

High Voltage Rectifiers

 $V_{\text{RRM}} = 3200 \text{ V}$ $I_{\text{F(AV)M}} = 22.9 \text{ A}$

V _{RRM} V	Standard Types	Power Designation
3200	UGE 0421 AY4	Si-E 1125 / 500-6

Symbol	Conditions		Rating	IS
I _{F(RMS)} I _{F(AV)M}	air self cooling,	$T_{amb} = 45^{\circ}C$	40	A
		 without cooling plate with colling plate 	7.4 10.9	A A
	forced air cooling v = 3 m/s,	$T_{amb} = 35^{\circ}C$		
		 without cooling plate with cooling plate 	14.2 18.8	A A
	oil cooling,	T _{amb} = 35°C - without cooling plate - with cooling plate	19.7 22.9	A
P _{RSM}	T _(vj) = 150°C;	$t_p = 10 \ \mu s$	7	kW
I _{FSM}	non repetitive, 50 $T_{(vj)} = 45^{\circ}C;$	0 c/s (for 60 c/s add 10%) $t_p = 10 \text{ ms}$	300	A
	T _(vj) = 150°C;	t _p = 10 ms	250	A
T _{amb} T _{stg} T _(vj)			-40+150 -40+150 150	0° 0° 0°
Weight			115	g

Symbol	Conditions		Characteristic	Values
I _R	$T_{(vj)} = 150^{\circ}C;$	$V_{\rm R} = V_{\rm RRM}$	≤ 2	mA
V _F	$I_{F} = 55 \text{ A}$ $T_{(vj)} = 25^{\circ}\text{C}$		2.72	V
V _{to} r _t	$T_{(vj)} = 150^{\circ}C$ $T_{(vj)} = 150^{\circ}C$		1.7 16	V mΩ
а	f = 50Hz		5 x 9,81	m/s²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics

Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- · Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- · Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747-2

IXYS reserve the right to change limits, test conditions and dimensions.

Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature $T_{(vj)} = 25^{\circ}C$ and $T_{(vj)} = 150^{\circ}C$ a = Mean value characteristic b = Limit value characteristic

Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time *t* and serve for rating protective devices.

 $\begin{array}{l} T_{_{(vj)}}=~45^{\circ}C\\ T_{_{(vj)}}=~150^{\circ}C \end{array}$ a = Initial state b = Initial state

Fig. 3: Power loss

Non repetitive peak reverse power loss P_{RSM} as a function of time *t*, $T_{(vj)} = 150^{\circ}C$

Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of one module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

Cooling	modes
---------	-------

1 = air self cooling	without	cooling plate
2 = air self cooling	with	cooling plate
3 = forced air cooling	without	cooling plate
4 = forced air cooling	with	cooling plate
5 = oil cooling	without	cooling plate
6 = oil cooling	with	cooling plate