TIBPAL 16L8-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C TIBPAL 16L8-20M, TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS019A - FEBRUARY 1984 - REVISED APRIL 2000

- High-Performance Operation: Propagation Delay C Suffix . . . 15 ns Max M Suffix . . . 20 ns Max
- Functionally Equivalent, but Faster Than PAL16L8A, PAL16R4A, PAL16R6A, and PAL16R8A
- Power-Up Clear on Registered Devices (All Register Outputs Are Set High, but Voltage Levels at the Output Pins Go Low)
- Package Options Include Both Plastic and Ceramic Chip Carriers in Addition to Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

DEVICE	I INPUTS	3-STATE O OUTPUTS	REGISTERED Q OUTPUTS	I/O PORTS
PAL16L8	10	2	0	6
PAL16R4	8	0	4 (3-state buffers)	4
PAL16R6	8	0	6 (3-state buffers)	2
PAL16R8	8	0	8 (3-state buffers)	0

description

These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT™ circuits combine the latest Advanced Low-Power Schottky technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are available for further reduction in board space.

The TIBPAL16' C series is characterized from 0° C to 75°C. The TIBPAL16' M series is characterized for operation over the full military temperature range of -55°C to 125°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices are covered by U.S. Patent 4,410,987. IMPACT is a trademark of Texas Instruments. PAL is a registered trademark of Advanced Micro Devices Inc.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

C SUFFIX . M SUFFIX .		R W	
	1 2	20 19] V _{CC}] o
l I	3	18] I/O
I [4	17] I/O
ι[5	16] I/O
П	6	15	11/0

| | 8

1 9

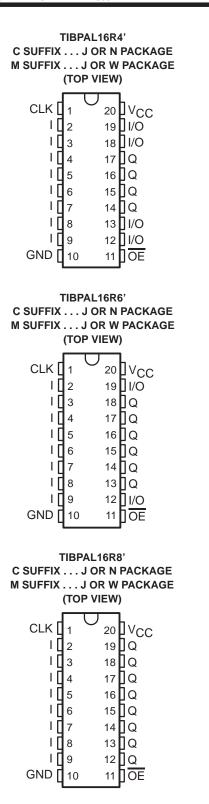
GND L

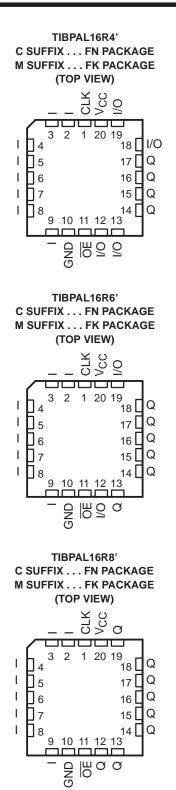
10

TIBPAL16L8'

14 I/O

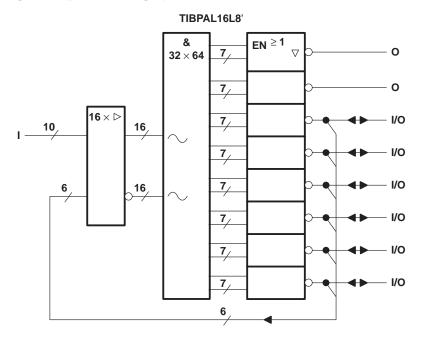
13 I/O

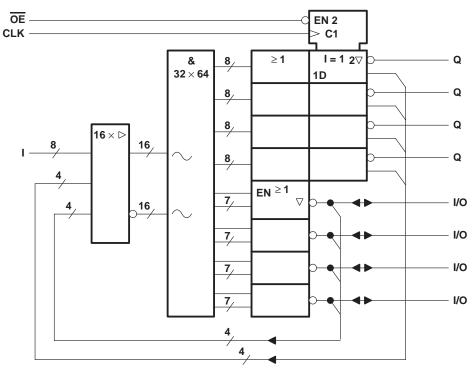

12 O


11

TIBPAL16L8'

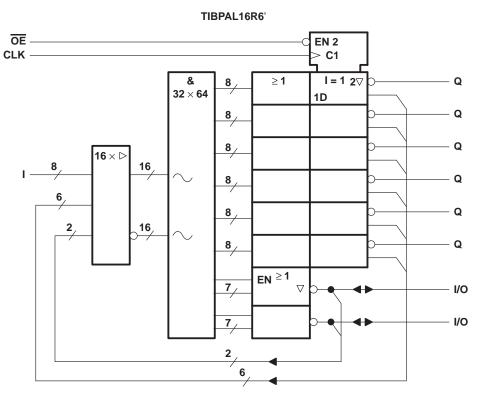
C SUFFIX FN PACKAGE M SUFFIX FK PACKAGE (TOP VIEW)									
$\begin{array}{c} & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$									

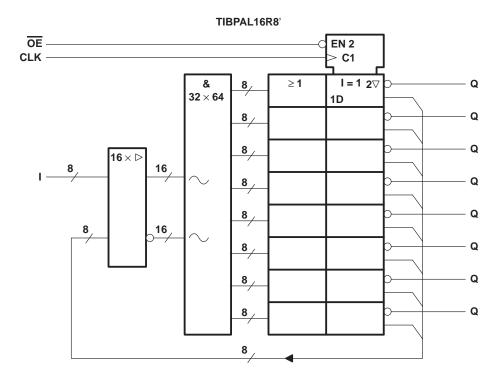

TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000



functional block diagrams (positive logic)

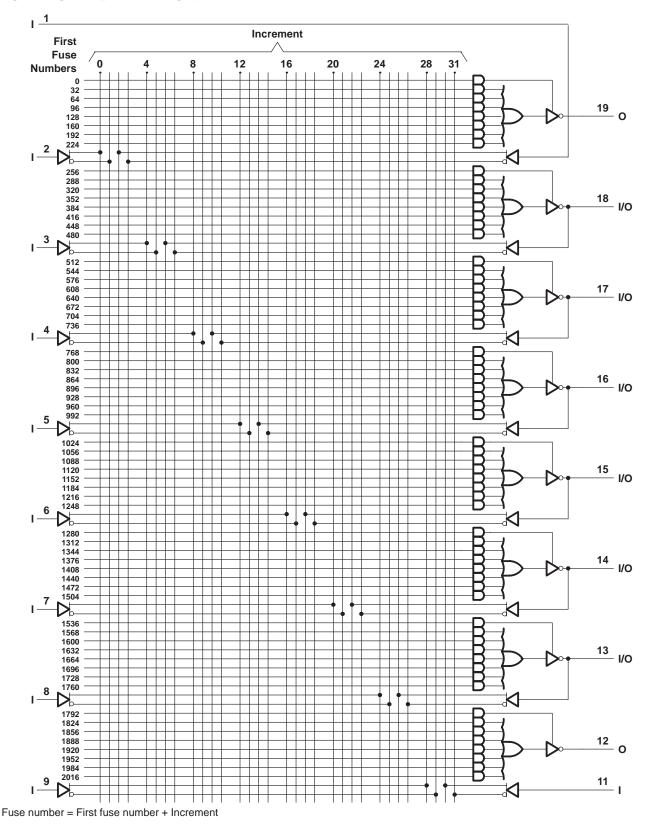
TIBPAL16R4

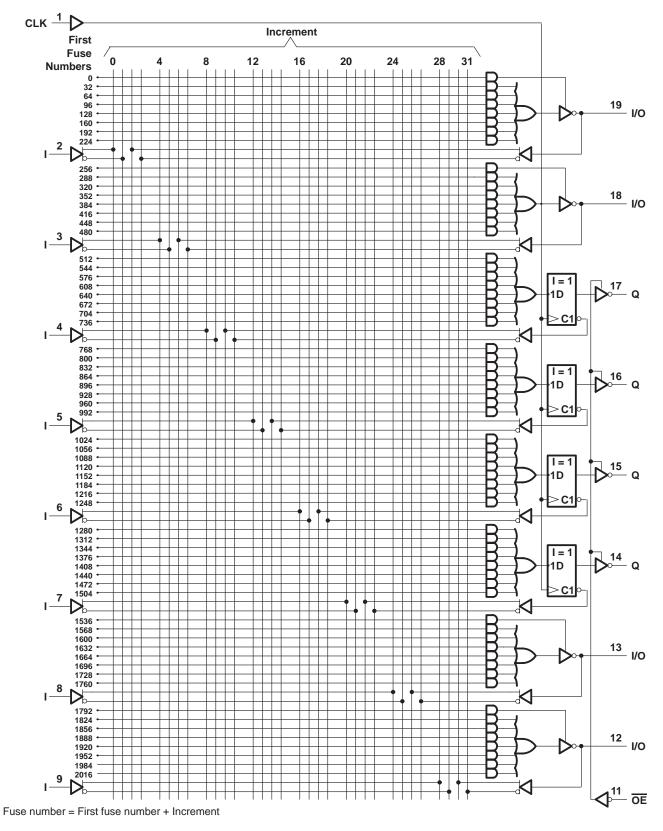

 \bigcirc denotes fused inputs

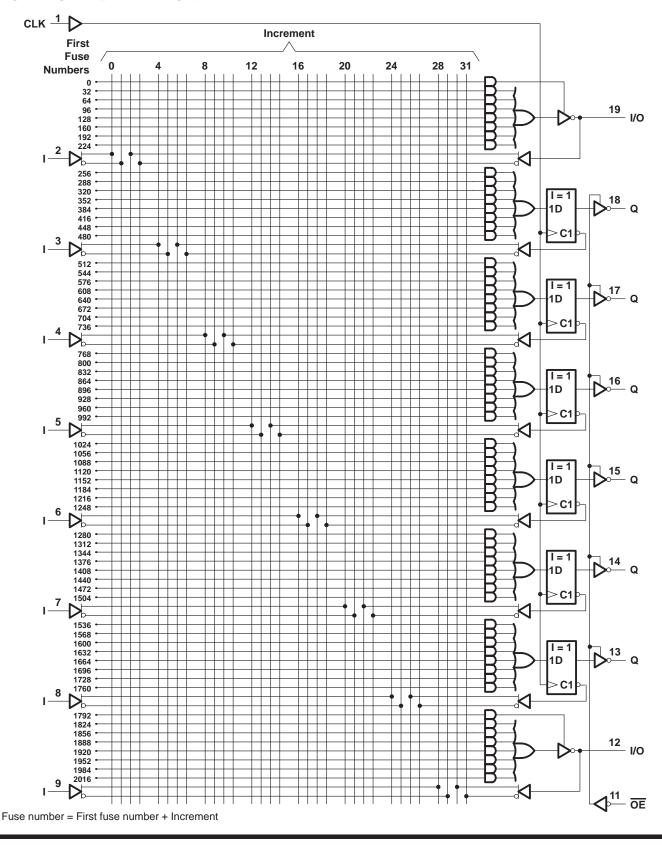


TIBPAL 16R6-15C, TIBPAL 16R8-15C TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS

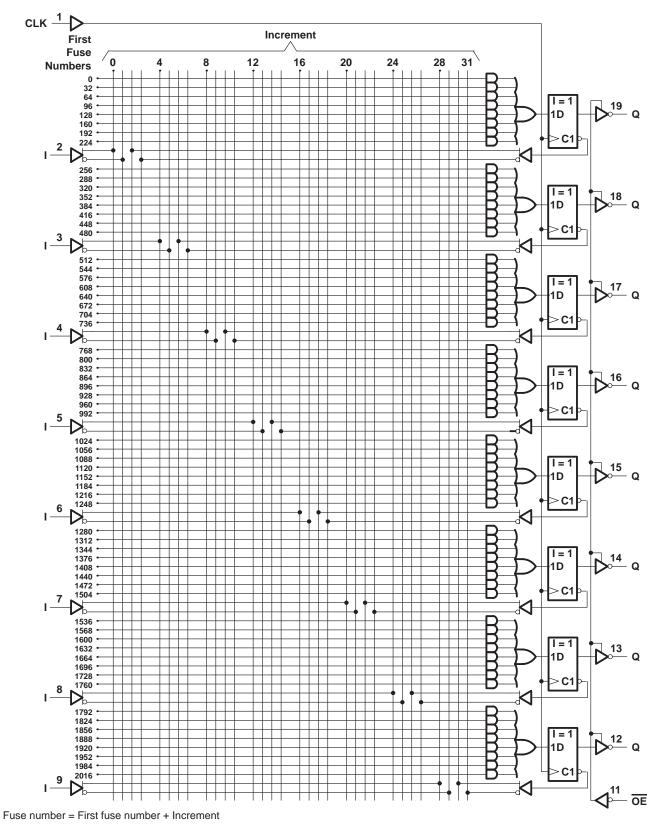
SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000


functional block diagrams (positive logic)


J denotes fused inputs 1



TIBPAL 16R4-15C TIBPAL 16R4-20M HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000



TIBPAL 16R8-15C TIBPAL 16R8-20M HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000

TIBPAL 16L8-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS

SRPS019A - FEBRUARY 1984 - REVISED APRIL 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage (see Note 1)	5.5 V
Voltage applied to disabled output (see Note 1)	5.5 V
Operating free-air temperature range	0°C to 75°C
Storage temperature range, T _{stg}	–65°C to 150°C

NOTE 1: These ratings apply, except for programming pins, during a programming cycle.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.75	5	5.25	V
VIH	High-level input voltage		2		5.5	V
VIL	Low-level input voltage				0.8	V
ЮН	High-level output current				-3.2	mA
I _{OL}	Low-level output current			24	mA	
fclock	Clock frequency	_	0		50	MHz
+	Pulse duration, clock (see Note 2)	High	8			ns
t _w	Puise duration, clock (see Note 2)	Low	9			115
t _{su}	Setup time, input or feedback before clock \uparrow		15			ns
th	Hold time, input or feedback after clock \uparrow		0			ns
TA	Operating free-air temperature		0	25	75	°C

NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, f_{clock}. The minimum pulse durations specified are for clock high or low only, but not for both simultaneously.

TIBPAL 16L8-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS

SRPS019A - FEBRUARY 1984 - REVISED APRIL 2000

electrical characteristics over recommended operating free-air temperature range

F	PARAMETER		TEST CONDITION	NS	MIN	түр†	MAX	UNIT
VIK		V _{CC} = 4.75 V,	lı = -18 mA				-1.5	V
∨он		V _{CC} = 4.75 V,	I _{OH} = -3.2 mA		2.4	3.3		V
VOL		V _{CC} = 4.75 V,	I _{OL} = 24 mA			0.35	0.5	V
lanu	Outputs		V _O = 2.7 V				20	μA
IOZH	I/O ports	$V_{CC} = 5.25 V,$	VO = 2.7 V	$V_{0} = 2.7 V$			100	μΑ
	Outputs						-20	
IOZL	I/O ports	$V_{CC} = 5.25 V,$	V _O = 0.4 V				-250	μA
Ц		V _{CC} = 5.25 V,	V _I = 5.5 V				0.1	mA
ЧΗ		V _{CC} = 5.25 V,	VI = 2.7 V				20	μA
۱ _{IL}		V _{CC} = 5.25 V,	$V_{ } = 0.4 V$				-0.2	mA
10‡		V _{CC} = 5.25 V,	V _O = 2.25 V		-30		-125	mA
ICC		V _{CC} = 5.25 V,	$V_{I} = 0,$	Outputs open		140	180	mA

[†] All typical values are at $V_{CC} = 5$ V, $T_A = 25^{\circ}$ C. [‡] The output conditions have been chosen to produce a current that closely approximates one-half of the short-circuit output current, I_{OS}.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр†	MAX	UNIT
fmax				50			MHz
^t pd	I, I/O	O, I/O			10	15	ns
^t pd	CLK↑	Q	R1 = 500 Ω,		8	12	ns
t _{en}	OE↓	Q	R2 = 500 Ω,		8	12	ns
^t dis	OE↑	Q	See Figure 3		7	10	ns
t _{en}	I, I/O	O, I/O]		10	15	ns
^t dis	I, I/O	O, I/O			10	15	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

TIBPAL 16L8-20M, TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE *IMPACT* ™ *PAL*® CIRCUITS

SRPS019A - FEBRUARY 1984 - REVISED APRIL 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) Input voltage (see Note 1)	
Voltage applied to disabled output (see Note 1) Operating free-air temperature range	5.5 V
Storage temperature range, T _{stg}	

NOTE 1: These ratings apply, except for programming pins, during a programming cycle.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	V	
VIH	High-level input voltage		2		5.5	V
VIL	Low-level input voltage				0.8	V
ЮН	High-level output current				-2	mA
IOL	Low-level output current				12	mA
fclock	Clock frequency		0		41.6	MHz
+	Pulse duration, clock (see Note 2)	High	10			ns
tw	ruise duration, clock (see Note 2)	Low	11			115
t _{su}	Setup time, input or feedback before clock $\hat{\uparrow}$		20			ns
th	Hold time, input or feedback after clock1		0			ns
ТА	Operating free-air temperature		-55	25	125	°C

NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, f_{clock}. The minimum pulse durations specified are for clock high or low only, but not for both simultaneously.

TIBPAL 16L8-20M, TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE *IMPACT* ™ *PAL*® CIRCUITS

SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000

					-		
ARAMETER		TEST CONDITION	IS	MIN	TYP†	MAX	UNIT
	V _{CC} = 4.5 V,	lj = -18 mA				-1.5	V
	V _{CC} = 4.5 V,	I _{OH} = -2 mA		2.4	3.2		V
	V _{CC} = 4.5 V,	I _{OL} = 12 mA			0.25	0.4	V
Outputs		$\lambda = 27 \lambda$				20	۸
I/O ports	vCC = 5.5 v,	$v_{O} = 2.7 v$				100	μA
Outputs						-20	۵
I/O ports	vCC = 5.5 v,	VO = 0.4 V				-250	μA
Pin 1, 11						0.2	mA
All others	vCC = 5.5 v,	v] = 5.5 v				0.1	mA
Pin 1, 11						50	
I/O ports	V _{CC} = 5.5 V,	V _I = 2.7 V				100	μA
All others						20	
I/O ports						-0.25	
All others	VCC = 5.5 V,	V] = 0.4 V				-0.2	mA
	V _{CC} = 5.5 V,	$V_{O} = 0.5 V$		-30		-250	mA
	V _{CC} = 5.5 V,	$V_{ } = 0,$	Outputs open		140	190	mA
	Outputs I/O ports Outputs I/O ports Pin 1, 11 All others Pin 1, 11 I/O ports All others I/O ports	$\begin{tabular}{ c c c c } & V_{CC} = 4.5 \text{ V}, \\ & V_{CC} = 4.5 \text{ V}, \\ \hline & V_{CC} = 4.5 \text{ V}, \\ \hline & V_{CC} = 4.5 \text{ V}, \\ \hline & V_{CC} = 5.5 \text{ V}, \\ \hline & Pin 1, 11 \\ \hline & I/O \text{ ports} \\ \hline & Pin 1, 11 \\ \hline & I/O \text{ ports} \\ \hline & V_{CC} = 5.5 \text{ V}, \\ \hline & All \text{ others} \\ \hline & V_{CC} = 5.5 \text{ V}, \\ \hline & All \text{ others} \\ \hline & V_{CC} = 5.5 \text{ V}, \\ \hline & V_{CC$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c } \hline V_{CC} = 4.5 \ V, & I_I = -18 \ mA & & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c c } \hline V_{CC} = 4.5 \ V, & I_I = -18 \ mA & & & -1.5 \\ \hline V_{CC} = 4.5 \ V, & I_{OH} = -2 \ mA & & & 2.4 & 3.2 \\ \hline V_{CC} = 4.5 \ V, & I_{OL} = 12 \ mA & & & 0.25 & 0.4 \\ \hline V_{CC} = 4.5 \ V, & I_{OL} = 12 \ mA & & & 0.25 & 0.4 \\ \hline \hline V_{CC} = 4.5 \ V, & I_{OL} = 12 \ mA & & & 0.25 & 0.4 \\ \hline \hline V_{CC} = 5.5 \ V, & V_{O} = 2.7 \ V & & & 100 \\ \hline \hline 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$

electrical characteristics over recommended operating free-air temperature range

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set V_O at 0.5 V to avoid test-equipment degradation.

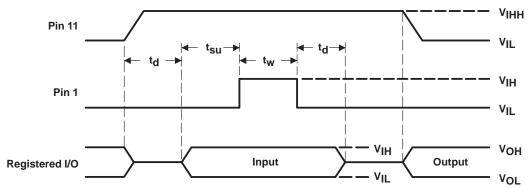
switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр†	MAX	UNIT
fmax				41.6			MHz
^t pd	I, I/O	O, I/O			10	20	ns
^t pd	CLK↑	Q	R1 = 390 Ω,		8	15	ns
ten	OE↓	Q	R2 = 750 Ω,		8	15	ns
^t dis	OE↑	Q	See Figure 4		7	15	ns
ten	I, I/O	O, I/O]		10	20	ns
^t dis	I, I/O	O, I/O			10	20	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.

TIBPAL 16L8-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C TIBPAL 16L8-20M, TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS019A - FEBRUARY 1984 - REVISED APRIL 2000

programming information


Texas Instruments programmable logic devices can be programmed using widely available software and inexpensive device programmers.

Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments programmable logic also is available, upon request, from the nearest TI field sales office or local authorized TI distributor, by calling Texas Instruments at +1 (972) 644–5580, or by visiting the TI Semiconductor Home Page at www.ti.com/sc.

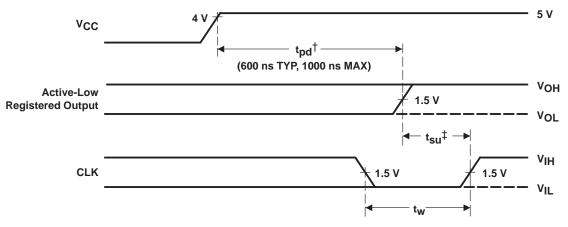
preload procedure for registered outputs (see Figure 1 and Note 3)

The output registers can be preloaded to any desired state during device testing. This permits any state to be tested without having to step through the entire state-machine sequence. Each register is preloaded individually by following the steps given below.

- Step 1. With V_{CC} at 5 V and Pin 1 at V_{IL} , raise Pin 11 to V_{IHH} .
- Step 2. Apply either V_{IL} or V_{IH} to the output corresponding to the register to be preloaded.
- Step 3. Pulse Pin 1, clocking in preload data.
- Step 4. Remove output voltage, then lower Pin 11 to V_{IL}. Preload can be verified by observing the voltage level at the output pin.

NOTE 3: $t_d = t_{SU} = t_h = 100 \text{ ns to } 1000 \text{ ns } V_{IHH} = 10.25 \text{ V to } 10.75 \text{ V}$

Figure 1. Preload Waveforms



TIBPAL 16L8-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C TIBPAL 16L8-20M, TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE IMPACT TM PAL® CIRCUITS SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000

SRPS019A – FEBRUARY 1984 – REVISED APRIL 200

power-up reset (see Figure 2)

Following power up, all registers are set high. This feature provides extra flexibility to the system designer and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the rise of V_{CC} be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and feedback setup times are met.

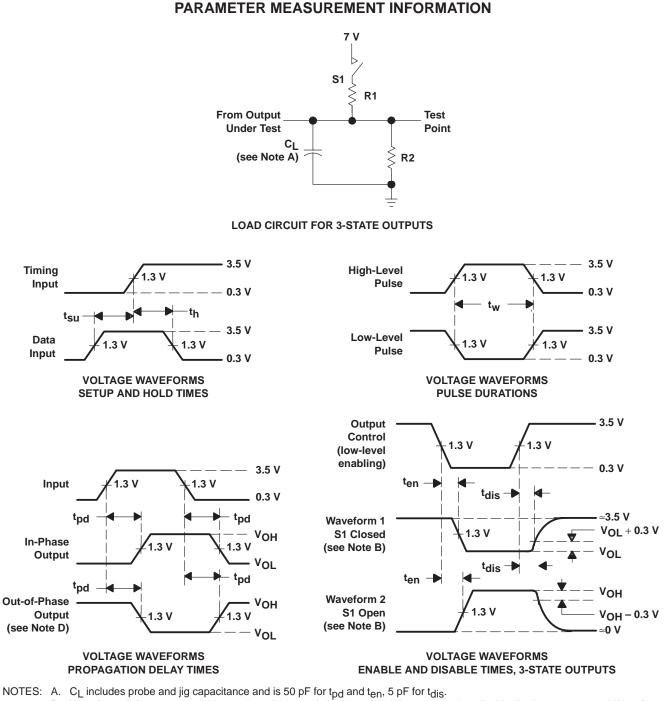

[†] This is the power-up reset time and applies to registered outputs only. The values shown are from characterization data. [‡] This is the setup time for input or feedback.

Figure 2. Power-Up Reset Waveforms

TIBPAL 16L8-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TIBPAL 16R8-15C HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS

SRPS019A - FEBRUARY 1984 - REVISED APRIL 2000

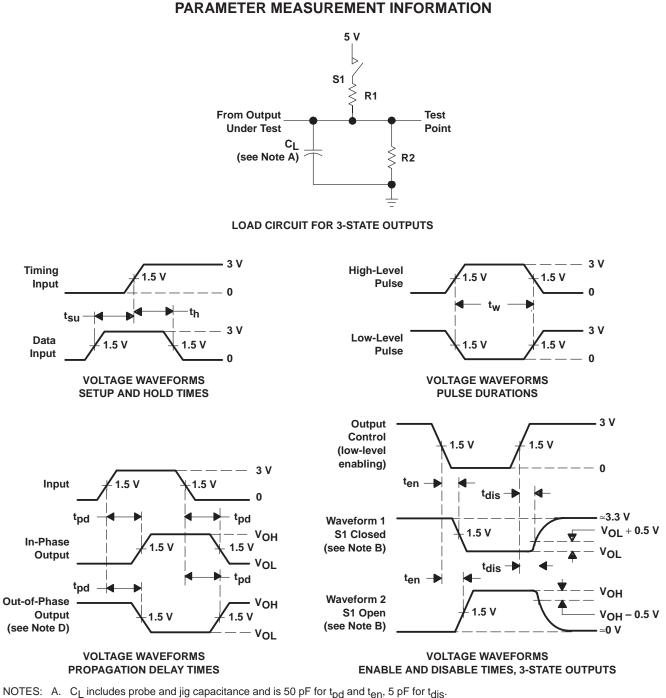

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses have the following characteristics: PRR \leq 1 MHz, t_{f} = t_{f} \leq 2 ns, duty cycle = 50\%
- D. When measuring propagation delay times of 3-state outputs from low to high, switch S1 is closed. When measuring propagation delay times of 3-state outputs from high to low, switch S1 is open.
- E. Equivalent loads may be used for testing.

Figure 3. Load Circuit and Voltage Waveforms

TIBPAL 16L8-20M, TIBPAL 16R4-20M, TIBPAL 16R6-20M, TIBPAL 16R8-20M HIGH-PERFORMANCE *IMPACT* ™ *PAL*® CIRCUITS

SRPS019A – FEBRUARY 1984 – REVISED APRIL 2000

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses have the following characteristics: PRR \leq 10 MHz, t_f = t_f \leq 2 ns, duty cycle = 50%
- D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
- E. Equivalent loads may be used for testing.

31-Mar-2013

PACKAGING INFORMATION

Orderable Device		Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	•	Op Temp (°C)	Top-Side Markings	Samples
5962-85155012A	(1) ACTIVE	LCCC	FK	20	1	(2) TBD	Call TI	(3) Call TI	-55 to 125	(4) 5962- 85155012A TIBPAL16 L8-20MFKB	Samples
5962-8515501RA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515501RA TIBPAL16L8-20M JB	Samples
5962-8515501SA	ACTIVE	CFP	W	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515501SA TIBPAL16L8-20M WB	Samples
5962-85155022A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	-55 to 125	5962- 85155022A TIBPAL16 R8-20MFKB	Samples
5962-8515502RA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515502RA TIBPAL16R8-20M JB	Samples
5962-8515502SA	ACTIVE	CFP	W	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515502SA TIBPAL16R8-20M WB	Samples
5962-85155032A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	-55 to 125	5962- 85155032A TIBPAL16 R6-20MFKB	Samples
5962-8515503RA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515503RA TIBPAL16R6-20M JB	Samples
5962-8515503SA	ACTIVE	CFP	W	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515503SA TIBPAL16R6-20M WB	Samples
5962-85155042A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	-55 to 125	5962- 85155042A TIBPAL16 R4-20MFKB	Samples
5962-8515504RA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515504RA TIBPAL16R4-20M JB	Samples

PACKAGE OPTION ADDENDUM

31-Mar-2013

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Top-Side Markings (4)	Sampl
5962-8515504SA	ACTIVE	CFP	W	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515504SA TIBPAL16R4-20M WB	Sampl
JM38510/50601BRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 50601BRA	Sampl
JM38510/50602BRA	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI	-55 to 125	JM38510/ 50602BRA	
JM38510/50603BRA	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI	-55 to 125	JM38510/ 50603BRA	
JM38510/50604BRA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	JM38510/ 50604BRA	Samp
M38510/50601BRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 50601BRA	Samp
M38510/50602BRA	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI	-55 to 125		
M38510/50603BRA	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI	-55 to 125		
M38510/50604BRA	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	JM38510/ 50604BRA	Samp
TIBPAL16L8-15CFN	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-245C-168 HR	0 to 75	16L8-15	Samp
TIBPAL16L8-15CN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 75	TIBPAL16L8-15C N	Samp
TIBPAL16L8-20MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 85155012A TIBPAL16 L8-20MFKB	Samp
TIBPAL16L8-20MJ	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	TIBPAL16L8-20M J	Samp
TIBPAL16L8-20MJB	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8515501RA TIBPAL16L8-20M JB	Samp
TIBPAL16L8-20MWB	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8515501SA TIBPAL16L8-20M WB	Samp
TIBPAL16R4-15CFN	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-245C-168 HR	0 to 75	16R4-15	Samp
TIBPAL16R4-15CJ	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI			

PACKAGE OPTION ADDENDUM

31-Mar-2013

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Top-Side Markings (4)	Sample
TIBPAL16R4-15CN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 75	TIBPAL16R4-15C N	Sampl
TIBPAL16R4-20MFKB	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	-55 to 125	5962- 85155042A TIBPAL16 R4-20MFKB	Sampl
TIBPAL16R4-20MJ	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	TIBPAL16R4-20M J	Sampl
TIBPAL16R4-20MJB	ACTIVE	CDIP	J	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515504RA TIBPAL16R4-20M JB	Sampl
TIBPAL16R4-20MWB	ACTIVE	CFP	W	20	1	TBD	Call TI	Call TI	-55 to 125	5962-8515504SA TIBPAL16R4-20M WB	Sampl
TIBPAL16R6-15CFN	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-245C-168 HR	0 to 75	16R6-15	Sampl
TIBPAL16R6-15CN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 75	TIBPAL16R6-15C N	Samp
TIBPAL16R6-20MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 85155032A TIBPAL16 R6-20MFKB	Samp
TIBPAL16R6-20MJ	NRND	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	TIBPAL16R6-20M J	
TIBPAL16R6-20MJB	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8515503RA TIBPAL16R6-20M JB	Samp
TIBPAL16R6-20MWB	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8515503SA TIBPAL16R6-20M WB	Samp
TIBPAL16R8-15CFN	ACTIVE	PLCC	FN	20	46	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-245C-168 HR	0 to 75	16R8-15	Samp
TIBPAL16R8-15CN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 75	TIBPAL16R8-15C N	Samp
TIBPAL16R8-20MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 85155022A TIBPAL16 R8-20MFKB	Samp

31-Mar-2013

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TIBPAL16R8-20MJ	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI	-55 to 125	TIBPAL16R8-20M J	
TIBPAL16R8-20MJB	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8515502RA TIBPAL16R8-20M JB	Samples
TIBPAL16R8-20MWB	ACTIVE	CFP	W	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8515502SA TIBPAL16R8-20M WB	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

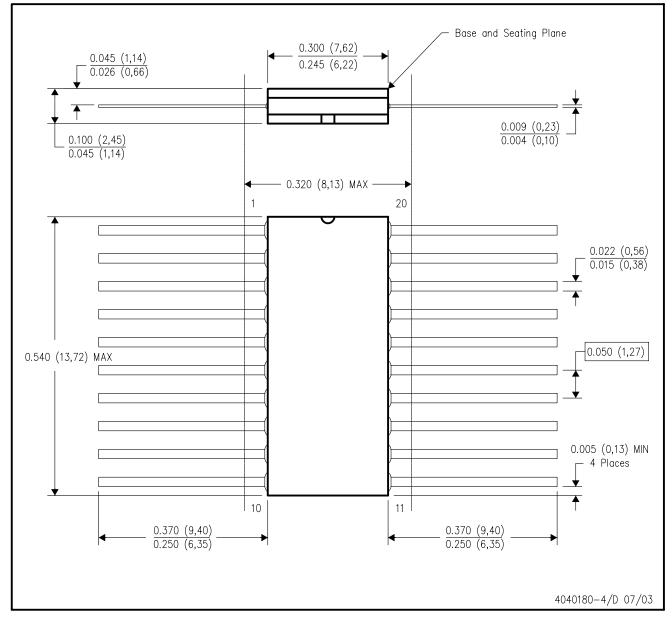
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

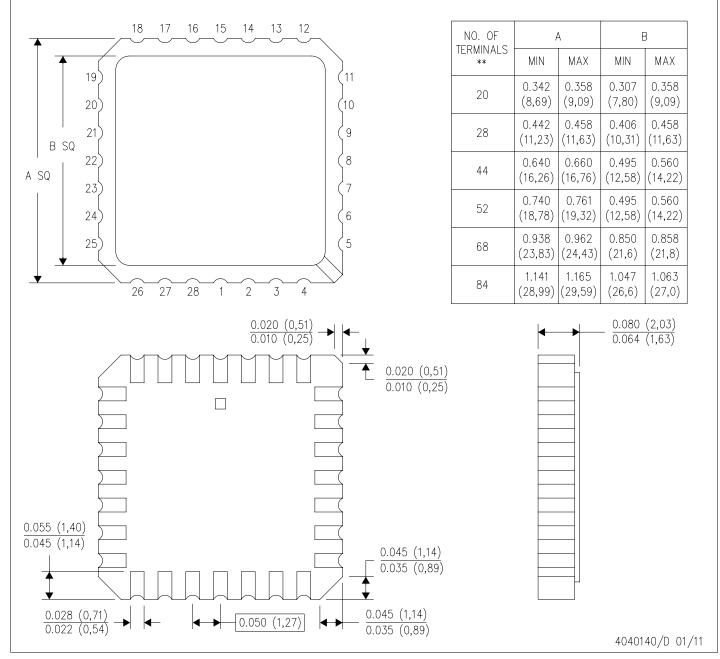


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK



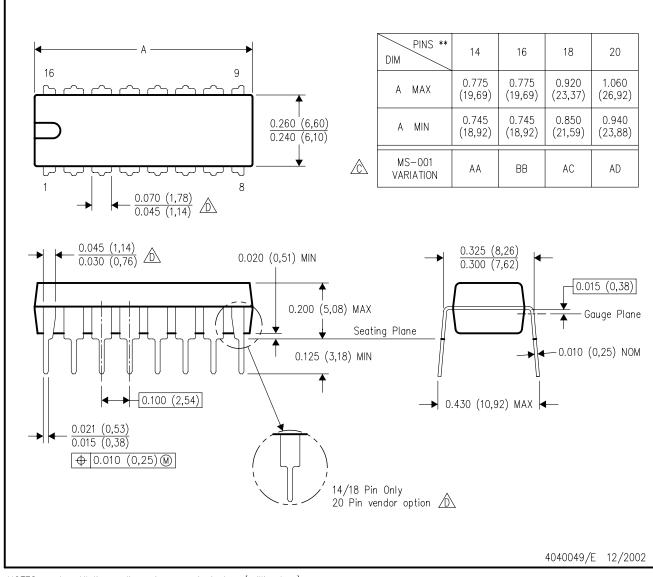
- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

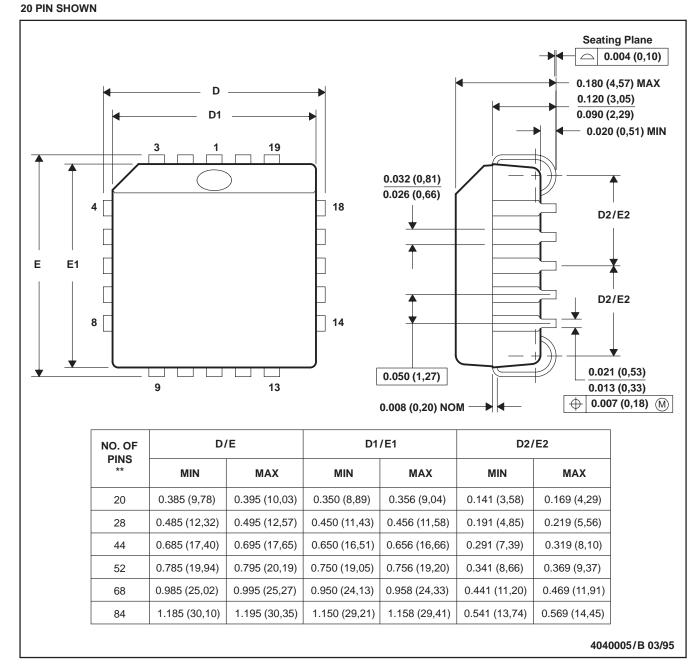
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.



MECHANICAL DATA

MPLC004A - OCTOBER 1994

PLASTIC J-LEADED CHIP CARRIER

FN (S-PQCC-J**)

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-018

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated