode** The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI module operation resumes when the MCU exits stop mode. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Refer to Chapter 3 Low-Power Modes for information on exiting stop mode. # 18.6 SCI During Break Module Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit. # 18.7 I/O Signals Port E shares two of its pins with the SCI module. The two SCI I/O pins are: - PE2/TxD Transmit data - PE1/RxD Receive data # 18.7.1 PE2/TxD (Transmit Data) The PE2/TxD pin is the serial data output from the SCI transmitter. The SCI shares the PE2/TxD pin with port E. When the SCI is enabled, the PE2/TxD pin is an output regardless of the state of the DDRE0 bit in data direction register E (DDRE). # 18.7.2 PE1/RxD (Receive Data) The PE1/RxD pin is the serial data input to the SCI receiver. The SCI shares the PE1/RxD pin with port E. When the SCI is enabled, the PE1/RxD pin is an input regardless of the state of the DDRE1 bit in data direction register E (DDRE). # 18.8 I/O Registers These I/O registers control and monitor SCI operation: - SCI control register 1 (SCC1) - SCI control register 2 (SCC2) - SCI control register 3 (SCC3) - SCI status register 1 (SCS1) - SCI status register 2 (SCS2) - SCI data register (SCDR) - SCI baud rate register (SCBR) # 18.8.1 SCI Control Register 1 SCI control register 1: - Enables loop mode operation - Enables the SCI - Controls output polarity - Controls character length - Controls SCI wakeup method - Controls idle character detection - Enables parity function - Controls parity type Figure 18-9. SCI Control Register 1 (SCC1) #### LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the PE1/RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. - 1 = Loop mode enabled - 0 = Normal operation enabled #### **ENSCI** — Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. - 1 = SCI enabled - 0 = SCI disabled #### TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset
clears the TXINV bit. - 1 = Transmitter output inverted - 0 = Transmitter output not inverted #### NOTE Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits. # M — Mode (Character Length) Bit This read/write bit determines whether SCI characters are eight or nine bits long. See Table 18-5. The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. - 1 = 9-bit SCI characters - 0 = 8-bit SCI characters # **WAKE** — Wakeup Condition Bit This read/write bit determines which condition wakes up the SCI: a 1 (address mark) in the most significant bit position of a received character or an idle condition on the PE1/RxD pin. Reset clears the WAKE bit. - 1 = Address mark wakeup - 0 = Idle line wakeup # ILTY — Idle Line Type Bit This read/write bit determines when the SCI starts counting 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. - 1 = Idle character bit count begins after stop bit - 0 = Idle character bit count begins after start bit # PEN — Parity Enable Bit This read/write bit enables the SCI parity function. See Table 18-5. When enabled, the parity function inserts a parity bit in the most significant bit position. See Figure 18-3. Reset clears the PEN bit. - 1 = Parity function enabled - 0 = Parity function disabled # PTY — Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. See Table 18-5. Reset clears the PTY bit. - 1 = Odd parity - 0 = Even parity # NOTE Changing the PTY bit in the middle of a transmission or reception can generate a parity error. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 | Control Bits | | Character Format | | | | | |--------------|-------------|------------------|-----------|--------|-----------|------------------| | М | PEN and PTY | Start Bits | Data Bits | Parity | Stop Bits | Character Length | | 0 | 0X | 1 | 8 | None | 1 | 10 bits | | 1 | 0X | 1 | 9 | None | 1 | 11 bits | | 0 | 10 | 1 | 7 | Even | 1 | 10 bits | | 0 | 11 | 1 | 7 | Odd | 1 | 10 bits | | 1 | 10 | 1 | 8 | Even | 1 | 11 bits | | 1 | 11 | 1 | 8 | Odd | 1 | 11 bits | Table 18-5. Character Format Selection # 18.8.2 SCI Control Register 2 SCI control register 2: - Enables the following CPU interrupt requests: - Enables the SCTE bit to generate transmitter CPU interrupt requests - Enables the TC bit to generate transmitter CPU interrupt requests - Enables the SCRF bit to generate receiver CPU interrupt requests - Enables the IDLE bit to generate receiver CPU interrupt requests - Enables the transmitter - Enables the receiver - Enables SCI wakeup - Transmits SCI break characters Figure 18-10. SCI Control Register 2 (SCC2) # **SCTIE** — **SCI** Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset clears the SCTIE bit. - 1 = SCTE enabled to generate CPU interrupt - 0 = SCTE not enabled to generate CPU interrupt # TCIE — Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. - 1 = TC enabled to generate CPU interrupt requests - 0 = TC not enabled to generate CPU interrupt requests # SCRIE — SCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears the SCRIE bit. - 1 = SCRF enabled to generate CPU interrupt - 0 = SCRF not enabled to generate CPU interrupt MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # ILIE — Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. - 1 = IDLE enabled to generate CPU interrupt requests - 0 = IDLE not enabled to generate CPU interrupt requests #### TE — Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the transmit shift register to the PE2/TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the PE2/TxD returns to the idle condition (1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. - 1 = Transmitter enabled - 0 = Transmitter disabled #### NOTE Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. #### RE — Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. - 1 = Receiver enabled - 0 = Receiver disabled # NOTE Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. # RWU — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. - 1 = Standby state - 0 = Normal operation # SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no 1s between them. Reset clears the SBK bit. - 1 = Transmit break characters - 0 = No break characters being transmitted #### NOTE Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble. # 18.8.3 SCI Control Register 3 SCI control register 3: - Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted - Enables these interrupts: - Receiver overrun interrupts - Noise error interrupts - Framing error interrupts - Parity error interrupts Figure 18-11. SCI Control Register 3 (SCC3) #### R8 — Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. #### T8 — Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset clears the T8 bit. # ORIE — Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. - 1 = SCI error CPU interrupt requests from OR bit enabled - 0 = SCI error CPU interrupt requests from OR bit disabled # **NEIE** — Receiver Noise Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. - 1 = SCI error CPU interrupt requests from NE bit enabled - 0 = SCI error CPU interrupt requests from NE bit disabled # FEIE — Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. - 1 = SCI error CPU interrupt requests from FE bit enabled - 0 = SCI error CPU interrupt requests from FE bit disabled # PEIE — Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the parity error bit, PE. See 18.8.4 SCI Status Register 1. Reset clears PEIE. - 1 = SCI error CPU interrupt requests from PE bit enabled - 0 = SCI error CPU interrupt requests from PE bit disabled MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # 18.8.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: - Transfer of SCDR data to transmit shift register complete - Transmission complete - Transfer of receive shift register data to SCDR complete - · Receiver input idle - Receiver overrun - Noisy data - Framing error - Parity error Figure 18-12. SCI Status Register 1 (SCS1) # SCTE — SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. - 1 = SCDR data transferred to transmit shift register - 0 = SCDR data not transferred to transmit shift register # TC — Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. - 1 = No transmission in progress - 0 = Transmission in progress #### SCRF — SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU
interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. - 1 = Received data available in SCDR - 0 = Data not available in SCDR #### IDLE — Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. - 1 = Receiver input idle - 0 = Receiver input active (or idle since the IDLE bit was cleared) ### OR — Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. - 1 = Receive shift register full and SCRF = 1 - 0 = No receiver overrun Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 18-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flag-clearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after reading the data register. #### NF — Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the PE1/RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. - 1 = Noise detected - 0 = No noise detected #### FE — Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. - 1 = Framing error detected - 0 = No framing error detected #### PE — Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. - 1 = Parity error detected - 0 = No parity error detected #### **Serial Communications Interface (SCI)** Figure 18-13. Flag Clearing Sequence ## 18.8.5 SCI Status Register 2 SCI status register 2 contains flags to signal the following conditions: - · Break character detected - Incoming data Figure 18-14. SCI Status Register 2 (SCS2) #### **BKF** — Break Flag Bit This clearable, read-only bit is set when the SCI detects a break character on the PE1/RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after 1s again appear on the PE1/RxD pin followed by another break character. Reset clears the BKF bit. - 1 = Break character detected - 0 = No break character detected ### MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## RPF — Reception in Progress Flag Bit This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. - 1 = Reception in progress - 0 = No reception in progress ## 18.8.6 SCI Data Register The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register. Figure 18-15. SCI Data Register (SCDR) #### R7/T7-R0/T0 — Receive/Transmit Data Bits Reading address \$0018 accesses the read-only received data bits, R7:R0. Writing to address \$0018 writes the data to be transmitted, T7:T0. Reset has no effect on the SCI data register. #### NOTE Do not use read/modify/write instructions on the SCI data register. ## 18.8.7 SCI Baud Rate Register The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter. Figure 18-16. SCI Baud Rate Register (SCBR) **Serial Communications Interface (SCI)** #### SCP1 and SCP0 — SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 18-6. Reset clears SCP1 and SCP0. Table 18-6. SCI Baud Rate Prescaling | SCP1 and SCP0 | Prescaler Divisor (PD) | |---------------|------------------------| | 00 | 1 | | 01 | 3 | | 10 | 4 | | 11 | 13 | ### SCR2-SCR0 — SCI Baud Rate Select Bits These read/write bits select the SCI baud rate divisor as shown in Table 18-7. Reset clears SCR2–SCR0. Table 18-7, SCI Baud Rate Selection | SCR2, SCR1, and SCR0 | Baud Rate Divisor (BD) | |----------------------|------------------------| | 000 | 1 | | 001 | 2 | | 010 | 4 | | 011 | 8 | | 100 | 16 | | 101 | 32 | | 110 | 64 | | 111 | 128 | Use this formula to calculate the SCI baud rate: baud rate = $$\frac{fBUS}{64 \times PD \times BD}$$ where: f_{BUS} = bus frequency PD = prescaler divisor BD = baud rate divisor SCIBDSRC from the configuration register is an input to the SCI. With SCIBDSRC = 1 to select the bus clock as the clock source, this makes the formula: baud rate = $$\frac{f_{BUS}}{64 \times PD \times BD}$$ Table 18-8 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock. **Table 18-8. SCI Baud Rate Selection Examples** | SCP1 and SCP0 | Prescaler
Divisor (PD) | SCR2, SCR1,
and SCR0 | Baud Rate
Divisor (BD) | Baud Rate
(f _{BUS} = 4.9152 MHz) | | |---------------|---------------------------|-------------------------|---------------------------|--|--| | 00 | 1 | 000 | 1 | 76,800 | | | 00 | 1 | 001 | 2 | 38,400 | | | 00 | 1 | 010 | 4 | 19,200 | | | 00 | 1 | 011 | 8 | 9600 | | | 00 | 1 | 100 | 16 | 4800 | | | 00 | 1 | 101 | 32 | 2400 | | | 00 | 1 | 110 | 64 | 1200 | | | 00 | 1 | 111 | 128 | 600 | | | 01 | 3 | 000 | 1 | 25,600 | | | 01 | 3 | 001 | 2 | 12,800 | | | 01 | 3 | 010 | 4 | 6400 | | | 01 | 3 | 011 | 8 | 3200 | | | 01 | 3 | 100 | 16 | 1600 | | | 01 | 3 | 101 | 32 | 800 | | | 01 | 3 | 110 | 64 | 400 | | | 01 | 3 | 111 | 128 | 200 | | | 10 | 4 | 000 | 1 | 19,200 | | | 10 | 4 | 001 | 2 | 9600 | | | 10 | 4 | 010 | 4 | 4800 | | | 10 | 4 | 011 | 8 | 2400 | | | 10 | 4 | 100 | 16 | 1200 | | | 10 | 4 | 101 | 32 | 600 | | | 10 | 4 | 110 | 64 | 300 | | | 10 | 4 | 111 | 128 | 150 | | | 11 | 13 | 000 | 1 | 5908 | | | 11 | 13 | 001 | 2 | 2954 | | | 11 | 13 | 010 | 4 | 1477 | | | 11 | 13 | 011 | 8 | 739 | | | 11 | 13 | 100 | 16 | 369 | | | 11 | 13 | 101 | 32 | 185 | | | 11 | 13 | 110 | 64 | 92 | | | 11 | 13 | 111 | 128 | 46 | | **Serial Communications Interface (SCI)** MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # **Chapter 19 System Integration Module (SIM)** ## 19.1 Introduction This section describes the system integration module (SIM). Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 19-1. Table 19-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: - Bus clock generation and control for CPU and peripherals: - Stop/wait/reset/break entry and recovery - Internal clock control - Master reset control, including power-on reset (POR) and COP timeout - Interrupt arbitration: Table 19-1 shows the internal signal names used in this section. **Table 19-1. Signal Name Conventions** | Signal Name | Description | |-------------|--| | CGMXCLK | Buffered version of OSC1 from clock generator module (CGM) | | CGMVCLK | PLL output | | CGMOUT | PLL-based or OSC1-based clock output from CGM module (Bus clock = CGMOUT divided by two) | | IAB | Internal address bus | | IDB | Internal data bus | | PORRST | Signal from the power-on reset module to the SIM | | IRST | Internal reset signal | | R/W | Read/write signal | Figure 19-1. SIM Block Diagram Figure 19-2. SIM I/O Register Summary MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |------------------------------------|---------------------------------------|--------|-------|-------------|-------|------|------|-----|------|-------| | \$FE04 Interrupt Stat | | Read: | IF6 | IF5 | IF4 | IF3 | IF2 | IF1 | 0 | 0 | | | Interrupt Status Register 1
(INT1) | Write: | R | R | R | R | R | R | R | R | | | () | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$FE05 Interrupt Status Register 2 | | Read: | IF14 | IF13 | IF12 | IF11 | IF10 | IF9 | IF8 | IF7 | | | Interrupt Status Register 2 (INT2) | Write: | R | R | R | R | R | R | R | R | | | () | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | 0 | 0 | 0 | 0 | 0 | 0 | IF16
| IF15 | | \$FE06 | Interrupt Status Register 3
(INT3) | Write: | R | R | R | R | R | R | R | R | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | = Unimpleme | ented | | | | | | Figure 19-2. SIM I/O Register Summary (Continued) ## 19.2 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 19-3. This clock can come from either an external oscillator or from the on-chip PLL. See Chapter 7 Clock Generator Module. Figure 19-3. CGM Clock Signals ## 19.2.1 Bus Timing In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four. ## 19.2.2 Clock Startup from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR timeout has completed. The $\overline{\text{RST}}$ pin is driven low by the SIM during this entire period. The bus clocks start upon completion of the timeout. ## 19.2.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK cycles. See 19.6.2 Stop Mode. In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. ## 19.3 Reset and System Initialization The MCU has these reset sources: - Power-on reset module (POR) - External reset pin (RST) - Computer operating properly module (COP) - Low-voltage inhibit module (LVI) - Illegal opcode - Illegal address - Forced monitor mode entry reset (MODRST) All of these resets produce the vector \$FFFE:\$FFFF (\$FEFE:\$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 19.4 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). See 19.7 SIM Registers. ## 19.3.1 External Pin Reset The RST pin circuit includes an internal pullup device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 19-2 for details. Figure 19-4 shows the relative timing. Figure 19-4. External Reset Timing #### 19.3.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles at which point the reset vector will be fetched. See Figure 19-5. An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR. See Figure 19-6. #### NOTE For LVI or POR resets, the SIM cycles through 4096 + 32 CGMXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 19-5. Figure 19-5. Internal Reset Timing The COP reset is asynchronous to the bus clock. Figure 19-6. Sources of Internal Reset Table 19-2. PIN Bit Set Timing | Reset Recovery | Actual Number of Cycles | |----------------|-------------------------| | POR/LVI | 4163 (4096 + 64 + 3) | | All others | 67 (64 + 3) | The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. ## 19.3.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur: - A POR pulse is generated. - The internal reset signal is asserted. - The SIM enables CGMOUT. - Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the oscillator. - The RST pin is driven low during the oscillator stabilization time. - The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. Figure 19-7. POR Recovery ## 19.3.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. The COP module is disabled if the \overline{RST} pin or the \overline{IRQ} pin is held at V_{tst} while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the \overline{RST} or the \overline{IRQ} pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, V_{tst} on the \overline{RST} pin disables the COP module. ## 19.3.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the CONFIG register is 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the $\overline{\text{RST}}$ pin for all internal reset sources. ## 19.3.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the \overline{RST} pin for all internal reset sources. ## 19.3.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the V_{DD} voltage falls to the LVI_{TRIPF} voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 + 32 CGMXCLK cycles. Thirty-two CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the \overline{RST} pin for all internal reset sources. ## 19.3.2.6 Monitor Mode Entry Module Reset (MODRST) The monitor mode entry module reset (MODRST) asserts its output to the SIM when monitor mode is entered in the condition where the reset vectors are erased (\$FF). (See 15.3.1 Entering Monitor Mode.) When MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal reset sources. ## 19.4 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long. ## 19.4.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to drive the bus clock state machine. ## 19.4.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the CONFIG register. If the SSREC bit is a 1, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using crystals with the OSCSTOPENB bit set. External crystal applications should use the full stop recovery time, that is, with SSREC cleared. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## 19.4.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 19.6.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 19.3.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.) # 19.5 Exception Control Normal, sequential program execution can be changed in three different ways: - Interrupts: - Maskable hardware CPU interrupts - Non-maskable software interrupt instruction (SWI) - Reset - Break interrupts ## 19.5.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 19-8 shows interrupt entry timing. Figure 19-9 shows interrupt recovery timing. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). See Figure
19-10. Figure 19-9. Interrupt Recovery Timing MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Figure 19-10. Interrupt Processing ### 19.5.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 19-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. Figure 19-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. #### NOTE To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. #### 19.5.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. #### NOTE A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## 19.5.1.3 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 19-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. **Interrupt Status Priority** Interrupt Source Register Flag Highest Reset SWI instruction IRQ pin 11 PLL 12 TIM1 channel 0 13 TIM1 channel 1 14 TIM1 overflow 15 TIM2 channel 0 16 Reserved 17 TIM2 overflow 18 SPI receiver full 19 SPI transmitter empty 110 SCI receive error 111 SCI receive 112 SCI transmit 113 Keyboard 114 ADC conversion complete 115 Timebase module 116 Lowest **Table 19-3. Interrupt Sources** ## 19.5.1.4 Interrupt Status Register 1 Figure 19-12. Interrupt Status Register 1 (INT1) ## 16-I1 — Interrupt Flags 1-6 These flags indicate the presence of interrupt requests from the sources shown in Table 19-3. - 1 = Interrupt request present - 0 = No interrupt request present ## Bit 0 and Bit 1 — Always read 0 MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## 19.5.1.5 Interrupt Status Register 2 Figure 19-13. Interrupt Status Register 2 (INT2) ## IF14–IF8 — Interrupt Flags 14–7 These flags indicate the presence of interrupt requests from the sources shown in Table 19-3. - 1 = Interrupt request present - 0 = No interrupt request present ## Bit 0 — Always reads 0 ## 19.5.1.6 Interrupt Status Register 3 Figure 19-14. Interrupt Status Register 3 (INT3) #### Bits 7–2 — Always read 0 ## I16-I15 — Interrupt Flags 16-15 These flags indicate the presence of an interrupt request from the source shown in Table 19-3. - 1 = Interrupt request present - 0 = No interrupt request present ## 19.5.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated. ## 19.5.3 Break Interrupts The break module can stop normal program flow at a software-programmable break point by asserting its break interrupt output. See Chapter 22 Timer Interface Module (TIM). The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. ## 19.5.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. ## 19.6 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. ## **19.6.1 Wait Mode** In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 19-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode also can be exited by a reset or break in emulation mode. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the CONFIG register is 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. Figure 19-15. Wait Mode Entry Timing Figure 19-16 and Figure 19-17 show the timing for WAIT recovery. Note: EXITSTOPWAIT = \overline{RST} pin, CPU interrupt, or break interrupt Figure 19-16. Wait Recovery from Interrupt or Break Figure 19-17. Wait Recovery from Internal Reset ## 19.6.2 **Stop Mode** In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the CONFIG register (MOR). If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. ## NOTE External crystal applications should use the full stop recovery time by clearing the SSREC bit unless the OSCSTOPENB bit is set in the configuration register. The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 19-18 shows stop mode entry timing. #### NOTE To minimize stop current, all pins configured as inputs should be driven to a 1 or 0. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Note: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 19-18. Stop Mode Entry Timing Figure 19-19. Stop Mode Recovery from Interrupt or Break # 19.7 SIM Registers The SIM has three memory-mapped registers. Table 19-4 shows the mapping of these registers. Address Register Access Mode \$FE00 SBSR User \$FE01 SRSR User \$FE03 SBFCR User Table 19-4. SIM Registers ## 19.7.1 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode Note: 1. Writing a logic 0 clears SBSW. Figure 19-20. SIM Break Status Register (SBSR) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### BW — SIM Break Wait Clear BW by writing a 0 to it. Reset clears BW. BW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. - 1 = Wait mode was exited by break interrupt. - 0 = Wait mode was not exited by break interrupt. ## 19.7.2 SIM Reset Status Register The SRSR register contains flags that show the source of the last reset. The status register will automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the register. All other reset sources set the individual flag bits but do not clear the register. More than one reset source can be flagged at any time depending on the conditions at the time of the internal or external reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time. Figure 19-21. SIM Reset Status Register (SRSR) #### POR — Power-On Reset Bit - 1 = Last reset caused by POR circuit - 0 = Read of SRSR #### PIN — External Reset Bit - 1 = Last reset caused by external reset pin (\overline{RST}) - 0 = POR or read of SRSR ## **COP** — Computer Operating Properly Reset Bit - 1 = Last reset caused by COP counter - 0 = POR or read of SRSR ## ILOP — Illegal Opcode Reset Bit - 1 = Last reset caused by an illegal opcode - 0 = POR or read of SRSR ## ILAD — Illegal Address Reset Bit (opcode fetches only) - 1 = Last reset caused by an opcode fetch from an illegal address - 0 = POR or read of SRSR #### **MODRST** — Monitor Mode
Entry Module Reset Bit - 1 = Last reset caused by monitor mode entry when vector locations \$FFFE and \$FFFF are \$FF after POR while $\overline{IRQ} = V_{DD}$ - 0 = POR or read of SRSR ## LVI — Low-Voltage Inhibit Reset Bit - 1 = Last reset caused by the LVI circuit - 0 = POR or read of SRSR ## 19.7.3 SIM Break Flag Control Register The SIM break control register contains a bit that enables software to clear status bits while the MCU is in a break state. Figure 19-22. SIM Break Flag Control Register (SBFCR) ## **BCFE** — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. - 1 = Status bits clearable during break - 0 = Status bits not clearable during break # **Chapter 20 Serial Peripheral Interface (SPI)** ## 20.1 Introduction This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous, serial communications with peripheral devices. ## 20.2 Features Features of the SPI module include: - Full-duplex operation - Master and slave modes - Double-buffered operation with separate transmit and receive registers - Four master mode frequencies (maximum = bus frequency ÷ 2) - Maximum slave mode frequency = bus frequency - Serial clock with programmable polarity and phase - Two separately enabled interrupts: - SPRF (SPI receiver full) - SPTE (SPI transmitter empty) - Mode fault error flag with CPU interrupt capability - Overflow error flag with CPU interrupt capability - Programmable wired-OR mode - I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s) 205 Serial Peripheral Interface (SPI) # 20.3 Pin Name Conventions and I/O Register Addresses The text that follows describes the SPI. The SPI I/O pin names are \overline{SS} (slave select), SPSCK (SPI serial clock), MOSI (master out slave in), and MISO (master in/slave out). The SPI shares four I/O pins with four parallel I/O ports. The full names of the SPI I/O pins are shown in Table 20-1. The generic pin names appear in the text that follows. | SPI Generic
Pin Names: | | MISO | MOSI | SS | SPSCK | CGND | |---------------------------|-------|------|------------|-----------|------------|-----------------| | Full SPI
Pin Names: | I SPI | | PTD2/ATD10 | PTD0/ATD8 | PTD3/ATD11 | V _{SS} | **Table 20-1. Pin Name Conventions** # 20.4 Functional Description Figure 20-1 summarizes the SPI I/O registers and Figure 20-2 shows the structure of the SPI module. | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|--|-----------------|-----------------|-------|--------|-----------|------------|--------|------|----------| | \$0010 | SPI Control Register
(SPCR) | Read:
Write: | SPRIE | R | SPMSTR | CPOL | СРНА | SPWOM | SPE | SPTIE | | | (0. 0) | Reset: | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | \$0011 | | Read: | SPRF | ERRIE | OVRF | MODF | SPTE | MODFEN | SPR1 | SPR0 | | | SPI Status and Control
Register (SPSCR) | Write: | | | | | | | | SFNU | | | riegister (or corr) | Reset: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | \$0012 SPI Data Register (SPDR) | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | \$0012 | | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | | | (OI DIT) | Reset: | | | | Unaffecte | d by reset | | | <u> </u> | | | | | = Unimplemented | | | R | = Reserved | | | | Figure 20-1. SPI I/O Register Summary The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interrupt-driven. If a port bit is configured for input, then an internal pullup device may be enabled for that port bit. See 16.5.3 Port D Input Pullup Enable Register. The following paragraphs describe the operation of the SPI module. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Figure 20-2. SPI Module Block Diagram Serial Peripheral Interface (SPI) ## 20.4.1 Master Mode The SPI operates in master mode when the SPI master bit, SPMSTR, is set. #### NOTE Configure the SPI modules as master or slave before enabling them. Enable the master SPI before enabling the slave SPI. Disable the slave SPI before disabling the master SPI. See 20.13.1 SPI Control Register. Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI pin under the control of the serial clock. See Figure 20-3. Figure 20-3. Full-Duplex Master-Slave Connections The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register. See 20.13.2 SPI Status and Control Register. Through the SPSCK pin, the baud rate generator of the master also controls the shift register of the slave peripheral. As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master's MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the SPTE bit. #### 20.4.2 Slave Mode The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must be at logic 0. SS must remain low until the transmission is complete. See 20.7.2 Mode Fault Error. In a slave SPI module, data enters the shift register under the control of the serial clock from the master SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register, and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data register before another full byte enters the shift register. The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed. When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its transmit data register. The slave must write to its transmit data register at least one bus cycle before the master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of the transmission. When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is clear, the falling edge of \overline{SS} starts a transmission. See 20.5 Transmission Formats. #### NOTE SPSCK must be in the proper idle state before the slave is enabled to prevent SPSCK from appearing as a clock edge. ## 20.5 Transmission Formats During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate multiple-master bus contention. ## 20.5.1 Clock Phase and Polarity Controls Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects an active high or low clock and has no significant effect on the transmission format. The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transmissions to allow a master device to communicate with peripheral slaves having different requirements. #### NOTE Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing the SPI enable bit (SPE). #### 20.5.2 Transmission Format When CPHA = 0 Figure 20-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a replacement for data sheet parametric information. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### Serial Peripheral Interface (SPI) Figure 20-4. Transmission Format (CPHA = 0) Figure 20-5. CPHA/SS Timing Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The \overline{SS} line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave
select input (\overline{SS}) is at 0, so that only the selected slave drives to the master. The \overline{SS} pin of the master is not shown but is assumed to be inactive. The \overline{SS} pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. See 20.7.2 Mode Fault Error. When CPHA = 0, the first SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first SPSCK edge, and a falling edge on the \overline{SS} pin is used to start the slave data transmission. The slave's \overline{SS} pin must be toggled back to high and then low again between each byte transmitted as shown in Figure 20-5. When CPHA = 0 for a slave, the falling edge of \overline{SS} indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of \overline{SS} . Any data written after the falling edge is stored in the transmit data register and transferred to the shift register after the current transmission. ### 20.5.3 Transmission Format When CPHA = 1 Figure 20-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The \overline{SS} line is the slave select input to the slave. The MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 slave SPI drives its MISO output only when its slave select input (\overline{SS}) is at logic 0, so that only the selected slave drives to the master. The \overline{SS} pin of the master is not shown but is assumed to be inactive. The \overline{SS} pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. See 20.7.2 Mode Fault Error. When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The \overline{SS} pin can remain low between transmissions. This format may be preferable in systems having only one master and only one slave driving the MISO data line. Figure 20-6. Transmission Format (CPHA = 1) When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the shift register after the current transmission. ## 20.5.4 Transmission Initiation Latency When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and the start of the SPI transmission. See Figure 20-7. The internal SPI clock in the master is a free-running derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and SPMSTR bits are set. Since the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 20-7. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128. ## Serial Peripheral Interface (SPI) Figure 20-7. Transmission Start Delay (Master) 213 # 20.6 Queuing Transmission Data The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data byte is transmitted immediately after the previous transmission has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 20-8 shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0). - CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT. - 2 BYTE 1 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. - (3) CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2 AND CLEARING SPTE BIT. - (4) FIRST INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. - (5) BYTE 2 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. - (6) CPU READS SPSCR WITH SPRF BIT SET. - (7) CPU READS SPDR, CLEARING SPRF BIT. - 8 CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE 3 AND CLEARING SPTE BIT. - 9 SECOND INCOMING BYTE TRANSFERS FROM SHIFT REGISTER TO RECEIVE DATA REGISTER, SETTING SPRF BIT. - (10) BYTE 3 TRANSFERS FROM TRANSMIT DATA REGISTER TO SHIFT REGISTER, SETTING SPTE BIT. - (1) CPU READS SPSCR WITH SPRF BIT SET. - (12) CPU READS SPDR, CLEARING SPRF BIT. ## Figure 20-8. SPRF/SPTE CPU Interrupt Timing The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes between transmissions as in a system with a single data buffer. Also, if no new data is written to the data buffer, the last value contained in the shift register is the next data word to be transmitted. For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur until the transmission is completed. This implies that a back-to-back write to the transmit data register is not possible. The SPTE indicates when the next write can occur. Serial Peripheral Interface (SPI) ## 20.7 Error Conditions The following flags signal SPI error conditions: - Overflow (OVRF) Failing to read the SPI data register before the next full byte enters the shift register sets the OVRF bit. The new byte does not transfer to the receive data register, and the unread byte still can be read. OVRF is in the SPI status and control register. - Mode fault error (MODF) The MODF bit indicates that the voltage on the slave select pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register. #### 20.7.1 Overflow Error The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs in the middle of SPSCK cycle 7. (See Figure 20-4 and Figure 20-6.) If an overflow occurs, all data received after the overflow and before the OVRF bit is cleared does not transfer to the receive data register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive data register before the overflow occurred can still be read. Therefore, an overflow error always indicates the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading the SPI data register. OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. See Figure 20-11. It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition. Figure 20-9 shows how it is possible to miss an overflow. The first part of Figure 20-9 shows how it is possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR are read. Figure 20-9. Missed Read of Overflow Condition MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 214 Freescale Semiconductor In this case, an overflow can be missed easily. Since no more SPRF interrupts can be generated until this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future transmissions can set the SPRF bit. Figure 20-10 illustrates this process. Generally, to avoid this second SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit. Figure 20-10. Clearing SPRF When OVRF Interrupt Is Not Enabled ## 20.7.2 Mode Fault Error Setting the SPMSTR bit selects master mode and configures the SPSCK and MOSI pins as outputs and the MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time
the state of the slave select pin, \overline{SS} , is inconsistent with the mode selected by SPMSTR. To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if: - The SS pin of a slave SPI goes high during a transmission - The SS pin of a master SPI goes low at any time For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is cleared. MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. See Figure 20-11. It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set. #### Serial Peripheral Interface (SPI) In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master SPI causes the following events to occur: - If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request. - The SPE bit is cleared. - The SPTE bit is set. - The SPI state counter is cleared. - The data direction register of the shared I/O port regains control of port drivers. #### NOTE To prevent bus contention with another master SPI after a mode fault error, clear all SPI bits of the data direction register of the shared I/O port before enabling the SPI. When configured as a slave (SPMSTR = 0), the MODF flag is set if \overline{SS} goes high during a transmission. When CPHA = 0, a transmission begins when \overline{SS} goes low and ends once the incoming SPSCK goes back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins when the SPSCK leaves its idle level and \overline{SS} is already low. The transmission continues until the SPSCK returns to its idle level following the shift of the last data bit. See 20.5 Transmission Formats. #### NOTE Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit has no function when SPE = 0. Reading SPMSTR when MODF = 1 shows the difference between a MODF occurring when the SPI is a master and when it is a slave. When CPHA = 0, a MODF occurs if a slave is selected (\overline{SS} is low) and later unselected (\overline{SS} is high) even if no SPSCK is sent to that slave. This happens because \overline{SS} low indicates the start of the transmission (MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave can be selected and then later unselected with no transmission occurring. Therefore, MODF does not occur since a transmission was never begun. In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI transmission by clearing the SPE bit of the slave. #### NOTE A high on the SS pin of a slave SPI puts the MISO pin in a high impedance state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared. # 20.8 Interrupts Four SPI status flags can be enabled to generate CPU interrupt requests. Table 20-2. SPI Interrupts | Flag | Request | |---------------------------|--| | SPTE
Transmitter empty | SPI transmitter CPU interrupt request (SPTIE = 1, SPE = 1) | | SPRF
Receiver full | SPI receiver CPU interrupt request (SPRIE = 1) | | OVRF
Overflow | SPI receiver/error interrupt request (ERRIE = 1) | | MODF
Mode fault | SPI receiver/error interrupt request (ERRIE = 1) | Reading the SPI status and control register with SPRF set and then reading the receive data register clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data register. The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU interrupt requests, provided that the SPI is enabled (SPE = 1). The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt requests, regardless of the state of the SPE bit. See Figure 20-11. The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error CPU interrupt request. The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests. Figure 20-11. SPI Interrupt Request Generation MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### Serial Peripheral Interface (SPI) The following sources in the SPI status and control register can generate CPU interrupt requests: - SPI receiver full bit (SPRF) The SPRF bit becomes set every time a byte transfers from the shift register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF generates an SPI receiver/error CPU interrupt request. - SPI transmitter empty (SPTE) The SPTE bit becomes set every time a byte transfers from the transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set, SPTE generates an SPTE CPU interrupt request. # 20.9 Resetting the SPI Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is 0. Whenever SPE is low, the following occurs: - The SPTE flag is set. - Any transmission currently in progress is aborted. - The shift register is cleared. - The SPI state counter is cleared, making it ready for a new complete transmission. - All the SPI port logic is defaulted back to being general-purpose I/O. These items are reset only by a system reset: - All control bits in the SPCR register - All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0) - The status flags SPRF, OVRF, and MODF By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without having to set all control bits again when SPE is set back high for the next transmission. By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set. # 20.10 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. # 20.10.1 Wait Mode The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can bring the MCU out of wait mode. If SPI module functions are not required during wait mode, reduce power consumption by disabling the SPI module before executing the WAIT instruction. To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt requests by setting the error interrupt enable bit (ERRIE). See 20.8 Interrupts. # 20.10.2 Stop Mode The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by reset, any transfer in progress is aborted, and the SPI is reset. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # 20.11 SPI During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See Chapter 19 System Integration Module (SIM). To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit. Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit data register in break mode does not initiate a transmission nor is this data transferred into the shift register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect. # 20.12 I/O Signals The SPI module has four I/O pins and shares four of them with a parallel I/O port. They are: - MISO Data received - MOSI Data transmitted - SPSCK Serial clock - SS Slave select The SPI has limited inter-integrated circuit (I^2C) capability (requiring software support) as a master in a single-master environment. To communicate with I^2C peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI control register is set. In I^2C communication, the MOSI and MISO pins are connected to a bidirectional pin from the I^2C peripheral and through a pullup resistor to V_{DD} . # 20.12.1 MISO (Master In/Slave Out) MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin. Slave output data on the MISO pin
is enabled only when the SPI is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is 0 and its \overline{SS} pin is low. To support a multiple-slave system, a high on the \overline{SS} pin puts the MISO pin in a high-impedance state. When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction register of the shared I/O port. # 20.12.2 MOSI (Master Out/Slave In) MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI simultaneously transmits data from its MOSI pin and receives data on its MISO pin. When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction register of the shared I/O port. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Serial Peripheral Interface (SPI) ## 20.12.3 SPSCK (Serial Clock) The serial clock synchronizes data transmission between master and slave devices. In a master MCU, the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles. When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data direction register of the shared I/O port. # 20.12.4 SS (Slave Select) The \overline{SS} pin has various functions depending on the current state of the SPI. For an SPI configured as a slave, the \overline{SS} is used to select a slave. For CPHA = 0, the \overline{SS} is used to define the start of a transmission. See 20.5 Transmission Formats. Since it is used to indicate the start of a transmission, the \overline{SS} must be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low between transmissions for the CPHA = 1 format. See Figure 20-12. Figure 20-12. CPHA/SS Timing When an SPI is configured as a slave, the \overline{SS} pin is always configured as an input. It cannot be used as a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can still prevent the state of the \overline{SS} from creating a MODF error. See 20.13.2 SPI Status and Control Register. #### NOTE A high voltage on the \overline{SS} pin of a slave SPI puts the MISO pin in a high-impedance state. The slave SPI ignores all incoming SPSCK clocks, even if it was already in the middle of a transmission. When an SPI is configured as a master, the \overline{SS} input can be used in conjunction with the MODF flag to prevent multiple masters from driving MOSI and SPSCK. See 20.7.2 Mode Fault Error. For the state of the \overline{SS} pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit is low for an SPI master, the \overline{SS} pin can be used as a general-purpose I/O under the control of the data direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless of the state of the data direction register of the shared I/O port. The CPU can always read the state of the \overline{SS} pin by configuring the appropriate pin as an input and reading the port data register. See Table 20-3. | SPE | SPMSTR | MODFEN | SPI Configuration | State of SS Logic | |-----|------------------|--------|---------------------|--| | 0 | X ⁽¹⁾ | X | Not enabled | General-purpose I/O; SS ignored by SPI | | 1 | 0 | Х | Slave | Input-only to SPI | | 1 | 1 | 0 | Master without MODF | General-purpose I/O; SS ignored by SPI | | 1 | 1 | 1 | Master with MODF | Input-only to SPI | **Table 20-3. SPI Configuration** Note 1. X = Don't care # 20.13 I/O Registers Three registers control and monitor SPI operation: - SPI control register (SPCR) - SPI status and control register (SPSCR) - SPI data register (SPDR) # 20.13.1 SPI Control Register The SPI control register: - Enables SPI module interrupt requests - Configures the SPI module as master or slave - Selects serial clock polarity and phase - Configures the SPSCK, MOSI, and MISO pins as open-drain outputs - · Enables the SPI module Figure 20-13. SPI Control Register (SPCR) ## SPRIE — SPI Receiver Interrupt Enable Bit This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit. - 1 = SPRF CPU interrupt requests enabled - 0 = SPRF CPU interrupt requests disabled #### SPMSTR — SPI Master Bit This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR bit. - 1 = Master mode - 0 = Slave mode ## **CPOL** — Clock Polarity Bit This read/write bit determines the logic state of the SPSCK pin between transmissions. (See Figure 20-4 and Figure 20-6.) To transmit data between SPI modules, the SPI modules must have identical CPOL values. Reset clears the CPOL bit. #### CPHA — Clock Phase Bit This read/write bit controls the timing relationship between the serial clock and SPI data. (See Figure 20-4 and Figure 20-6.) To transmit data between SPI modules, the SPI modules must have identical CPHA values. When CPHA = 0, the \overline{SS} pin of the slave SPI module must be set to logic 1 between bytes. See Figure 20-12. Reset sets the CPHA bit. #### Serial Peripheral Interface (SPI) #### SPWOM — SPI Wired-OR Mode Bit This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins become open-drain outputs. - 1 = Wired-OR SPSCK, MOSI, and MISO pins - 0 = Normal push-pull SPSCK, MOSI, and MISO pins #### SPE — SPI Enable This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. See 20.9 Resetting the SPI. Reset clears the SPE bit. - 1 = SPI module enabled - 0 = SPI module disabled # **SPTIE— SPI Transmit Interrupt Enable** This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte transfers from the transmit data register to the shift register. Reset clears the SPTIE bit. - 1 = SPTE CPU interrupt requests enabled - 0 = SPTE CPU interrupt requests disabled # 20.13.2 SPI Status and Control Register The SPI status and control register contains flags to signal these conditions: - Receive data register full - Failure to clear SPRF bit before next byte is received (overflow error) - Inconsistent logic level on SS pin (mode fault error) - Transmit data register empty The SPI status and control register also contains bits that perform these functions: - Enable error interrupts - Enable mode fault error detection - Select master SPI baud rate Figure 20-14. SPI Status and Control Register (SPSCR) ## SPRF — SPI Receiver Full Bit This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also. During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register. Reset clears the SPRF bit. - 1 = Receive data register full - 0 = Receive data register not full #### **ERRIE** — Error Interrupt Enable Bit This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears the ERRIE bit. - 1 = MODF and OVRF can generate CPU interrupt requests - 0 = MODF and OVRF cannot generate CPU interrupt requests MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **OVRF** — Overflow Bit This clearable, read-only flag is set if software does not read the byte in the receive data register before the next full byte enters the shift register. In an overflow condition, the byte already in the receive data register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and control register with OVRF set and then reading the receive data register. Reset clears the OVRF bit. - 1 = Overflow - 0 = No overflow #### MODF — Mode Fault Bit This clearable, read-only flag is set in a slave SPI if the \overline{SS} pin goes high during a transmission with the MODFEN bit set. In a master SPI, the MODF flag is set if the \overline{SS} pin goes low at any time with the MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with MODF set and then writing to the SPI data register (SPDR). Reset clears the MODF bit. - $1 = \overline{SS}$ pin at inappropriate logic level - $0 = \overline{SS}$ pin at appropriate logic level # SPTE — SPI Transmitter Empty Bit This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt request if the SPTIE bit in the SPI control register is set also. #### NOTE Do not write to the SPI data register unless the SPTE bit is high. During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the transmit data register. Reset sets the SPTE bit. - 1 = Transmit data register empty - 0 = Transmit data register not empty #### **MODFEN** — Mode Fault Enable Bit This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is 0, then the SS pin is available as a general-purpose I/O. If the MODFEN bit is set, then this pin is not available as a general-purpose I/O. When the SPI is enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN. See 20.12.4 SS (Slave Select). If the MODFEN bit is 0, the level of the \overline{SS} pin does not affect the operation of an enabled SPI configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents the MODF flag from being set. It does
not affect any other part of SPI operation. See 20.7.2 Mode Fault Error. Serial Peripheral Interface (SPI) #### SPR1 and SPR0 — SPI Baud Rate Select Bits In master mode, these read/write bits select one of four baud rates as shown in Table 20-4. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0. Table 20-4, SPI Master Baud Rate Selection | SPR1 and SPR0 | Baud Rate Divisor (BD) | |---------------|------------------------| | 00 | 2 | | 01 | 8 | | 10 | 32 | | 11 | 128 | Use this formula to calculate the SPI baud rate: Baud rate = $$\frac{BUSCLK}{BD}$$ where: BD = baud rate divisor # 20.13.3 SPI Data Register The SPI data register consists of the read-only receive data register and the write-only transmit data register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register reads data from the receive data register. The transmit data and receive data registers are separate registers that can contain different values. See Figure 20-2. Figure 20-15. SPI Data Register (SPDR) ## R7-R0/T7-T0 — Receive/Transmit Data Bits #### NOTE Do not use read-modify-write instructions on the SPI data register since the register read is not the same as the register written. # **Chapter 21 Timebase Module (TBM)** ## 21.1 Introduction This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the external crystal clock. This TBM version uses 15 divider stages, eight of which are user selectable. For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer Reference Manual, TIM08RM/AD. ## 21.2 Features Features of the TBM module include: - Software programmable 1 Hz, 4 Hz, 16 Hz, 256 Hz, 512 Hz, 1024 Hz, 2048 Hz, and 4096 Hz periodic interrupt using external 32.768 kHz crystal - User selectable oscillator clock source enable during stop mode to allow periodic wakeup from stop # 21.3 Functional Description #### NOTE This module is designed for a 32.768 kHz oscillator. This module can generate a periodic interrupt by dividing the crystal frequency, CGMXCLK. The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 21-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. The timebase module may remain active after execution of the STOP instruction if the crystal oscillator has been enabled to operate during stop mode through the OSCSTOPENB bit in the configuration register. The timebase module can be used in this mode to generate periodic wakeup from stop mode. # 21.4 Interrupts The timebase module can periodically interrupt the CPU with a rate defined by TBR2:TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. #### NOTE Interrupts must be acknowledged by writing a 1 to the TACK bit. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Timebase Module (TBM)** Figure 21-1. Timebase Block Diagram ## 21.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. ## 21.5.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction. ## **21.5.2 Stop Mode** The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCSTOPEN bit in the CONFIG register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during STOP mode. In stop mode, the timebase register is not accessible by the CPU. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction. # 21.6 Timebase Register Description The timebase has one register, the TBCR, which is used to enable the timebase interrupts and set the rate. Figure 21-2. Timebase Control Register (TBCR) ## TBIF — Timebase Interrupt Flag This read-only flag bit is set when the timebase counter has rolled over. - 1 = Timebase interrupt pending - 0 = Timebase interrupt not pending ## TBR2:TBR0 — Timebase Rate Selection These read/write bits are used to select the rate of timebase interrupts as shown in Table 21-1. | TBR2 | TBR1 | TBR0 | Divider | Timebase Interrupt Rate | | | |------|------|------|---------|-------------------------|-------|--| | IDNZ | IDNI | IBNU | Divider | Hz | ms | | | 0 | 0 | 0 | 32,768 | 1 | 1000 | | | 0 | 0 | 1 | 8192 | 4 | 250 | | | 0 | 1 | 0 | 2048 | 16 | 62.5 | | | 0 | 1 | 1 | 128 | 256 | ~ 3.9 | | | 1 | 0 | 0 | 64 | 512 | ~2 | | | 1 | 0 | 1 | 32 | 1024 | ~1 | | | 1 | 1 | 0 | 16 | 2048 | ~0.5 | | | 1 | 1 | 1 | 8 | 4096 | ~0.24 | | Table 21-1. Timebase Rate Selection for OSC1 = 32.768 kHz ## **NOTE** Do not change TBR2-TBR0 bits while the timebase is enabled (TBON = 1). ## **TACK— Timebase ACKnowledge** The TACK bit is a write-only bit and always reads as 0. Writing a 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a 0 to this bit has no effect. - 1 = Clear timebase interrupt flag - 0 = No effect ## **Timebase Module (TBM)** # TBIE — Timebase Interrupt Enabled This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit. - 1 = Timebase interrupt enabled - 0 = Timebase interrupt disabled ## **TBON** — Timebase Enabled This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit. - 1 = Timebase enabled - 0 = Timebase disabled and the counter initialized to 0s # Chapter 22 Timer Interface Module (TIM) ## 22.1 Introduction This section describes the timer interface (TIM) module. The TIM on this part is a 2-channel and a1-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 22-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2. For further information regarding timers on M68HC08 family devices, please consult the HC08 Timer Reference Manual, TIM08RM/AD. # 22.2 Features Features of the TIM include: - Three input capture/output compare channels: - Rising-edge, falling-edge, or any-edge input capture trigger - Set, clear, or toggle output compare action - Buffered and unbuffered pulse-width-modulation (PWM) signal generation - Programmable TIM clock input with 7-frequency internal bus clock prescaler selection - Free-running or modulo up-count operation - Toggle any channel pin on overflow - TIM counter stop and reset bits # 22.3 Pin Name Conventions The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer 1 channel 0, timer 2 channel 0) and T[1]CH1 (timer channel 1), where "1" is used to indicate TIM1 and "2" is used to indicate TIM2. The two TIMs share three I/O pins with three port D I/O port pins. The full names of the TIM I/O pins are listed in Table 22-1. The generic pin names appear in the text that follows. Table 22-1. Pin Name Conventions | TIM Generic Pin Names: | | T[1,2]CH0 | T[1,2]CH1 | |------------------------|------|------------------|------------| | Full TIM | TIM1 | PTD4/ATD12/T1CH0 | PTD5/T1CH1 | | Pin Names: | TIM2 | PTD6/ATD14/T2CH0 | _ | #### NOTE References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 will refer to T1CH1. #### NOTE The Timer Interface Module in MC68HC908GR8 is constructed by TIM1 which contains channel 0 and 1, and TIM2 which contains channel 0 only. # 22.4 Functional Description Figure 22-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The TIM channels (per timer) are programmable independently as input capture or output compare channels. If a channel is configured as input capture, then an internal pullup device may be enabled for that channel. See Port D Input Pullup Enable Register. In Figure 22-1, channel1 will only be available in TIM1 while channel 0 will be available in both TIM1 and TIM2. Figure 22-2 summarizes the timer registers. #### 22.4.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source. # 22.4.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM
counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. ## 22.4.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. Figure 22-1. TIM Block Diagram # NOTE References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC. | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--|--|-----------------|---------------------------|---------|--------|-------------|----------------|-------|--------|--| | | | Read: | TOF | TOIL | TOTOD | 0 | 0 | DOO | D04 | DOO | | \$0020 | Timer 1 Status and Control
Register (T1SC) | Write: | 0 | TOIE | TSTOP | TRST | | PS2 | PS1 | PS0 | | | riegister (1100) | | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | T | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0021 | Timer 1 Counter Register
High (T1CNTH) | Write: | | | | | | | | | | | 9 (| Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Timer 1 Counter Register | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0022 | Low (T1CNTL) | Write: | | | | | | | | | | | , | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Timer 1 Counter Modulo Reg- | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0023 | ister High (T1MODH) | Write: | | | | | | | | | | | | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | \$0024 | Timer 1 Counter Modulo
Register Low (T1MODL) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | negister Low (Triviode) | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | T: 40 100 1 | Read: | CH0F | - CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | \$0025 Timer 1 Channel 0 Status and Control Register (T1SC0) | Write: | 0 | CHUIE | IVISUB | IVISUA | ELSUB | ELSUA | 1000 | CHUMAX | | | | Control Hogister (11000) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0026 | Timer 1 Channel 0 | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | Register High (T1CH0H) | Reset: | Indeterminate after reset | | | | | | | | | | | Read: | D: 2 | | _ | 4 | 0 | 0 | 4 | D# 0 | | \$0027 | Timer 1 Channel 0
Register Low (T1CH0L) | Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | 110910101 2011 (1101102) | Reset: | | | | Indetermina | te after reset | | | <u>. </u> | | | Time and Observed d Observed | Read: | CH1F | CH1IE | 0 | MS1A | ELS1B | ELS1A | TOV1 | CH1MAX | | \$0028 | Timer 1 Channel 1 Status and
Control Register (T1SC1) | Write: | 0 | OTTIL | | WISTA | LLOID | LLOIK | 1001 | OTTIVIAX | | | J | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Timer 1 Channel 1 | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0029 | Register High (T1CH1H) | Write: | 51. 10 | | .0 | | | | Ŭ | Dit 0 | | | , | Reset: | | | | Indetermina | te after reset | | 1 | | | | Timer 1 Channel 1 | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$002A | Register Low (T1CH1L) | Write: | • | - | - | | | | | - | | , | | Reset: | | T | T | | te after reset | | T | T 1 | | | Timer 2 Status and Control | Read: | TOF | TOIE | TSTOP | 0 | 0 | PS2 | PS1 | PS0 | | \$002B | Register (T2SC) | Write: | 0 | | | TRST | | | | | | | | Reset: | 0 | 0
1 | 1 | 0 | 0 | 0 | 0 | 0 | | | | | = Unimplemented | | | | | | | | Figure 22-2. TIM I/O Register Summary (Sheet 1 of 2) | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|--|-----------------|---------------------------|-------|------|-------------|----------------|-------|------|--------| | | | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$002C | Timer 2 Counter Register
High (T2CNTH) | Write: | | | | | | | | | | | Hign (12GNTH) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$002D | O2D Timer 2 Counter Register
Low (T2CNTL) | Write: | | | | | | | | | | | Low (T2CNTL) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$002E | Timer 2 Counter Modulo Reg- | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | ister High (T2MODH) | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | \$002F | \$002F Timer 2 Counter Modulo Register Low (T2MODL) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Read: | CH0F | CHOIE | MCOD | MCOA | ELS0B | ELS0A | TOV0 | CHOMAN | | \$0030 | \$0030 Timer 2 Channel 0 Status and Control Register (T2SC0) | Write: | 0 | CH0IE | MS0B | MS0A | | | | CH0MAX | | | Control negister (12500) | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0031 | \$0031 Timer 2 Channel 0 Register High (T2CH0H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | rtegister riigir (12011011) | Reset: | Indeterminate after reset | | | | | | 1 | | | \$0032 | Timer 2 Channel 0
Register Low (T2CH0L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | 1109/01/01/2011/02/ | Reset: | | | | Indetermina | te after reset | | | | | | | Read: | | | | | | | | | | \$0033 | Unimplemented | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Read: | | | | | | | | | | \$0034 | Unimplemented | Write: | | | | | | | | | | | | Reset: | | _ | | Indetermina | te after reset | | | | | | | Read: | | | | | | | | | | \$0035 | Unimplemented | Write: | | | | | | | | | | | | Reset: | | 1 | | Indetermina | te after reset | | | | | | | = Unimplemented | | | | | | | | | Figure 22-2. TIM I/O Register Summary (Sheet 2 of 2) # 22.4.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: - When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. - When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. ## 22.4.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. #### NOTE In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. ## 22.4.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 22-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 to clear the channel pin on output compare if the state of the PWM pulse is 1. Program the TIM to set the pin if the state of the PWM pulse is 0. The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is \$000. See TIM Status and Control Register. Figure 22-3. PWM
Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. # 22.4.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: - When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. - When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. #### NOTE In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. ## 22.4.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. #### NOTE In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals. #### 22.4.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: - 1. In the TIM status and control register (TSC): - a. Stop the TIM counter by setting the TIM stop bit, TSTOP. - b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. - 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. - 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. - 4. In TIM channel x status and control register (TSCx): - a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. See Table 22-3. - b. Write 1 to the toggle-on-overflow bit, TOVx. - c. Write 1:0 (polarity 1 to clear output on compare) or 1:1 (polarity 0 to set out on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 22-3.) #### NOTE In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See TIM Channel Status and Control Registers.) # 22.5 Interrupts The following TIM sources can generate interrupt requests: - TIM overflow flag (TOF) The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. - TIM channel flags (CH1F:CH0F) The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register. ## 22.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power- consumption standby modes. #### 22.6.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. # **22.6.2 Stop Mode** The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. # 22.7 TIM During Break Interrupts A break interrupt stops the TIM counter and inhibits input captures. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See SIM Break Flag Control Register. To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit. # 22.8 I/O Signals Port D shares three of its pins with the TIM. The three TIM channel I/O pins are T1CH0, T1CH1 and T2CH0 as described in Pin Name Conventions. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins. # 22.9 I/O Registers #### NOTE References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: - TIM status and control register (TSC) - TIM control registers (TCNTH:TCNTL) - TIM counter modulo registers (TMODH:TMODL) - TIM channel status and control registers (TSC0, TSC1) - TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L) ## 22.9.1 TIM Status and Control Register The TIM status and control register (TSC): - Enables TIM overflow interrupts - Flags TIM overflows - Stops the TIM counter - Resets the TIM counter - Prescales the TIM counter clock Figure 22-4. TIM Status and Control Register (TSC) ## **TOF** — TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF has no effect. - 1 = TIM counter has reached modulo value - 0 = TIM counter has not reached modulo value # **TOIE** — TIM Overflow
Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. - 1 = TIM overflow interrupts enabled - 0 = TIM overflow interrupts disabled # **TSTOP** — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. - 1 = TIM counter stopped - 0 = TIM counter active #### NOTE Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. Also, when the TSTOP bit is set and the timer is configured for input capture operation, input captures are inhibited until the TSTOP bit is cleared. #### TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. - 1 = Prescaler and TIM counter cleared - 0 = No effect #### NOTE Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of \$0000. #### PS2-PS0 — Prescaler Select Bits These read/write bits select either the TCLK pin or one of the seven prescaler outputs as the input to the TIM counter as Table 22-2 shows. Reset clears the PS[2:0] bits. **Table 22-2. Prescaler Selection** | PS2-PS0 | TIM Clock Source | |---------|-------------------------| | 000 | Internal bus clock ÷1 | | 001 | Internal bus clock ÷ 2 | | 010 | Internal bus clock ÷ 4 | | 011 | Internal bus clock ÷ 8 | | 100 | Internal bus clock ÷ 16 | | 101 | Internal bus clock ÷ 32 | | 110 | Internal bus clock ÷ 64 | | 111 | Not available | # 22.9.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. #### NOTE If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. Figure 22-5. TIM Counter Registers High (TCNTH) Figure 22-6. TIM Counter Registers Low (TCNTL) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # 22.9.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Figure 22-7. TIM Counter Modulo Register High (TMODH) Figure 22-8. TIM Counter Modulo Register Low (TMODL) #### **NOTE** Reset the TIM counter before writing to the TIM counter modulo registers. # 22.9.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: - Flags input captures and output compares - Enables input capture and output compare interrupts - Selects input capture, output compare, or PWM operation - Selects high, low, or toggling output on output compare - Selects rising edge, falling edge, or any edge as the active input capture trigger - Selects output toggling on TIM overflow - Selects 0% and 100% PWM duty cycle - Selects buffered or unbuffered output compare/PWM operation T1SC0, \$0025 and T2SC0, \$0030 Address: Bit 7 6 5 4 3 2 1 Bit 0 CH0F Read: CH0IE MS0B MS0A ELS0B ELS0A TOV0 **CHOMAX** 0 Write: 0 0 0 0 0 0 Reset: Figure 22-9. TIM Channel 0 Status and Control Register (TSC0) Figure 22-10. TIM Channel 1 Status and Control Register (TSC1) #### CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a 1 to CHxF has no effect. - 1 = Input capture or output compare on channel x - 0 = No input capture or output compare on channel x ## CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. - 1 = Channel x CPU interrupt service requests enabled - 0 = Channel x CPU interrupt service requests disabled #### MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. - 1 = Buffered output compare/PWM operation enabled - 0 = Buffered output compare/PWM operation disabled #### MSxA — Mode Select Bit A When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 22-3. - 1 = Unbuffered output compare/PWM operation - 0 = Input capture operation MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. See Table 22-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high #### NOTE Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ## ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is available as a general-purpose I/O pin. Table 22-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. | MSxB | MSxA | ELSxB | ELSxA | Mode | Configuration | |------|------|-------|-------|-----------------|---| | Х | 0 | 0 | 0 | Output procet | Pin under port control; initial output level high | | Х | 1 | 0 | 0 | Output preset | Pin under port control; initial output level low | | 0 | 0 | 0 | 1 | | Capture on rising edge only | | 0 | 0 | 1 | 0 | Input capture | Capture on falling edge only | | 0 | 0 | 1 | 1 | | Capture on rising or falling edge | | 0 | 1 | 0 | 0 | | Software compare only | | 0 | 1 | 0 | 1 | Output compare | Toggle output on compare | | 0 | 1 | 1 | 0 | or PWM | Clear output on compare | | 0 | 1 | 1 | 1 | | Set output on compare | | 1 | Х | 0 | 1 | Buffered output | Toggle output on compare | | 1 | Х | 1 | 0 | compare or | Clear output on compare | | 1 | Х | 1 | 1 | buffered PWM | Set output on compare | Table 22-3. Mode, Edge, and Level Selection ## NOTE Before enabling a TIM channel register for input capture operation, make sure that the PTD/TCHx pin is stable for at least two bus clocks. ## TOVx — Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. - 1 = Channel x pin toggles on TIM counter overflow. - 0 = Channel x pin does not toggle on TIM counter overflow. #### NOTE When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 # CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As . CHxMAX Latency shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. #### NOTE The 100% PWM duty cycle is defined as a continuous high level if the PWM polarity is 1 and a continuous low level if the PWM polarity is 0. Figure 22-11. CHxMAX Latency # 22.9.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA \neq 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Figure 22-12. TIM Channel 0 Register High (TCH0H) Figure 22-13. TIM Channel 0 Register Low (TCH0L) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Figure 22-14. TIM Channel 1 Register High (TCH1H) Figure 22-15. TIM Channel 1 Register Low (TCH1L) # **Chapter 23 Electrical Specifications** # 23.1 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without permanently damaging it. #### NOTE This device is not guaranteed to operate properly beyond the maximum ratings. Refer to 5.0 V DC Electrical Characteristics for guaranteed operating conditions. | Characteristic ⁽¹⁾ | Symbol |
Value | Unit | |---|------------------------|---|------| | Supply voltage | V _{DD} | -0.3 to + 6.0 | V | | Input voltage | V _{In} | $V_{SS} - 0.3 \text{ to } V_{DD} + 0.3$ | V | | Maximum current per pin excluding V_{DD} , V_{SS} , and PTC0–PTC1 | I | ± 15 | mA | | Maximum current for pins PTC0-PTC1 | I _{PTC0-PTC1} | ± 25 | mA | | Maximum current into V _{DD} | l _{mvdd} | 150 | mA | | Maximum current out of V _{SS} | I _{mvss} | 150 | mA | | Storage temperature | T _{stg} | −55 to +150 | °C | Voltages referenced to V_{SS} #### NOTE This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{In} and V_{Out} be constrained to the range $V_{SS} \leq (V_{In} \text{ or } V_{Out}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD}). ## **Electrical Specifications** # 23.2 Functional Operating Range | Characteristic | Symbol | Value | Unit | |-----------------------------|-----------------|----------------------|------| | Operating temperature range | T _A | -40 to +125 | °C | | Operating voltage range | V _{DD} | 3.0 ±10%
5.0 ±10% | V | #### NOTE To ensure correct operation of the MCU under all operating conditions, the user must write data \$1C to address \$0033 immediately after reset. This is to ensure proper termination of an unused module within the MCU. # 23.3 Thermal Characteristics | Characteristic | Symbol | Value | Unit | |---|-------------------|--|------| | Thermal resistance PDIP (28-pin) SOIC (28-pin) QFP (32-pin) SDIP (42-pin) | $\theta_{\sf JA}$ | 60
60
95
57 | °C/W | | I/O pin power dissipation | P _{I/O} | User-Determined | W | | Power dissipation ⁽¹⁾ | P _D | $P_D = (I_{DD} \times V_{DD}) + P_{I/O} = K/(T_J + 273 ^{\circ}C)$ | W | | Constant ⁽²⁾ | К | $P_{D} \times (T_{A} + 273 \text{ °C})$ $+ P_{D}^{2} \times \theta_{JA}$ | W/°C | | Average junction temperature | T _J | $T_A + (P_D \times \theta_{JA})$ | °C | | Maximum junction temperature | T_JM | 140 | °C | ^{1.} Power dissipation is a function of temperature. ^{2.} K is a constant unique to the device. \dot{K} can be determined for a known T_A and measured P_D . With this value of K, P_D and T_J can be determined for any value of T_A . # 23.4 5.0 V DC Electrical Characteristics | Characteristic ⁽¹⁾ | Symbol | Min | Typ ⁽²⁾ | Max | Unit | |---|------------------|-----------------------|--------------------|-----------------------|--------------------------| | Output high voltage
(I _{Load} = -2.0 mA) all I/O pins | V _{OH} | ., | | | | | $(I_{Load} = -10.0 \text{ mA}) \text{ all I/O pins}$ | V _{OH} | $V_{DD} - 0.8$ | _ | _ | V | | (I _{Load} = -10.0 mA) pins PTC0-PTC1 only | V _{OH} | V _{DD} – 1.5 | _ | _ | V | | Maximum combined I _{OH} for port C, port E, | I _{OH1} | V _{DD} – 0.8 | |
50 | mA | | port PTD0–PTD3 | OIII | _ | | | | | Maximum combined I _{OH} for port PTD4–PTD6, | I _{OH2} | _ | _ | 50 | mA | | port A, port B | | | | 100 | mA | | Maximum total I _{OH} for all port pins | Гонт | _ | | 100 | IIIA | | Output low voltage | | | | | | | (I _{Load} = 1.6 mA) all I/O pins | V_{OL} | | | 0.4 | V | | (I _{Load} = 10 mA) all I/O pins | V _{OL} | _ | | 1.5 | V | | (I _{Load} = 15 mA) pins PTC0–PTC1 only | V _{OL} | _ | | 1.0 | v | | Maximum combined I _{OL} for port C, port E, | I _{OL1} | _ | _ | 50 | mA | | port PTD0-PTD3 | | | | | | | Maximum combined I _{OL} for port PTD4–PTD6, | I _{OL2} | _ | _ | 50 | mA | | port A, port B | | _ | _ | 100 | mA | | Maximum total I _{OL} for all port pins | I _{OLT} | | | | | | Input high voltage | | | | | | | All ports, IRQs, RESET | V_{IH} | 0.7 x V _{DD} | | V_{DD} | V | | OSC1 | | 0.8 x V _{DD} | | | | | Input low voltage | V_{IL} | V_{SS} | _ | 0.2 x V _{DD} | V | | All ports, IRQs, RESET, OSC1 | | | | | | | V _{DD} supply current | | | | | | | Run ⁽³⁾ | | _ | 15 | 20 | mA | | Wait ⁽⁴⁾ | 1 . | _ | 4 | 8 | mA | | Stop ⁽⁵⁾ (<85 °C) | I _{DD} | _ | 3
5 | 5
10 | μ A | | Stop (>85 °C) | | | 20 | 35 | μ Α
μ Α | | Stop with TBM enabled ⁽⁶⁾ | | _ | 300 | 500 | μA | | Stop with LVI and TBM enabled ⁽⁶⁾ | | | 555 | | pu (| | DC injection current ^{(7), (8), (9), (10)} | | | | | | | Single pin limit V _{IN} > V _{DD} | | | | | | | V _{IN} < V _{DD} | I _{IC} | 0 | _ | 2
-0.2 | mA | | Total MCU limit, includes sum of all stressed pins | l 'iC | | _ | -0.2 | 1117 | | V _{IN} > V _{DD} | | 0 | _ | 25 | | | $V_{IN} < V_{SS}$ | | 0 | _ | – 5 | | | I/O ports Hi-Z leakage current ⁽¹¹⁾ | I _{IL} | _ | _ | ±10 | μА | | Input current | l _{In} | _ | _ | 1 | μΑ | | Pullup resistors (as input only) Ports PTA3/KBD3-PTA0/KBD0, PTC1-PTC0, PTD6/T2CH0-PTD0/SS | R _{PU} | 20 | 45 | 65 | kΩ | Continued on next page MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### **Electrical Specifications** | Characteristic ⁽¹⁾ | Symbol | Min | Typ ⁽²⁾ | Max | Unit | |---|---------------------|------------------------|--------------------|---------|------| | Capacitance Ports (as input or output) | C _{Out} | _ | _
_ | 12
8 | pF | | Monitor mode entry voltage | V _{TST} | V _{DD} +2.5 | _ | 8.5 | V | | Low-voltage inhibit, trip falling voltage – target | V _{TRIPF} | 3.85 | 4.25 | 4.50 | V | | Low-voltage inhibit, trip rising voltage - target | V _{TRIPR} | 3.95 | 4.35 | 4.60 | V | | Low-voltage inhibit reset/recover hysteresis – target (V _{TRIPF} + V _{HYS} = V _{TRIPR}) | V _{HYS} | _ | 100 | _ | mV | | Input hysteresis (alternative input functions only) ^{(7), (12)} | V _{InHYS} | 0.06 x V _{DD} | _ | _ | V | | POR rearm voltage ^{(7), (13)} | V _{POR} | 0 | _ | 100 | mV | | POR reset voltage ⁽¹⁴⁾ | V _{PORRST} | 0 | 700 | 800 | mV | | POR rise time ramp rate ^{(7), (15)} | R _{POR} | 0.035 | _ | _ | V/ms | - 1. V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted - 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. - 3. Run (operating) I_{DD} measured using external square wave clock source (f_{OSC} = 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD} . Measured with all modules enabled. - 4. Wait I_{DD} measured using external square wave clock source (f_{OSC} = 32.8 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD} . Measured with PLL and LVI enabled. - 5. Stop I_{DD} is measured with OSC1 = V_{SS} . - Stop I_{DD} with TBM enabled is measured using an external square wave clock source (f_{OSC} = 32.8 KHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. - 7. This parameter is characterized and not tested on each device. - 8. All functional non-supply pins are internally clamped to V_{SS} and V_{DD}. - 9. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. - 10. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{IN} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). - 11. Pullups and pulldowns are disabled. Port B leakage is specified in 23.12 ADC Characteristics. - 12. Digital inputs have hysteresis whenever they are configured for any alternative peripheral input function other than as a general-purpose input. - 13. Maximum is highest voltage that POR is guaranteed. - 14. Maximum is highest voltage that POR is possible. - 15. If minimum V_{DD} is not reached before the internal POR reset is released, \overline{RST} must be driven low externally until minimum V_{DD} is reached. # 23.5 3.0 V DC Electrical Characteristics | Characteristic ⁽¹⁾ | Symbol | Min | Typ ⁽²⁾ | Max | Unit | |--|------------------------------------|--|------------------------------------|--|----------------------------| | Output high voltage
(ILoad = -0.6 mA) all I/O pins | V _{OH} | V 02 | | | | | $(I_{Load} = -4.0 \text{ mA}) \text{ all I/O pins}$ | V _{OH} | V _{DD} – 0.3
V _{DD} – 1.0 | _ | _ | V
V | | (I _{Load} = -4.0 mA) pins PTC0-PTC1 only | V _{OH} | $V_{DD} = 1.0$
$V_{DD} = 0.5$ | | | v | | Maximum combined I _{OH} for port C, port E, | I _{OH1} | — — — — — — — — — — — — —
— — — — — — | _ | 30 | mA | | port PTD0-PTD3 Maximum combined I _{OH} for port PTD4-PTD6, | I _{OH2} | _ | _ | 30 | mA | | port A, port B
Maximum total I _{OH} for all port pins | I _{OHT} | _ | _ | 60 | mA | | Output low voltage (ILoad = 0.5 mA) all I/O pins | V | | | | | | (I _{Load} = 6.0 mA) all I/O pins | V _{OL} | _ | _ | 0.3 | V | | (I _{Load} = 10.0 mA) pins PTC0–PTC1 only | V _{OL}
V _{OL} | _ | _ | 1.0 | V | | Maximum combined I _{OI} for port C, port E, | _ | | | 0.8
30 | V
mA | | port PTD0–PTD3 Maximum combined I _{OL} for port PTD4–PTD6, | I _{OL1} | _ | _ | 30 | mA | | port A, port B
Maximum total I _{OL} for all port pins | l _{OLT} | _ | _ | 60 | mA | | Input high voltage All ports, IRQs, RESET OSC1 | V _{IH} | 0.7 x V _{DD}
0.8 x V _{DD} | _ | V _{DD} | V | | Input low voltage All ports, IRQs, RESET OSC1 | V _{IL} | V _{SS} | _ | 0.3 x V _{DD}
0.2 x V _{DD} | V | | V _{DD} supply current Run ⁽³⁾ Wait ⁽⁴⁾ Stop ⁽⁵⁾ (<85 °C) Stop (>85 °C) Stop with TBM enabled ⁽⁶⁾ Stop with LVI and TBM enabled ⁽⁶⁾ | I _{DD} | -
-
-
-
- | 4.5
1.65
1
3
12
200 | 8
4
3
6
20
300 | mA
mA
μA
μA
μA | | DC injection current ^{(7), (8), (9), (10)} Single pin limit $V_{IN} > V_{DD}$ $V_{IN} < V_{SS}$ Total MCU limit, includes sum of all stressed pins $V_{IN} > V_{DD}$ $V_{IN} < V_{SS}$ | I _{IC} | 0
0
0
0 | _
_
_
_ | 2
-0.2
25
-5 | mA | | I/O ports Hi-Z leakage current ⁽¹¹⁾ | I _{IL} | _ | _ | ±10 | μΑ | | Input current | l _{In} | _ | _ | 1 | μА | Continued on next page #### **Electrical Specifications** | Characteristic ⁽¹⁾ | Symbol | Min | Typ ⁽²⁾ | Max | Unit | |---|---------------------|------------------------|--------------------|----------------------|------| | Pullup resistors (as input only) Ports PTA3/KBD37-PTA0/KBD0, PTC1-PTC0, PTD6/T2CH0-PTD0/SS | R _{PU} | 20 | 45 | 65 | kΩ | | Capacitance Ports (as input or output) | C _{Out} | | | 12
8 | pF | | Monitor mode entry voltage | V _{TST} | V _{DD} +2.5 | _ | V _{DD} +4.0 | V | | Low-voltage inhibit, trip falling voltage – target | V _{TRIPF} | 2.35 | 2.60 | 2.70 | V | | Low-voltage inhibit, trip rising voltage - target | V _{TRIPR} | 2.45 | 2.66 | 2.80 | V | | Low-voltage inhibit reset/recover hysteresis – target (V _{TRIPF} + V _{HYS} = V _{TRIPR}) | V _{HYS} | _ | 60 | _ | mV | | Input hysteresis (alternative input functions only) ^{(7), (12)} | V _{InHYS} | 0.06 x V _{DD} | _ | _ | V | | POR rearm voltage ^{(7), (13)} | V _{POR} | 0 | _ | 100 | mV | | POR reset voltage ⁽¹⁴⁾ | V _{PORRST} | 0 | 700 | 800 | mV | | POR rise time ramp rate ^{(7), (15)} | R _{POR} | 0.035 | _ | _ | V/ms | - 1. V_{DD} = 3.0 Vdc \pm 10%, V_{SS} = 0 Vdc, T_A = T_L to T_H , unless otherwise noted - 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. - 3. Run (operating) I_{DD} measured using external square wave clock source (f_{osc} = 16.4 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run I_{DD} . Measured with all modules enabled. - 4. Wait I_{DD} measured using external square wave clock source (f_{OSC} = 16.4 MHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. C_L = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait I_{DD} . Measured with PLL and LVI enabled. - 5. Stop I_{DD} is measured with OSC1 = V_{SS} . - Stop I_{DD} with TBM enabled is measured using an external square wave clock source (f_{OSC} = 32.8 KHz). All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. - 7. This parameter is characterized and not tested on each device. - 8. All functional non-supply pins are internally clamped to V_{SS} and V_{DD} . - 9. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. - 10. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{IN} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). - 11. Pullups and pulldowns are disabled. - 12. Digital inputs have hysteresis whenever they are configured for any alternative peripheral input function other than as a general-purpose input. - 13. Maximum is highest voltage that POR is guaranteed. - 14. Maximum is highest voltage that POR is possible. - 15. If minimum V_{DD} is not reached before the internal POR reset is released, \overline{RST} must be driven low externally until minimum V_{DD} is reached. ## 23.6 5.0 V Control Timing | Characteristic ⁽¹⁾ | Symbol | Min | Max | Unit | |---|----------------------------------|-------------------------|-------------|------------------------| | Frequency of operation ⁽²⁾ Crystal option External clock option ⁽³⁾ | fosc | 32
dc ⁽⁴⁾ | 100
32.8 | kHz
MHz | | Internal operating frequency | f _{op} | _ | 8.2 | MHz | | Internal clock period (1/f _{OP}) | t _{cyc} | 122 | _ | ns | | RST input pulse width low ⁽⁵⁾ | t _{IRL} | 50 | _ | ns | | IRQ interrupt pulse width low ⁽⁶⁾ (edge-triggered) | t _{ILIH} | 50 | _ | ns | | IRQ interrupt pulse period | t _{ILIL} | Note 8 | _ | t _{cyc} | | 16-bit timer ⁽⁷⁾ Input capture pulse width Input capture period | t _{TH,} t _{TL} | Note 8 | _ | ns
t _{cyc} | - 1. V_{SS} = 0 Vdc; timing shown with respect to 20% V_{DD} and 70% V_{SS} unless otherwise noted. - 2. See 23.8 Clock Generation Module Characteristics for more information. - 3. No more than 10% duty cycle deviation from 50% - 4. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. - 5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. - 6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. - 7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. - 8. The minimum period, t_{ILIL} or t_{TLTL}, should not be less than the number of cycles it takes to execute the interrupt service routine plus t_{cyc}. ## 23.7 3.0 V Control Timing | Characteristic ⁽¹⁾ | Symbol | Min | Max | Unit | |---|----------------------------------|-------------------------|-------------|------------------------| | Frequency of operation ⁽²⁾ Crystal option External clock option ⁽³⁾ | fosc | 32
dc ⁽⁴⁾ | 100
16.4 | kHz
MHz | | Internal operating frequency | f _{op} | _ | 4.1 | MHz | | Internal clock period (1/f _{OP}) | t _{cyc} | 244 | _ | ns | | RST input pulse width low ⁽⁵⁾ | t _{IRL} | 125 | _ | ns | | IRQ interrupt pulse width low ⁽⁶⁾ (edge-triggered) | t _{ILIH} | 125 | _ | ns | | IRQ interrupt pulse period | t _{ILIL} | Note 8 | _ | t _{cyc} | | 16-bit timer ⁽⁷⁾ Input capture pulse width Input capture period | t _{TH,} t _{TL} | Note 8 | _ | ns
t _{cyc} | - 1. $V_{SS} = 0$ Vdc; timing shown with respect to 20% V_{DD} and 70% V_{SS} unless otherwise noted. - 2. See 23.8 Clock Generation Module Characteristics for more information. - 3. No more than 10% duty cycle deviation from 50% - 4. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. - 5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. - 6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. - 7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to be recognized. - 8. The minimum period, t_{ILIL} or t_{TLTL} , should not be less than the number of cycles it takes to execute the interrupt service routine plus t_{CYC} . 254 Freescale Semiconductor MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 #### 23.8 Clock Generation Module Characteristics ### 23.8.1 CGM Component Specifications | Characteristic | Symbol | Min | Тур | Max | Unit | |---|----------------|-----|--------|-----|------| | Crystal reference frequency | fXCLK | 30 | 32.768 | 100 | kHz | | Crystal load capacitance ⁽¹⁾ | CL | _ | 12.5 | _ | pF | | Crystal fixed capacitance ⁽²⁾ | C ₁ | _ | 15 | _ | pF | | Crystal tuning capacitance ⁽²⁾ | C ₂ | _ | 15 | _ | pF | | Feedback bias resistor | R _B | 1 | 10 | 22 | МΩ | | Series resistor ⁽³⁾ | R _S | 100 | 330 | 470 | kΩ | - 1. Crystal manufacturer value. - 2. Capacitor on OSC1 pin. Does not include parasitic capacitance due to package, pin, and board. - 3. Capacitor on OSC2 pin. Does not include parasitic capacitance due to package, pin, and board. ## 23.8.2 CGM Electrical Specifications | Description | Symbol | Min | Тур | Max | Unit | |---|-------------------|--------|--------|---|------| | Operating voltage | V_{DD} | 2.7 | _ | 5.5 | V | | Operating temperature | Т
| -40 | 25 | 125 | °C | | Crystal reference frequency | f _{RCLK} | 30 | 32.768 | 100 | kHz | | Range nominal multiplier | f _{NOM} | _ | 38.4 | _ | kHz | | VCO center-of-range frequency ⁽¹⁾ | f _{VRS} | 38.4 k | _ | 40.0 M | Hz | | Medium-voltage VCO center-of-range frequency ⁽²⁾ | f _{VRS} | 38.4 k | _ | 40.0 M | Hz | | VCO range linear range multiplier | L | 1 | _ | 255 | | | VCO power-of-two range multiplier | 2 ^E | 1 | _ | 4 | | | VCO multiply factor | N | 1 | | 4095 | | | VCO prescale multiplier | 2 ^P | 1 | 1 | 8 | | | Reference divider factor | R | 1 | 1 | 15 | | | VCO operating frequency | f _{VCLK} | 38.4 k | _ | 40.0 M | Hz | | Bus operating frequency ⁽¹⁾ | f _{BUS} | _ | _ | 8.2 | MHz | | Bus frequency @ medium voltage ⁽²⁾ | f _{BUS} | _ | _ | 4.1 | MHz | | Manual acquisition time | t _{Lock} | _ | _ | 50 | ms | | Automatic lock time | t _{Lock} | _ | _ | 50 | ms | | PLL jitter ⁽³⁾ | fJ | 0 | _ | f _{RCLK} x
0.025% x
2 ^P N/4 | Hz | | External clock input frequency PLL disabled | f _{OSC} | dc | _ | 32.8 M | Hz | | External clock input frequency PLL enabled | f _{OSC} | 30 k | _ | 1.5 M | Hz | ^{1. 5.0} V \pm 10% V_{DD} MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ^{2. 3.0} V \pm 10% V_{DD} ^{3.} Deviation of average bus frequency over 2 ms. N = VCO multiplier. ## 23.9 Output High-Voltage Characteristics $V_{OH} > V_{DD} - 0.8 \text{ V } @ I_{OH} = -2.0 \text{ mA}$ $V_{OH} > V_{DD} - 1.5 \text{ V } @ I_{OH} = -10.0 \text{ mA}$ Figure 23-1. Typical High-Side Driver Characteristics – Port PTA3-PTA0 (V_{DD} = 4.5 Vdc) $V_{OH} > V_{DD} - 0.3 \text{ V } @ I_{OH} = -0.6 \text{ mA}$ $V_{OH} > V_{DD} - 1.0 \text{ V } @ I_{OH} = -4.0 \text{ mA}$ Figure 23-2. Typical High-Side Driver Characteristics – Port PTA3-PTA0 (V_{DD} = 2.7 Vdc) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 $V_{OH} > V_{DD} - 0.8 \text{ V } @ I_{OH} = -10.0 \text{ mA}$ Figure 23-3. Typical High-Side Driver Characteristics – Port PTC1-PTC0 (V_{DD} = 4.5 Vdc) $V_{OH} > V_{DD} - 0.5 \text{ V } @ I_{OH} = -4.0 \text{ mA}$ Figure 23-4. Typical High-Side Driver Characteristics – Port PTC1-PTC0 (V_{DD} = 2.7 Vdc) $V_{OH} > V_{DD} - 0.8 \text{ V } @ I_{OH} = -2.0 \text{ mA}$ $V_{OH} > V_{DD} - 1.5 \text{ V } @ I_{OH} = -10.0 \text{ mA}$ Figure 23-5. Typical High-Side Driver Characteristics – Ports PTB5–PTB0, PTD6–PTD0, and PTE1–PTE0 (V_{DD} = 5.5 Vdc) $V_{OH} > V_{DD} - 0.3 \text{ V } @ I_{OH} = -0.6 \text{ mA}$ $V_{OH} > V_{DD} - 1.0 \text{ V } @ I_{OH} = -4.0 \text{ mA}$ Figure 23-6. Typical High-Side Driver Characteristics – Ports PTB5–PTB0, PTD6–PTD0, and PTE1–PTE0 (V_{DD} = 2.7 Vdc) ## 23.10 Output Low-Voltage Characteristics $V_{OL} < 0.4 \ V \ @ \ I_{OL} = 1.6 \ mA$ $V_{OL} < 1.5 \ V \ @ \ I_{OL} = 10.0 \ mA$ Figure 23-7. Typical Low-Side Driver Characteristics – Port PTA3-PTA0 (V_{DD} = 5.5 Vdc) $V_{OL} < 0.3 \ V \ @ \ I_{OL} = 0.5 \ mA$ $V_{OL} < 1.0 \ V \ @ \ I_{OL} = 6.0 \ mA$ Figure 23-8. Typical Low-Side Driver Characteristics – Port PTA3-PTA0 (V_{DD} = 2.7 Vdc) $V_{OL} < 1.0 \ V \ @ \ I_{OL} = 15 \ mA$ Figure 23-9. Typical Low-Side Driver Characteristics – Port PTC1-PTC0 (V_{DD} = 4.5 Vdc) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 V_{OL} < 0.8 V @ I_{OL} = 10 mA Figure 23-10. Typical Low-Side Driver Characteristics – Port PTC1-PTC0 (V_{DD} = 2.7 Vdc) $V_{OL} < 0.4 \ V @ I_{OL} = 1.6 \ mA$ $V_{OL} < 1.5 \ V @ I_{OL} = 10.0 \ mA$ Figure 23-11. Typical Low-Side Driver Characteristics – Ports PTB5–PTB0, PTD6–PTD0, and PTE1–PTE0 (V_{DD} = 5.5 Vdc) $V_{OL} < 0.3 V @ I_{OL} = 0.5 \text{ mA}$ $V_{OL} < 1.0 V @ I_{OL} = 6.0 \text{ mA}$ Figure 23-12. Typical Low-Side Driver Characteristics – Ports PTB5–PTB0, PTD6–PTD0, and PTE1–PTE0 (V_{DD} = 2.7 Vdc) MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 ## 23.11 Typical Supply Currents Figure 23-13. Typical Operating I $_{DD}$, with All Modules Turned On (–40 $^{\circ}$ C to 125 $^{\circ}$ C) Figure 23-14. Typical Wait Mode I $_{DD}$, with all Modules Disabled (–40 $^{\circ}$ C to 125 $^{\circ}$ C) Figure 23-15. Typical Stop Mode $I_{DD},$ with all Modules Disabled (–40 $^{\circ}C$ to 125 $^{\circ}C)$ ## 23.12 ADC Characteristics | Characteristic ⁽¹⁾ | Symbol | Min | Max | Unit | Comments | |--|-------------------|---------------------------------|---------------------------------|-------------------------|---| | Supply voltage | V_{DDAD} | 2.7
(V _{DD}
min) | 5.5
(V _{DD}
max) | V | V _{DDAD} should be tied to
the same potential as
V _{DD} via separate
traces. | | Input voltages | V _{ADIN} | 0 | V_{DDAD} | V | V _{ADIN} <= V _{REFH} | | Resolution | B _{AD} | 8 | 8 | Bits | | | Absolute accuracy $(V_{REFL} = 0 \text{ V}, V_{DDAD} = V_{REFH} = 5 \text{ V} \pm 10\%)$ | A _{AD} | | ± 1 | LSB | Includes quantization | | ADC internal clock | f _{ADIC} | 0.5 | 1.048 | MHz | t _{AIC} = 1/f _{ADIC} , tested
only at 1 MHz | | Conversion range | R _{AD} | V _{REFL} | V _{REFH} | V | $V_{REFH} = V_{DDAD}$ $V_{REFL} = V_{SSAD}$ | | Power-up time | t _{ADPU} | 16 | | t _{AIC} cycles | | | Conversion time | t _{ADC} | 16 | 17 | t _{AIC} cycles | | | Sample time ⁽²⁾ | t _{ADS} | 5 | _ | t _{AIC} cycles | | | Zero input reading ⁽³⁾ | Z _{ADI} | 00 | 01 | Hex | V _{IN} = V _{REFL} | | Full-scale reading ⁽³⁾ | F _{ADI} | FE | FF | Hex | V _{IN} = V _{REFH} | | Input capacitance | C _{ADI} | _ | 20 | pF | Not tested | | Input leakage ⁽⁴⁾
Port B | _ | _ | ± 1 | μΑ | | ^{1.} V_{DD} = 5.0 Vdc \pm 10%, V_{SS} = 0 Vdc, V_{DDAD} = 5.0 Vdc \pm 10%, V_{SSAD} = 0 Vdc, V_{REFH} = 5.0 Vdc \pm 10%, V_{REFL} = 0 2. Source impedances greater than 10 k Ω adversely affect internal RC charging time during input sampling. ^{3.} Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. ^{4.} The external system error caused by input leakage current is approximately equal to the product of R source and input current. ## 23.13 5.0 V SPI Characteristics | Diagram
Number ⁽¹⁾ | Characteristic ⁽²⁾ | Symbol | Min | Max | Unit | |----------------------------------|--|--|--|---------------------------------------|------------------| | | Operating frequency Master Slave | f _{OP(M)}
f _{OP(S)} | f _{OP} /128
DC | f _{OP} /2
f _{OP} | MHz
MHz | | 1 | Cycle time
Master
Slave | t _{CYC(M)} | 2
1 | 128
— | t _{cyc} | | 2 | Enable lead time | t _{Lead(S)} | 1 | _ | t _{cyc} | | 3 | Enable lag time | t _{Lag(S)} | 1 | _ | t _{cyc} | | 4 | Clock (SPSCK) high time
Master
Slave | t _{SCKH(M)}
t _{SCKH(S)} | t _{cyc} –25
1/2 t _{cyc} –25 | 64 t _{cyc} | ns
ns | | 5 | Clock (SPSCK) low time
Master
Slave | t _{SCKL(M)} | t _{cyc} –25
1/2 t _{cyc} –25 | 64 t _{cyc} | ns
ns | | 6 | Data setup time (inputs) Master Slave | t _{SU(M)} | 30
30 | _
_ | ns
ns | | 7 | Data hold time (inputs) Master Slave | t _{H(M)} t _{H(S)} | 30
30 | _
_ | ns
ns | | 8 | Access time, slave ⁽³⁾ CPHA = 0 CPHA = 1 | t _{A(CP0)} | 0
0 | 40
40 | ns
ns | | 9 | Disable time, slave ⁽⁴⁾ | t _{DIS(S)} | _ | 40 | ns | | 10 | Data valid time, after enable edge
Master
Slave ⁽⁵⁾ | t _{V(M)} | _ | 50
50 | ns
ns | | 11 | Data hold time, outputs, after enable edge
Master
Slave | t _{HO(M)} | 0
0 | _
_ | ns
ns | - Numbers refer to dimensions in Figure 23-16 and Figure 23-17. All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. - 3. Time to data active from high-impedance state - 4. Hold time to high-impedance state - 5. With 100 pF on all SPI pins ## 23.14 3.0 V SPI Characteristics | Diagram
Number ⁽¹⁾ | Characteristic ⁽²⁾ | Symbol | Min | Max | Unit | |----------------------------------|--|--|--|---------------------------------------|------------------| | | Operating frequency Master Slave | f _{OP(M)}
f _{OP(S)} | f _{OP} /128
DC | f _{OP} /2
f _{OP} | MHz
MHz | | 1 | Cycle time
Master
Slave | t _{CYC(M)} | 2
1 | 128
— | t _{cyc} | | 2 | Enable lead time | t _{Lead(s)} | 1 | _ | t _{cyc} | | 3 | Enable lag time | t _{Lag(s)} | 1 | _ | t _{cyc} | | 4 | Clock (SPSCK) high time
Master
Slave | t _{SCKH(M)} | t _{cyc} –35
1/2 t _{cyc} –35 | 64 t _{cyc} | ns
ns | | 5 | Clock (SPSCK) low time
Master
Slave | t _{SCKL(M)} | t _{cyc} –35
1/2 t _{cyc} –35 | 64 t _{cyc} | ns
ns | | 6 | Data setup time (inputs) Master Slave | t _{SU(M)} | 40
40 | | ns
ns | | 7 | Data hold time (inputs) Master Slave | t _{H(M)} | 40
40 | | ns
ns | | 8 | Access time, slave ⁽³⁾ CPHA = 0 CPHA = 1 | t _{A(CP0)} | 0
0 | 50
50 | ns
ns | | 9 | Disable time, slave ⁽⁴⁾ | t _{DIS(S)} | _ | 50 | ns | | 10 | Data valid time, after enable edge
Master
Slave ⁽⁵⁾ | t _{V(M)} | | 60
60 | ns
ns | | 11 | Data hold time, outputs, after enable edge
Master
Slave | t _{HO(M)} | 0 | | ns
ns | - 1. Numbers refer to dimensions in Figure 23-16 and Figure 23-17. - 2. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted; 100 pF load on all SPI pins. - 3. Time to data active from high-impedance state - 4. Hold time to high-impedance state - 5. With 100 pF on all SPI pins Note: This first clock edge is generated internally, but is not seen at the SPSCK pin. #### a) SPI Master Timing (CPHA = 0) Note: This last clock edge is generated internally, but is not seen at the SPSCK pin. #### b) SPI Master Timing (CPHA = 1) Figure 23-16. SPI
Master Timing MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 Note: Not defined but normally MSB of character just received #### a) SPI Slave Timing (CPHA = 0) Note: Not defined but normally LSB of character previously transmitted b) SPI Slave Timing (CPHA = 1) Figure 23-17. SPI Slave Timing #### 23.15 Timer Interface Module Characteristics | Characteristic | Symbol | Min | Max | Unit | |----------------------------|-------------------|-------------------------|-----|------------------| | Input capture pulse width | tTIH, tTIL | 2 | _ | t _{cyc} | | Timer input capture period | t _{TLTL} | See Note ⁽¹⁾ | _ | t _{cyc} | ^{1.} The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{cyc} . ## 23.16 Memory Characteristics | Characteristic | Symbol | Min | Тур | Max | Unit | |--|----------------------------------|------------|--------|------------|--------| | RAM data retention voltage | V _{RDR} | 1.3 | _ | _ | V | | FLASH program bus clock frequency | _ | 1 | _ | _ | MHz | | FLASH read bus clock frequency | f _{Read} ⁽¹⁾ | 32k | _ | 8.4M | Hz | | FLASH page erase time Limited endurance (<1 K cycles) Maximum endurance (> 1 K cycles) | t _{Erase} | 0.9
3.6 | 1
4 | 1.1
5.5 | ms | | FLASH mass erase time | t _{MErase} | 4 | _ | _ | ms | | FLASH PGM/ERASE to HVEN set up time | t _{nvs} | 10 | _ | _ | μS | | FLASH high-voltage hold time | t _{nvh} | 5 | _ | _ | μS | | FLASH high-voltage hold time (mass erase) | t _{nvhl} | 100 | _ | _ | μS | | FLASH program hold time | t _{pgs} | 5 | _ | _ | μS | | FLASH program time | t _{PROG} | 30 | _ | 40 | μS | | FLASH return to read time | t _{rcv} ⁽²⁾ | 1 | _ | _ | μS | | FLASH cumulative program HV period | t _{HV} ⁽³⁾ | _ | _ | 4 | ms | | FLASH endurance ⁽⁴⁾ | | 10k | 100k | | Cycles | | FLASH data retention time ⁽⁵⁾ | _ | 15 | 100 | _ | Years | - 1. $\ensuremath{f_{Read}}$ is defined as the frequency range for which the FLASH memory can be read. - 2. t_{rcv} is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to 0. - 3. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase. t_{HV} must satisfy this condition: $t_{nvs} + t_{nvh} + t_{pqs} + (t_{PROG} \times 64) \le t_{HV}$ max. - 4. Typical endurance was evaluated for this product family. For additional information on how Freescale defines typical Endurance, please refer to Engineering Bulletin EB619. - 5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines *Typical Data Retention*, please refer to Engineering Bulletin EB618. MC68HC908GR8 • MC68HC908GR4 Data Sheet, Rev. 7 268 Freescale Semiconductor # **Chapter 24 Mechanical Specifications** #### 24.1 Introduction The MC68HC908GR8 and MC68HC908GR4 are available in these packages: - 42-pin shrink dual in-line package (SDIP) - 32-pin low-profile quad flat pack (LQFP) - 28-pin dual in-line package (PDIP) - 28-pin small outline package (SOIC) The package information contained in this section is the latest available at the time of this publication. To make sure that you have the latest package specifications, please visit the Freescale web site at: http://freescale.com Follow World Wide Web on-line instructions to retrieve the current mechanical specifications. | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE | PRINT VERSION NO | T TO SCALE | |--|--------------------|---------------------|------------| | TITLE: | DOCUMENT N | O: 98ASB42767B | REV: A | | 42 LD PDIP | CASE NUMBE | CASE NUMBER: 858-01 | | | | STANDARD: N | ON-JEDEC | | - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. - 2. ALL DIMENSIONS IN MILLIMETERS. 3.\ DIMENSION TO CENTER OF LEAD WHEN FORMED PARALLEL. DIMENSION DOES NOT INCLUDE MOLD FLASH. MAXIMUM MOLD FLASH 0.25. | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OUTLINE | | PRINT VERSION NO | OT TO SCALE | | |--|--|------------------|----------------|-------------| | TITLE: | | DOCUMENT NO |): 98ASB42767B | REV: A | | 42 LD PDIP | | CASE NUMBER | R: 858–01 | 24 OCT 2005 | | | | STANDARD: NO | N JEDEC | | | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE | | PRINT VERSION NO | IT TO SCALE | |--|--------------------|--------------------------|------------------|-------------| | TITLE: | | DOCUMENT NO: 98ASH70029A | | REV: C | | LOW PROFILE QUAD FLAT PA | CASE NUMBER | 2: 873A-04 | 01 APR 2005 | | | 32 LEAD, 0.8 PITCH (7 X 7 X 1.4) | | STANDARD: JE | DEC MS-026 BBA | | DETAIL G 32 PLACES | © FREESCALE SEMICONDUCTOR, INC.
ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE | PRINT VERSION NO | IT TO SCALE | |--|-----------|----------------------------------|------------------|-------------| | LOW PROFILE QUAD FLAT PACK (LQFP) 32 LEAD, 0.8 PITCH (7 X 7 X 1.4) | | DOCUMENT NO |]: 98ASH70029A | REV: C | | | | CASE NUMBER: 873A-04 01 APR 2005 | | | | | | STANDARD: JE | DEC MS-026 BBA | | - 1. DIMENSIONS ARE IN MILLIMETERS. - 2, INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994. - $\sqrt{3}$. Datums A, B, and D to be determined at datum plane H. - 4 dimensions to be determined at seating plane datum c. - DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM DIMENSION BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THZ LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION: 0.07 MM. - 6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE. DIMENSIONS ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH. - A EXACT SHAPE OF EACH CORNER IS OPTIONAL. - A. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 MM AND 0.25 MM FROM THE LEAD TIP. | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE | | PRINT VERSION NO | IT TO SCALE | |--|--------------------|----------------|------------------|-------------| | TITLE: | DOCUMENT NO |]: 98ASH70029A | REV: C | | | LOW PROFILE QUAD FLAT PARTIES | CASE NUMBER | R: 873A-04 | 01 APR 2005 | | | 32 LEAD, 0.8 PITCH (7 X 7 X 1.4) | | STANDARD: JE | IDEC MS-026 BBA | | | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICAL OUTLINE | | PRINT VERSION NO | IT TO SCALE | |--|--------------------|--------------|------------------|-------------| | TITLE: | | DOCUMENT NO | 1: 98ASB42390B | RE∨: D | | 28 LD PDIP | | CASE NUMBER | 2: 710-02 | 24 MAY 2005 | | | | STANDARD: NE | IN-JEDEC | | POSITIONAL TOLERANCE OF LEADS, SHALL BE WITHIN 0.25 MM (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL. 3 DIMENSION DOES NOT INCLUDE MOLD FLASH. - 4. 710-01 OBSOLETE, NEW STD 710-02. - 5. CONTROLLING DIMENSION: INCH | | IN | СН | MILL | IMETER | | | INCH | MIL | LIMETER | |--|-------|-------|-------|-----------|---------|------------|------|-----|---------| | DIM | MIN | MAX | MIN | MAX | DIM | MIN | MAX | MIN | MAX | | А | 1.435 | 1.465 | 36.45 | 37.21 | | | | | | | В | 0.540 | 0.560 | 13.72 | 14.22 | | | | | | | С | 0.155 | 0.200 | 3.94 | 5.08 | | | | | | | D | 0.014 | 0.022 | 0.36 | 0.56 | | | | | | | F | 0.040 | 0.060 | 1.02 | 1.52 | | | | | | | G | 0.100 | BSC | 2.54 | 4 BSC | | | | | | | Н | 0.065 | 0.085 | 1.65 | 2.16 | | | | | | | J | 0.008 | 0.015 | 0.20 | 0.38 | | | | | | | K | 0.115 | 0.135 | 2.92 | 3.43 | | | | | | | L | 0.600 | BSC | 15.2 | 4 BSC | | | | | | | М | 0 * | 15° | 0* | 15° | | | | | | | N | 0.020 | 0.040 | 0.51 | 1.02 | | | | | | | | | | | | | | | | | | © FREESCALE SEMICONDUCTOR, INC. MECHANICAL OUTLINE PRINT | | | | PRINT VER | SION NO | T TO SCALE | | | | | TITLE | | | | | | | | | | TITLE: 28 LD PDIP 28 LD PDIP 28 LD PDIP CASE NUMBER: 710-02 STANDARD: NON-JEDEC | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANI | | L OUTLINE | PRINT VERSION NO | OT TO SCALE | |---|--|--------------|------------------|-------------| | CASECUITI INE | | DOCUMENT NO |): 98ASB42345B | REV: G | | | | CASE NUMBER | R: 751F-05 | 10 MAR 2005 | | | | STANDARD: MS | S-013AE | | | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | | L OUTLINE | PRINT VERSION NO | OT TO SCALE | |--|--|-------------|------------------|-------------| | TITLE: SOIC, WIDE BODY,
28 LEAD
CASEOUTLINE | | DOCUMENT NO | : 98ASB42345B | REV: G | | | | CASE NUMBER | : 751F-05 | 10 MAR 2005 | | | | STANDARD: | MS-013AE | | - 1. DIMENSIONS ARE IN MILLIMETERS. - 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. - THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. - 4. 751F-01 THRU -04 OBSOLETE. NEW STANDARD: 751F-05 <u>/5\</u> THIS DIMENSION DOES NOT INCLUDE DAM BAR PROTRUSION ALLOWABLE DAM BAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THIS DIMENSION AT MAXIMUM MATERIAL CONDITION. | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE | PRINT VERSION NO | OT TO SCALE | |--|-----------|--------------|------------------|-------------| | TITLE: SOIC, WIDE BOD | ΟY. | DOCUMENT NO | : 98ASB42345B | REV: G | | 28 LEAD | | CASE NUMBER | 2: 751F-05 | 10 MAR 2005 | |
CASEOUTLINE | | STANDARD: MS | :_0134F | | **Mechanical Specifications** # **Chapter 25 Ordering Information** ## 25.1 Introduction This section contains instructions for ordering the MC68HC908GR8 and MC68HC908GR4. ### 25.2 MC Order Numbers **Table 25-1. MC Order Numbers** | | MC Order Number ⁽¹⁾ | Operating
Temperature Range
(°C) | |------------------|--|---| | Production Parts | MC68HC908GR8CP MC68HC908GR8CFA MC68HC908GR8CDW MC68HC908GR8VFA MC68HC908GR8VP MC68HC908GR8VDW MC68HC908GR8WFA MC68HC908GR8MP MC68HC908GR8MDW MC68HC908GR8MDW | - 40 to + 85
- 40 to + 85
- 40 to + 85
- 40 to + 105
- 40 to + 105
- 40 to + 105
- 40 to + 125
- 40 to + 125
- 40 to + 85 | | | MC68HC908GR4CFA MC68HC908GR4VFA MC68HC908GR4VP MC68HC908GR4VDW MC68HC908GR4VDW MC68HC908GR4MFA MC68HC908GR4MP MC68HC908GR4MDW | - 40 to + 85
- 40 to + 85
- 40 to + 105
- 40 to + 105
- 40 to + 105
- 40 to + 125
- 40 to + 125
- 40 to + 125 | | Tape and Reel | MC908GR8CFAR2
MC908GR8CDWR2
MC908GR8VFAR2
MC908GR8VDWR2
MC908GR8MFAR2
MC908GR8MDWR2 | - 40 to + 85
- 40 to + 85
- 40 to + 105
- 40 to + 105
- 40 to + 125
- 40 to + 125 | | | MC908GR4CFAR2
MC908GR4CDWR2
MC908GR4VFAR2
MC908GR4VDWR2
MC908GR4MFAR2
MC908GR4MDWR2 | - 40 to + 85
- 40 to + 85
- 40 to + 105
- 40 to + 105
- 40 to + 125
- 40 to + 125 | ^{1.} FA = quad flat pack P = plastic dual in line package DW = Small outline integrated circuit (SOIC) package #### **Ordering Information** ## 25.3 Development Tools ## **Table 25-2. Development Tool Kits** | Ordering Part Number | Description | |----------------------|---| | M68ICS08GR | HC908GR8 ICS KIT includes: M68ICS08GR programmer board, Windows-based IDE, 68HC908GR8 sample, ICS Board & IDE documentation, Universal Power Supply, Serial cable | | KITMMEVS08GR | HC908GR8 EVS KIT includes: M68MMPFB0508, M68EML08GP32, M68CBL05C, M68TC08GR8P28, M68TC08GR8FA32, M68TQS032SAG1, M68TQP032SA1, M68ICS08GR Kit | | KITMMDS08GR | HC908GR8 MMDS KIT includes: M68MMDS0508, M68EML08GP32, M68CBL05C, M68TC08GR8P28, M68TC08GR8FA32, M68TQS032SAG1, M68TQP032SA1, M68ICS08GR Kit | ## **Table 25-3. Development Tool Components** | Ordering Part Number | Description | Comments | |----------------------|--------------------------------|---------------------------------| | M68MMDS0508 | High performance emulator | | | M68MMPFB0508 | MMEVS Platform Board | | | M68EML08GP32 | HC908GP32 Emulator Board | Used for HC908GR8/GR4 emulation | | M68CBL05C | Low noise flex-cable | | | M68TC08GR8P28 | 28-pin DIP target head adapter | | | M68TC08GR8FA32 | 32-pin QFP target head adapter | | | M68TQS032SAG1 | 32-pin TQ socket with guides | | | M68TQP032SA1 | 32-pin TQPACK | | ## **Revision History** ## Changes from Rev 6.0 published in April 2006 to Rev 7.0 published in October 2006 | Section | Page (in Rev 6.0) | Description of change | |------------------------------|-------------------|--| | Mechanical
Specifications | 272 | Corrected cas outline for 32-pin LQFP. | ## Changes from Rev 5.0 published in August 2005 to Rev 6.0 published in April 2006 | Section | Page (in Rev 6.0) | Description of change | |------------------------------|-------------------|---| | Canaral Description | 20 | Added 42-pin SDIP to standard feature list. | | General Description | 22 | Added pin assignment drawing for the 42-pin SDIP. | | Low-Power Modes | 38 | Updated description of clock generator module in stop mode to remove erroneous information. | | Electrical
Specifications | 255
249 | Updated to reflect correct values. Added DC injection current and input hysteresis values to: 5.0 V DC Electrical Characteristics | | Specifications | 249
251 | 3.0 V DC Electrical Characteristics 3.0 V DC Electrical Characteristics | | Mechanical
Specifications | 270 | Added case outline drawing for the 42-pin SDIP. | ## Changes from Rev 4.0 published in February 2002 to Rev 5.0 published in August 2005 | Section | Page (in Rev 5.0) | Descriptio | n of change | |------------------------------------|-------------------|--|--| | Memory Map | 27 | In 4th, 5th and 6th bullets | Address of Interrupt Status Register 1 (INT1) corrected to \$FE04 Address of Interrupt Status Register 2 (INT2) corrected to \$FE05 Address of Interrupt Status Register 3 | | | 28 | Near bottom of memory map | | | | 35 | In bottom two registers | | | | 35 | In top register | | | System Integration
Module (SIM) | 185 | In last three registers | (INT3) corrected to \$FE06 | | Throughout | | Updated to meet Freescale Identity guidelines. | | Changes from Rev 3.0 published in February 2002 to Rev 4.0 published in June 2002 ## Changes from Rev 3.0 published in February 2002 to Rev 4.0 published in June 2002 | Section | Page (in Rev 4.0) | Description of change | | | |--|-------------------|--|--|--| | All references to the ROM MC68HC08GR8 removed. Appendix A removed. | | | | | | Electrical
Specifications | 363 | Maximum junction temperature increased to 140°C | | | | | 364 | Input High Voltage for OSC1 changed
Stop I _{DD} for temperatures >85°C added | | | | | 366 | Input High Voltage for OSC1 changed Input Low Voltage for OSC1 changed Stop I _{DD} for temperatures >85°C added | | | ## Changes from Rev 2.0 published in January 2002 to Rev 3.0 published in February 2002 | Section | Page (in Rev 3.0) | Description of change | | | |--|-------------------|--|--|--| | All references to the ROM MC68HC08GR8 removed. Appendix A removed. | | | | | | Electrical
Specifications | 363 | Maximum operating temperature increased to 125°C | | | | | 376-377 | Maximum temperature increased to 125°C in titles of figures 23-13, 23-14 and 23-15 | | | | | 383 | Maximum operating temperature increased to 125°C | | | | Ordering Information | 391 | New section added | | | ## Changes from Rev 1.0 published in April 2001 to Rev 2.0 published in December 2001 | Section | Page (in Rev 2.0) | Description of change | | |---------------------------------|---|---|--| | | The blank state of the reset vectors, \$FFFE and \$FFFF, was incorrectly defined as \$00 and is now \$FF. This affects several places in the Monitor ROM (MON) section. The information was previously described in an addendum. See details below: | | | | Monitor ROM (MON) | 190 | Penultimate bullet of features list | | | | 192 | Final sentence of first paragraph Each list item in Entering Monitor Mode section | | | | 193 | Third column of Table 15-1 | | | Timebase Module
(TBM) | 329 | Several changes for clarification | | | Timer Interface
Module (TIM) | 335 | Several changes for clarification | | | Electrical
Specifications | 385 | Typical column added to table. Typical values added for FLASH row program endurance and FLASH data retention time | | #### How to Reach Us: #### Home Page: www.freescale.com #### E-mail: support@freescale.com #### **USA/Europe or Locations Not Listed:** Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com #### Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com #### Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Information in this document is provided
solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.